A CRITIQUE ONMECHANISM OF NIGELLA SATIVA AS AN ANTI-DIABETIC DRUG: FOCUS ON THE THERAPEUTIC DOSE BASED ON ASSORTED EXPLICATIONS

Authors

  • SANA BUTOOL Department of Pharmacology, Teegala Ram Reddy College of Pharmacy, Hyderabad, Telangana, India
  • SAILAJA RAO P. Department of Pharmacology, Teegala Ram Reddy College of Pharmacy, Hyderabad, Telangana, India
  • RAVI KUMAR V. Department of Pharmacology, MNR College of Pharmacy, Hyderabad, Telangana, India
  • SREEDEVI B. Department of Pharmacology, Teegala Ram Reddy College of Pharmacy, Hyderabad, Telangana, India

DOI:

https://doi.org/10.22159/ijpps.2025v17i9.54971

Keywords:

Nigella sativa, Diabetes mellitus, Mechanism of action, Dose, Side effects

Abstract

Globally, Diabetic mellitus is a rapidly progressing metabolic disorder and is becoming a worldwide concern with several complications and deaths every year. Despite conventional anti-diabetic drugs, numerous kinds of research are going on to get the best cost-effective therapeutic agents with the least adverse effects for the management of diabetes and its complications. Nigella sativa is a spice with multi-effects on various disorders like anti-diabetic, anti-cancer, immune modulator, anti-microbial, anti-inflammatory, anti-spasmodic, relives pain, bronchodilator, hepato and renal protective, gastro-protective, anti-oxidant properties. Amongst all effects, the anti-diabetic properties remained a cornerstone and was explored. Anti-diabetic effect of N. sativa was due to the presence of Thymoquinone, a major constituent responsible for its effect. Since long ago, studies revealed that the active constituent thymoquinone had a significant reduction in fasting and post-prandial blood glucose levels (glycemic control), probably affecting the pancreatic β-cells, on insulin production and secretion; moreover, lipid profile was shown to be improved in both clinical and preclinical trials. However, there are not many studies on the exact dose to be administered for the therapeutic effect clinically. This review investigated and emphasized the molecular mechanism of N. sativa based on the pre-clinical, clinical and toxicological evaluations. This aimed for the estimation of effective dose of N. sativa therapeutically for healthier out-turn.

Downloads

Download data is not yet available.

References

1. Marpaung J, Siregar MF, Sitepu M, Bachtiar A. Black cumin (Nigella sativa) effect on blood pressure, mean arterial pressure proteinuria in preeclamptic model rats. Int J Curr Pharm Sci. 2020;12(4):127-33. doi: 10.22159/ijcpr.2020v12i4.39099.

2. Zulfikri Z, Harahap U, Ichwan M. Effect of black cumin oil (Nigella sativa L.) on spatial memory of adult mice treated with temozolomide. Asian J Pharm Clin Res. 2018;11(13):151-4. doi: 10.22159/ajpcr.2018.v11s1.26594.

3. World Health Organization. Global health estimates: deaths by cause age sex and country, 2000-2015. Geneva: World Health Organization; 2014.

4. Mendis S, Davis S, Norrving B. Organizational update: the World Health Organization global status report on noncommunicable diseases 2014; one more landmark step in the combat against stroke and vascular disease. Stroke. 2015;46(5):e121-2. doi: 10.1161/STROKEAHA.115.008097, PMID 25873596.

5. International Diabetes Federation IDF Diabetes Atlas. 10th ed. Brussels, Belgium: International Diabetes Federation; 2021.

6. Gur FM, Aktas I. The ameliorative effects of thymoquinone and beta-aminoisobutyric acid on streptozotocin-induced diabetic cardiomyopathy. Tissue Cell. 2021 Aug;71:101582. doi: 10.1016/j.tice.2021.101582, PMID 34171519.

7. Rao PS, Mohan GK. In vitro alpha-amylase inhibition and in vivo antioxidant potential of Momordica dioica seeds in streptozotocin induced oxidative stress in diabetic rats. Saudi J Biol Sci. 2017 Sep;24(6):1262-7. doi: 10.1016/j.sjbs.2016.01.010, PMID 28855820, PMCID PMC5562449.

8. Kumar R, Rao PS. Streptozotocin induced oxidative stress in diabetic rats a defensive effect of Psydrax dicoccos. Asian J Pharm Clin Res. 2018 Nov 7;11(11):378-80. doi: 10.22159/ajpcr.2018.v11i11.28019.

9. Ahmad MF, Ahmad FA, Ashraf SA, Saad HH, Wahab S, Khan MI. An updated knowledge of Black seed (Nigella sativa Linn.): review of phytochemical constituents and pharmacological properties. J Herb Med. 2021 Feb;25:100404. doi: 10.1016/j.hermed.2020.100404, PMID 32983848, PMCID PMC7501064.

10. Haseena S, Aithal M, Das KK, Saheb SH. Phytochemical analysis of Nigella sativa and its effect on reproductive system. J Pharm Sci Res. 2015;7(8):514-7.

11. Ahmad MF, Ahmad FA, Ashraf SA, Saad HH, Wahab S, Khan MI. An updated knowledge of black seed (Nigella sativa Linn.): review of phytochemical constituents and pharmacological properties. J Herb Med. 2021 Feb;25:100404. doi: 10.1016/j.hermed.2020.100404, PMID 32983848, PMCID PMC7501064.

12. Khader M, Eckl PM. Thymoquinone: an emerging natural drug with a wide range of medical applications. Iran J Basic Med Sci. 2014;17(12):950-7. PMID 25859298.

13. Malik S, Singh A, Negi P, Kapoor VK. Thymoquinone: a small molecule from nature with high therapeutic potential. Drug Discov Today. 2021;26(11):2716-25. doi: 10.1016/j.drudis.2021.07.013, PMID 34303824.

14. Farooq J, Sultana R, Taj T, Asdaq SM, Alsalman AJ, Mohaini MA. Insights into the protective effects of thymoquinone against toxicities induced by chemotherapeutic agents. Molecules. 2021 Dec 30;27(1):226. doi: 10.3390/molecules27010226, PMID 35011457, PMCID PMC8746502.

15. Khan MA. Thymoquinone a constituent of prophetic medicine, black seed is a miracle therapeutic molecule against multiple diseases. Int J Health Sci (Qassim). 2019;13(1):1-2. PMID 30842710.

16. Al Attass SA, Zahran FM, Turkistany SA. Nigella sativa and its active constituent thymoquinone in oral health. Saudi Med J. 2016;37(3):235-44. doi: 10.15537/smj.2016.3.13006, PMID 26905343.

17. Hannan MA, Rahman MA, Sohag AA, Uddin MJ, Dash R, Sikder MH, Tahjib Ul Arif M, Mitra S, Oktaviani DF, Khan MK, Choi HJ, Moon IS, Kim B. Black cumin (Nigella sativa L.): a comprehensive review on phytochemistry health benefits molecular pharmacology and safety. Nutrients. 2021 May 24;13(6):1784. doi: 10.3390/nu13061784, PMID 34073784.

18. Aktas I, Mehmet Gur F. Hepato protective effects of thymoquinone and beta-aminoisobutyric acid in streptozocin induced diabetic rats. Biotech Histochem. 2022;97(1):67-76. doi: 10.1080/10520295.2021.1949041, PMID 34281431.

19. Asaduzzaman Khan M, Tania M, Fu S, Fu J. Thymoquinone as an anticancer molecule: from basic research to clinical investigation. Oncotarget. 2017;8(31):51907-19. doi: 10.18632/oncotarget.17206, PMID 28881699.

20. Goyal SN, Prajapati CP, Gore PR, Patil CR, Mahajan UB, Sharma C. Therapeutic potential and pharmaceutical development of thymoquinone: a multitargeted molecule of natural origin. Front Pharmacol. 2017 Sep 21;8:656. doi: 10.3389/fphar.2017.00656, PMID 28983249.

21. Agarwal S, Tripathi S, Arshi A, Mishra N. Nutritional composition and antioxidant profiles of Nigella sativa L. seeds. AP. 2020;9(2):207-14. doi: 10.21276/ap.2020.9.2.18.

22. Faisal Lutfi M, Abdel Moneim AH, Alsharidah AS, Mobark MA, Abdellatif AA, Saleem IY. Thymoquinone lowers blood glucose and reduces oxidative stress in a rat model of diabetes. Molecules. 2021;26(8):2348. doi: 10.3390/molecules26082348, PMID 33920728.

23. Sadiq N, Subhani G, Fatima SA, Nadeem M, Zafer S, Mohsin M. Antidiabetic effect of Nigella sativa compared with metformin on blood glucose levels in streptozotocin induced diabetic albino Wistar rats. Int J Basic Clin Pharmacol. 2021;10(4):361-7. doi: 10.18203/2319-2003.ijbcp20211016.

24. Jangjo Borazjani S, Dastgheib M, Kiyamarsi E, Jamshidi R, Rahmati Ahmadabad S, Helalizadeh M. Effects of resistance training and Nigella sativa on type 2 diabetes: implications for metabolic markers low grade inflammation and liver enzyme production. Arch Physiol Biochem. 2023 Dec;129(4):913-21. doi: 10.1080/13813455.2021.1886117, PMID 33612031.

25. Coughlan KA, Valentine RJ, Ruderman NB, Saha AK. AMPK activation: a therapeutic target for type 2 diabetes? Diabetes Metab Syndr Obes. 2014 Jun 24;7:241-53. doi: 10.2147/DMSO.S43731, PMID 25018645.

26. Dalli M, Daoudi NE, Azizi SE, Benouda H, Bnouham M, Gseyra N. Chemical composition analysis using HPLC-UV/GC-MS and inhibitory activity of different Nigella sativa fractions on pancreatic α-amylase and intestinal glucose absorption. BioMed Res Int. 2021 Jun 26;2021:9979419. doi: 10.1155/2021/9979419, PMID 34258287, PMCID PMC8257330.

27. Mohebbati R, Abbasnezhad A, Havakhah S, Mousavi M. The effect of Nigella sativa on renal oxidative injury in diabetic rats. Saudi J Kidney Dis Transpl. 2020;31(4):775-86. doi: 10.4103/1319-2442.292311, PMID 32801238.

28. Hannan JM, Ansari P, Haque A, Sanju A, Huzaifa A, Rahman A. Nigella sativa stimulates insulin secretion from isolated rat islets and inhibits the digestion and absorption of (CH2O)n in the gut. Biosci Rep. 2019;39(8):BSR20190723. doi: 10.1042/BSR20190723.

29. Rani R, Dahiya S, Dhingra D, Dilbaghi N, Kim KH, Kumar S. Improvement of antihyperglycemic activity of nano-thymoquinone in rat model of type 2 diabetes. Chem Biol Interact. 2018 Nov 1;295:119-32. doi: 10.1016/j.cbi.2018.02.006, PMID 29421519.

30. Ramineedu K, Sankaran KR, Mallepogu V, Rendedula DP, Gunturu R, Gandham S. Thymoquinone mitigates obesity and diabetic parameters through regulation of major adipokines key lipid metabolizing enzymes and AMPK/p-AMPK in diet-induced obese rats. 3 Biotech. 2024 Jan;14(1):16. doi: 10.1007/s13205-023-03847-x, PMID 38125651, PMCID PMC10728404.

31. Susilowati R, Ainuzzakki V, Nadif MR, Diana AR. The efficacy of Nigella sativa L. extracts to reduce cardiovascular disease risk in diabetic dyslipidemia. AIP Conf Proc. 2019;2120(1):700020. doi: 10.1063/1.5115737.

32. Alshahrani S, Anwer T, Alam MF, Ahmed RA, Khan G, Sivakumar SM. Effect of thymoquinone on high fat diet and STZ-induced experimental type 2 diabetes: a mechanistic insight by in vivo and in silico studies. J Food Biochem. 2021;45(8):e13807. doi: 10.1111/jfbc.13807, PMID 34152002.

33. Dalli M, Bekkouch O, Azizi SE, Azghar A, Gseyra N, Kim B. Nigella sativa L. phytochemistry and pharmacological activities: a review (2019-2021). Biomolecules. 2021;12(1):20. doi: 10.3390/biom12010020, PMID 35053168.

34. Akhtar MT, Qadir R, Bukhari I, Ashraf RA, Malik Z, Zahoor S. Antidiabetic potential of Nigella sativa L. seed oil in alloxaninduced diabetic rabbits. Trop J Pharm Res. 2020;19(2):283-9. doi: 10.4314/tjpr.v19i2.10.

35. Gur FM, Aktas I. The effects of thymoquinone and β-aminoisobutyric acid on brain tissue of streptozotocin induced diabetic rats. Int J Vet Ani Res. 2021;4(1):1-6.

36. RP, Anitha R, SR, TL. Anti-diabetic activity of silver nanoparticles prepared from cumin oil using alpha amylase inhibitory assay. IJRPS. 2020;11(2):1267-9. doi: 10.26452/ijrps.v11i2.1978.

37. Ali SM, Chen P, Sheikh S, Ahmad A, Ahmad M, Paithankar M. Thymoquinone with metformin decreases fasting post prandial glucose and HbA1c in type 2 diabetic patients. Drug Res (Stuttg). 2021;71(6):302-6. doi: 10.1055/a-1388-5415, PMID 33684953.

38. Ahmad A, Khan RM, Alkharfy KM, Raish M, Al Jenoobi FI, Al Mohizea AM. Effects of thymoquinone on the pharmacokinetics and pharmacodynamics of glibenclamide in a rat model. Nat Prod Commun. 2015;10(8):1395-8. doi: 10.1177/1934578X1501000821, PMID 26434126.

39. Heshmati J, Namazi N. Effects of black seed (Nigella sativa) on metabolic parameters in diabetes mellitus: a systematic review. Complement Ther Med. 2015;23(2):275-82. doi: 10.1016/j.ctim.2015.01.013, PMID 25847566.

40. Wei J, Wang B, Chen Y, Wang Q, Ahmed AF, Cui L. Effects of two triterpenoids from Nigella sativa seeds on insulin resistance of 3T3-L1 adipocytes. Front Nutr. 2022 Aug 23;9:995550. doi: 10.3389/fnut.2022.995550, PMID 36082026, PMCID PMC9445806.

41. Hosseini M, Mirkarimi S, Amini M, Mohtashami R, Kianbakht S, Fallah HH. Effects of Nigella sativa L. seed oil in type II diabetic patients: a randomized double-blind placebo controlled clinical trial. J Med Plants. 2013;12(47):93-9.

42. Kaatabi H, Bamosa AO, Badar A, Al Elq A, Abou Hozaifa B, Lebda F. Nigella sativa improves glycemic control and ameliorates oxidative stress in patients with type 2 diabetes mellitus: placebo controlled participant blinded clinical trial. PLOS One. 2015;10(2):e0113486. doi: 10.1371/journal.pone.0113486, PMID 25706772.

43. Hamdan A, Haji Idrus R, Mokhtar MH. Effects of Nigella sativa on type 2 diabetes mellitus: a systematic review. Int J Environ Res Public Health. 2019;16(24):4911. doi: 10.3390/ijerph16244911, PMID 31817324.

44. Talebi A, Maham M, Asri Rezaei S, Pournaghi P, Khorrami MS, Derakhshan A. Effects of Nigella sativa on performance blood profiles and antibody titer against Newcastle disease in broilers. Evid Based Complement Alternat Med. 2021 Jun 14;2021:2070375. doi: 10.1155/2021/2070375, PMID 34234833, PMCID PMC8216824.

45. Tavakkoli A, Mahdian V, Razavi BM, Hosseinzadeh H. Review on clinical trials of black seed (Nigella sativa) and its active constituent thymoquinone. J Pharmacopuncture. 2017;20(3):179-93. doi: 10.3831/KPI.2017.20.021, PMID 30087794.

46. Mahomoodally MF, Aumeeruddy MZ, Legoabe LJ, Montesano D, Zengin G. Nigella sativa L. and its active compound thymoquinone in the clinical management of diabetes: a systematic review. Int J Mol Sci. 2022;23(20):12111. doi: 10.3390/ijms232012111, PMID 36292966.

47. Rachman PN, Akrom EA, Darmawan E. The efficacy of black cumin seed (Nigella sativa) oil and hypoglycemic drug combination to reduce HbA1c level in patients with metabolic syndrome risk. IOP Conf Ser.: Mater Sci Eng. 2017;259:12018. doi: 10.1088/1757-899X/259/1/012018.

48. Heshmati J, Namazi N, Memarzadeh MR, Taghizadeh M, Kolahdooz F. Nigella sativa oil affects glucose metabolism and lipid concentrations in patients with type 2 diabetes: a randomized double-blind placebo controlled trial. Food Res Int. 2015;70:87-93. doi: 10.1016/j.foodres.2015.01.030.

49. Rashidmayvan M, Mohammadshahi M, Seyedian SS, Haghighizadeh MH. The effect of Nigella sativa oil on serum levels of inflammatory markers liver enzymes lipid profile insulin and fasting blood sugar in patients with non-alcoholic fatty liver. J Diabetes Metab Disord. 2019;18(2):453-9. doi: 10.1007/s40200-019-00439-6, PMID 31890671.

50. Tang G, Zhang L, Tao J, Wei Z. Effect of Nigella sativa in the treatment of nonalcoholic fatty liver disease: a systematic review and meta-analysis of randomized controlled trials. Phytother Res. 2021;35(8):4183-93. doi: 10.1002/ptr.7080, PMID 33728708.

51. Heshmati J, Namazi N, Memarzadeh MR, Taghizadeh M, Kolahdooz F. Nigella sativa oil affects glucose metabolism and lipid concentrations in patients with type 2 diabetes: a randomized double-blind, placebo-controlled trial. Food Res Int. 2015;70:87-93. doi: 10.1016/j.foodres.2015.01.030.

52. Moustafa HA, El Wakeel LM, Halawa MR, Sabri NA, El Bahy AZ, Singab AN. Effect of Nigella sativa oil versus metformin on glycemic control and biochemical parameters of newly diagnosed type 2 diabetes mellitus patients. Endocrine. 2019;65(2):286-94. doi: 10.1007/s12020-019-01963-4, PMID 31152309.

53. Jangjo Borazjani S, Dastgheib M, Kiyamarsi E, Jamshidi R, Rahmati Ahmadabad S, Helalizadeh M. Effects of resistance training and nigella sativa on type 2 diabetes: implications for metabolic markers low-grade inflammation and liver enzyme production. Arch Physiol Biochem. 2023;129(4):913-21. doi: 10.1080/13813455.2021.1886117, PMID 33612031.

54. Sahebkar A, Beccuti G, Simental Mendia LE, Nobili V, Bo S. Nigella sativa (black seed) effects on plasma lipid concentrations in humans: a systematic review and meta-analysis of randomized placebo-controlled trials. Pharmacol Res. 2016;106:37-50. doi: 10.1016/j.phrs.2016.02.008, PMID 26875640.

55. Zielinska M, Deren K, Polak Szczybylo E, Stępien AE. The role of bioactive compounds of Nigella sativa in rheumatoid arthritis therapy current reports. Nutrients. 2021;13(10):3369. doi: 10.3390/nu13103369, PMID 34684370.

56. Maideen NM. Antidiabetic activity of Nigella sativa (Black Seeds) and its active constituent (thymoquinone): a review of human and experimental animal studies. Chonnam Med J. 2021;57(3):169-75. doi: 10.4068/cmj.2021.57.3.169, PMID 34621636.

57. Alam M, Hasan GM, Ansari MM, Sharma R, Yadav DK, Hassan MI. Therapeutic implications and clinical manifestations of thymoquinone. Phytochemistry. 2022 Aug;200:113213. doi: 10.1016/j.phytochem.2022.113213, PMID 35472482.

58. Adana MY, Imam A, Bello AA, Sunmonu OE, Alege EP, Onigbolabi OG. Oral thymoquinone modulates cyclophosphamide induced testicular toxicity in adolescent Wistar rats. Andrologia. 2022 May;54(4):e14368. doi: 10.1111/and.14368, PMID 34997774.

59. Hannan MA, Rahman MA, Sohag AA, Uddin MJ, Dash R, Sikder MH, Tahjib-Ul-Arif M, Mitra S, Oktaviani DF, Khan MK, Choi HJ, Moon IS, Kim B. Black Cumin (Nigella sativa L.): a comprehensive review on phytochemistry health benefits molecular pharmacology and safety. Nutrients. 2021 May 24;13(6):1784. doi: 10.3390/nu13061784.

60. Farkhondeh T, Samarghandian S, Hozeifi S, Azimi Nezhad M. Therapeutic effects of thymoquinone for the treatment of central nervous system tumors: a review. Biomed Pharmacother. 2017 Dec;96:1440-4. doi: 10.1016/j.biopha.2017.12.013, PMID 29223556.

61. Liu H, Liu HY, Jiang YN, Li N. Protective effect of thymoquinone improves cardiovascular function and attenuates oxidative stress inflammation and apoptosis by mediating the PI3K/Akt pathway in diabetic rats. Mol Med Rep. 2016;13(3):2836-42. doi: 10.3892/mmr.2016.4823, PMID 26820252.

62. Shakeri F, Gholamnezhad Z, Megarbane B, Rezaee R, Boskabady MH. Gastrointestinal effects of Nigella sativa and its main constituent thymoquinone: a review. Avicenna J Phytomed. 2016;6(1):9-20. PMID 27247918.

63. Al Qubaisi MS, Rasedee A, Flaifel MH, Eid EE, Hussein Al Ali S, Alhassan FH. Characterization of thymoquinone/hydroxypropyl-β-cyclodextrin inclusion complex: application to anti-allergy properties. Eur J Pharm Sci. 2019;133:167-82. doi: 10.1016/j.ejps.2019.03.015, PMID 30902654.

64. Hossain MS, Sharfaraz A, Dutta A, Ahsan A, Masud MA, Ahmed IA. A review of ethnobotany phytochemistry antimicrobial pharmacology and toxicology of Nigella sativa L. Biomed Pharmacother. 2021 Nov;143:112182. doi: 10.1016/j.biopha.2021.112182, PMID 34649338.

65. Farkhondeh T, Samarghandian S, Shahri AM, Samini F. The neuroprotective effects of thymoquinone: a review. Dose Response. 2018;16(2):1559325818761455. doi: 10.1177/1559325818761455, PMID 29662431.

66. Zhu N, Xiang Y, Zhao X, Cai C, Chen H, Jiang WB. Thymoquinone suppresses platelet derived growth factor-BB-induced vascular smooth muscle cell proliferation migration and neointimal formation. J Cell Mol Med. 2019;23(12):8482-92. doi: 10.1111/jcmm.14738, PMID 31638340.

67. Liou YF, Hsieh YS, Hung TW, Chen PN, Chang YZ, Kao SH. Thymoquinone inhibits metastasis of renal cell carcinoma cell 786-O-SI3 associating with downregulation of MMP-2 and u-PA and suppression of PI3K/Src signaling. Int J Med Sci. 2019;16(5):686-95. doi: 10.7150/ijms.32763, PMID 31217736.

68. Chopra H, Bibi S, Singh I, Kamal MA, Islam F, Alhumaydhi FA. Nanomedicines in the management of Alzheimer’s disease: current view and future prospects. Front Aging Neurosci. 2022;14:879114. doi: 10.3389/fnagi.2022.879114, PMID 35875806.

Published

01-09-2025

How to Cite

BUTOOL, SANA, et al. “A CRITIQUE ONMECHANISM OF NIGELLA SATIVA AS AN ANTI-DIABETIC DRUG: FOCUS ON THE THERAPEUTIC DOSE BASED ON ASSORTED EXPLICATIONS”. International Journal of Pharmacy and Pharmaceutical Sciences, vol. 17, no. 9, Sept. 2025, pp. 15-20, doi:10.22159/ijpps.2025v17i9.54971.

Issue

Section

Review Article(s)

Most read articles by the same author(s)

Similar Articles

<< < 10 11 12 13 14 > >> 

You may also start an advanced similarity search for this article.