NANOTECHNOLOGY IN TOPICAL DRUG DELIVERY: ENHANCING EFFICACY AND OVERCOMING LIMITATIONS

Authors

  • SAMIDHA S. GOLATKAR Department of Pharmaceutics, Govindrao Nikam College of Pharmacy, Sawarde, Maharashtra-415606, India https://orcid.org/0009-0008-3622-3026
  • APEKSHA C. RAHATE Department of Pharmaceutics, Govindrao Nikam College of Pharmacy, Sawarde, Maharashtra-415606, India
  • MADAN D. POMAJE Department of Pharmaceutics, Govindrao Nikam College of Pharmacy, Sawarde, Maharashtra-415606, India

DOI:

https://doi.org/10.22159/ijpps.2025v17i12.54986

Keywords:

Topical drug delivery, Nanotechnology, Nanocarriers, Skin penetration, Targeted delivery

Abstract

Topical drug delivery systems have evolved from ancient plant-based treatments to sophisticated formulations. These systems offer advantages like localized therapeutic effects, avoidance of first-pass metabolism, and circumvention of enzymatic drug degradation. However, conventional topical formulations have limitations such as poor skin penetration, limited efficacy, and potential skin irritation. Nanotechnology has revolutionized topical drug delivery by addressing these challenges using nanocarriers, including liposomes, solid lipid nanoparticles, nanostructured lipid carriers, polymeric nanoparticles, nanoemulsions, dendrimers, nanosponges, carbon nanotubes, mesoporous nanoparticles, and metallic nanoparticles. These nanocarriers enhance drug penetration, improve drug stability, and enable targeted drug delivery. They also offer potential for controlled release, increased bioavailability, and reduced toxicity. Nanotechnology has clinical applications in wound healing, anti-aging, cancer therapy, pain management, cosmetics, chronic skin disorders, and growth factor delivery. Despite their advantages, nanocarriers face challenges, including potential toxicity, complex synthesis procedures, and high production costs. Nanotechnology is anticipated to become increasingly significant for the development of novel and effective topical drug delivery systems.

Downloads

Download data is not yet available.

References

1. Singh Malik D, Mital N, Kaur G. Topical drug delivery systems: a patent review. Expert Opin Ther Pat. 2016;26(2):213-28. doi: 10.1517/13543776.2016.1131267, PMID 26651499.

2. Tapfumaneyi P, Imran M, Mohammed Y, Roberts MS. Recent advances and future prospective of topical and transdermal delivery systems. Front Drug Deliv. 2022;2:957732. doi: 10.3389/fddev.2022.957732.

3. Roberts MS, Cheruvu HS, Mangion SE, Alinaghi A, Benson HA, Mohammed Y. Topical drug delivery: history percutaneous absorption and product development. Adv Drug Deliv Rev. 2021;177:113929. doi: 10.1016/j.addr.2021.113929, PMID 34403750.

4. Navti PD, Pandey A, Nikam AN, Padya BS, Kalthur G, Koteshwara KB. Ionic liquids assisted topical drug delivery for permeation enhancement: formulation strategies, biomedical applications and toxicological perspective. AAPS PharmSciTech. 2022;23(5):161. doi: 10.1208/s12249-022-02313-w, PMID 35676441.

5. Raina N, Rani R, Thakur VK, Gupta M. New insights in topical drug delivery for skin disorders: from a nanotechnological perspective. ACS Omega. 2023;8(22):19145-67. doi: 10.1021/acsomega.2c08016, PMID 37305231.

6. Surse SN, Sonawane SI, Sananse PP, Kankate RS, Patil MP, Kshirsagar SJ. Wound healing potential of polyherbal dusting powder for the treatment of bedsores. Int J Drug Deliv Technol. 2023;13(4):1328-35. doi: 10.25258/ijddt.13.4.33.

7. Karande SP, Rahangdale YU, Kanhere HS, Rathod SK, Dhabale SY. Formulation of antimicrobial polyherbal dusting powder and its evaluation. Int J Pharm Res Scholars. 2020;9(4):1-8.

8. Srikaew N, Phewkham N, Tungsukruthai S, Sriyakul K, Tungsukruthai P, Phetkate P. The effectiveness of herbal poultice in relieving pain and flexibility in osteoarthritis patients. Nat Life Sci Commun. 2024;23(3):e2024031. doi: 10.12982/NLSC.2024.031.

9. Bone K, Mills S. Herbal approaches to pathological states. In: Principles and practice of phytotherapy: modern herbal medicine. 2nd ed. Amsterdam: Elsevier; 2013. p. 140-82. doi: 10.1016/B978-0-443-06992-5.00008-6.

10. Doppalapudi S, Suryadevara V, Ainampudi SK, Reddyvallam SL, Anne R. Formulation and evaluation of anti-inflammatory activity of lemon grass oil liniments on Wistar rats. Asian J Pharm Pharmacol. 2018;4(4):434-9. doi: 10.31024/ajpp.2018.4.4.9.

11. Monti D, Egiziano E, Burgalassi S, Chetoni P, Chiappe C, Sanzone A. Ionic liquids as potential enhancers for transdermal drug delivery. Int J Pharm. 2017;516(1-2):45-51. doi: 10.1016/j.ijpharm.2016.11.020, PMID 27836753.

12. Madaan V, Chanana A, Kataria MK, Bilandi A. Emulsion technology and recent trends in emulsion applications. Int Res J Pharm. 2014;5(7):533-42. doi: 10.7897/2230-8407.0507108.

13. De Carvalho Guimaraes FB, Correa KL, De Souza TP, Rodriguez Amado JR, Ribeiro Costa RM, Silva Junior JO. A review of pickering emulsions: perspectives and applications. Pharmaceuticals (Basel). 2022;15(11):1413. doi: 10.3390/ph15111413, PMID 36422543.

14. Kumar Jayswal S, Kanere M, Singhai AK. A systemetaic review on: topical suspension. J Emerg Technol Innov Res. 2024;11(4):h756-64.

15. Kruanamkam W, Ketkomol P, Sertphon D, Boonkrong P, Charoenying T. Exploring the therapeutic potential of an herbal-based topical cream in psoriasis patients. Pharm Sci As. 2024;51(3):250-8. doi: 10.29090/psa.2024.03.24.1630.

16. Hagavane S, Sonawane S, Katkale A. Review on cream as topical drug delivery system. Int J Res Pharm Pharm Sci. 2022;7(1):21-30.

17. Patil PB, Datir SK, Saudagar RB. A review on topical gels as drug delivery system. J Drug Deliv Ther. 2019;9(3-s):989-94. doi: 10.22270/jddt.v9i3-s.2930.

18. Kaushal D, Upadhyaya N. Review on ointment. Int J Pharm Sci Med. 2022;7(10):30-8. doi: 10.47760/ijpsm.2022.v07i10.003.

19. Kallatra MB, Chaithanya AP, Ajith Babu TK. Formulation and characterisation of pastes. Int J Res Pharm Nano Sci. 2021;10(5):305-15. doi: 10.36673/IJRPNS.2021.v10.i05.A34.

20. Abid WK, Naser AI. The efficacy of a new paste formulation as an alternative therapeutic agent for traumatic ulcers. J Taibah Univ Med Sci. 2021;16(5):724-32. doi: 10.1016/j.jtumed.2021.05.005, PMID 34690654.

21. Hemrajani C, Negi P, Parashar A, Gupta G, Jha NK, Singh SK. Overcoming drug delivery barriers and challenges in topical therapy of atopic dermatitis: a nanotechnological perspective. Biomed Pharmacother. 2022;147:112633. doi: 10.1016/j.biopha.2022.112633, PMID 35030434.

22. Suza HM, Kamal BA, Abdalrazaq NA, Rashid AM, Tbeekh HT, Hussein RG. A review article: topical drug delivery system (skin). Journal Port Science Research. 2024;7:558-63. doi: 10.36371/port.2024.special.44.

23. Srinivasan S, Elumalai K. The new frontier of drug delivery through nanotechnology. Intell Pharm. 2023;1(4):169-74. doi: 10.1016/j.ipha.2023.08.002.

24. Koppa Raghu PK, Bansal KK, Thakor P, Bhavana V, Madan J, Rosenholm JM. Evolution of nanotechnology in delivering drugs to eyes skin and wounds via topical route. Pharmaceuticals (Basel). 2020;13(8):167. doi: 10.3390/ph13080167, PMID 32726897.

25. Li Y, Zhang H. Nanoparticle-based drug delivery systems for enhanced tumor-targeting treatment. J Biomed Nanotechnol. 2019;15(1):1-27. doi: 10.1166/jbn.2019.2670, PMID 30480512.

26. Burad S, Markad K, Kulkarni N, Dhole S. Assessment and outcome on preparations characterization of topical targeted nanosponge based drug delivery: critical review. Asian J Pharm Clin Res. 2023;16(5):19-26. doi: 10.22159/ajpcr.2023.v16i5.46809.

27. Liu P, Chen G, Zhang J. A review of liposomes as a drug delivery system: current status of approved products, regulatory environments and future perspectives. Molecules. 2022;27(4):1372. doi: 10.3390/molecules27041372, PMID 35209162.

28. Daraee H, Etemadi A, Kouhi M, Alimirzalu S, Akbarzadeh A. Application of liposomes in medicine and drug delivery. Artif Cells Nanomed Biotechnol. 2016;44(1):381-91. doi: 10.3109/21691401.2014.953633, PMID 25222036.

29. Li N, Qin Y, Dai D, Wang P, Shi M, Gao J. Transdermal delivery of therapeutic compounds with nanotechnological approaches in psoriasis. Front Bioeng Biotechnol. 2022;9:804415. doi: 10.3389/fbioe.2021.804415, PMID 35141215.

30. Pande S. Liposomes for drug delivery: review of vesicular composition factors affecting drug release and drug loading in liposomes. Artif Cells Nanomed Biotechnol. 2023;51(1):428-40. doi: 10.1080/21691401.2023.2247036, PMID 37594208.

31. Al Maghrabi PM, Gad S, Khafagy ES. Solid lipid nanoparticles: a prospective approach for topical drug delivery. Records of Pharmaceutical and Biomedical Sciences. 2020;4(2):8-16. doi: 10.21608/rpbs.2019.18556.1045.

32. Chutoprapat R, Kopongpanich P, Chan LW. A mini-review on solid lipid nanoparticles and nanostructured lipid carriers: topical delivery of phytochemicals for the treatment of acne vulgaris. Molecules. 2022;27(11):3460. doi: 10.3390/molecules27113460, PMID 35684396.

33. Lopez KL, Ravasio A, Gonzalez Aramundiz JV, Zacconi FC. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) prepared by microwave and ultrasound-assisted synthesis: promising green strategies for the nanoworld. Pharmaceutics. 2023;15(5):1333. doi: 10.3390/pharmaceutics15051333, PMID 37242575.

34. Palaria B, Tiwari V, Tiwari A, Aslam R, Kumar A, Sahoo BM. Nanostructured lipid carriers: a promising carrier in targeted drug delivery system. Curr Nanomater. 2023;8(1):23-43. doi: 10.2174/2405461507666220221094925.

35. Gomaa E, Fathi HA, Eissa NG, Elsabahy M. Methods for preparation of nanostructured lipid carriers. Methods. 2022 Mar;199:3-8. doi: 10.1016/j.ymeth.2021.05.003, PMID 33992771.

36. Waghule T, Rapalli VK, Gorantla S, Saha RN, Dubey SK, Puri A. Nanostructured lipid carriers as potential drug delivery systems for skin disorders. Curr Pharm Des. 2020;26(36):4569-79. doi: 10.2174/1381612826666200614175236, PMID 32534562.

37. Madawi EA, Al Jayoush AR, Rawas Qalaji M, Thu HE, Khan S, Sohail M. Polymeric nanoparticles as tunable nanocarriers for targeted delivery of drugs to skin tissues for treatment of topical skin diseases. Pharmaceutics. 2023;15(2):657. doi: 10.3390/pharmaceutics15020657, PMID 36839979.

38. Bhardwaj H, Jangde RK. Current updated review on preparation of polymeric nanoparticles for drug delivery and biomedical applications. Next Nanotechnol. 2023;2:100013. doi: 10.1016/j.nxnano.2023.100013.

39. Elmowafy M, Shalaby K, Elkomy MH, Alsaidan OA, Gomaa HA, Abdelgawad MA. Polymeric nanoparticles for delivery of natural bioactive agents: recent advances and challenges. Polymers (Basel). 2023;15(5):1123. doi: 10.3390/polym15051123, PMID 36904364.

40. Pulingam T, Foroozandeh P, Chuah JA, Sudesh K. Exploring various techniques for the chemical and biological synthesis of polymeric nanoparticles. Nanomaterials (Basel). 2022;12(3):576. doi: 10.3390/nano12030576, PMID 35159921.

41. Mushtaq A, Mohd Wani S, Malik AR, Gull A, Ramniwas S, Ahmad Nayik G. Recent insights into nanoemulsions: their preparation properties and applications. Food Chem X. 2023;18:100684. doi: 10.1016/j.fochx.2023.100684, PMID 37131847.

42. Bhardwaj S, Tiwari A. Nanoemulgel: a promising nanolipoidal emulsion-based drug delivery system in managing psoriasis. Dhaka Univ J Pharm Sci. 2021;20(2):235-46. doi: 10.3329/dujps.v20i2.57174.

43. Jadhav ST, Salunkhe VR, Bhinge SD. Nanoemulsion drug delivery system loaded with imiquimod: a QbD-based strategy for augmenting anti-cancer effects. Futur J Pharm Sci. 2023;9(1):120. doi: 10.1186/s43094-023-00568-z.

44. Ojha B, Jain VK, Gupta S, Talegaonkar S, Jain K. Nanoemulgel: a promising novel formulation for treatment of skin ailments. Polym Bull. 2022;79(7):4441-65. doi: 10.1007/s00289-021-03729-3.

45. Chauhan AS. Dendrimers for drug delivery. Molecules. 2018;23(4):938. doi: 10.3390/molecules23040938, PMID 29670005.

46. Noriega Luna B, Godinez LA, Rodriguez FJ, Rodriguez A, Zaldivar Lelo De Larrea G, Sosa Ferreyra CF. Applications of dendrimers in drug delivery agents, diagnosis therapy and detection. J Nanomater. 2014;2014(1):507273. doi: 10.1155/2014/507273.

47. Li X, Naeem A, Xiao S, Hu L, Zhang J, Zheng Q. Safety challenges and application strategies for the use of dendrimers in medicine. Pharmaceutics. 2022;14(6):1292. doi: 10.3390/pharmaceutics14061292, PMID 35745863.

48. Ghurghure SM, Sana M, Pathan A. Nanosponges: a novel approach for targeted drug delivery system. Int J Chem Stud. 2018;2(6):15-23.

49. Iravani S, Varma RS. Nanosponges for drug delivery and cancer therapy: recent advances. Nanomaterials (Basel). 2022;12(14):2440. doi: 10.3390/nano12142440, PMID 35889665.

50. Atchaya J, Girigoswami A, Girigoswami K. Versatile applications of nanosponges in biomedical field: a glimpse on SARS-CoV-2 management. Bionanoscience. 2022;12(3):1018-31. doi: 10.1007/s12668-022-01000-1, PMID 35755139.

51. Mehdipour Ataei S, Aram E. Mesoporous carbon-based materials: a review of synthesis, modification and applications. Catalysts. 2023;13(1):2. doi: 10.3390/catal13010002.

52. Zare H, Ahmadi S, Ghasemi A, Ghanbari M, Rabiee N, Bagherzadeh M. Carbon nanotubes: smart drug/gene delivery carriers. Int J Nanomedicine. 2021;16:1681-706. doi: 10.2147/IJN.S299448, PMID 33688185.

53. De Andrade LR, Andrade LN, Bahu JO, Cardenas Concha VO, Machado AT, Pires DS. Biomedical applications of carbon nanotubes: a systematic review of data and clinical trials. J Drug Deliv Sci Technol. 2024;99:105932. doi: 10.1016/j.jddst.2024.105932.

54. Murjani BO, Kadu PS, Bansod M, Vaidya SS, Yadav MD. Carbon nanotubes in biomedical applications: current status, promises and challenges. Carbon Lett. 2022;32(5):1207-26. doi: 10.1007/s42823-022-00364-4, PMID 40477687.

55. Sakhare Raghunath S, Nagoba Shivappa N, Thorat Sanket G, Shaikh Ismail Y, Swami Avinash B. Formulation and evaluation of carbon nanotubes for topical drug delivery. Int J Health Sci. 2022;6(S8):1326-41. doi: 10.53730/ijhs.v6nS8.9979.

56. Reato PT, Todero AS, De Oliveira Pereira F, Dallago RM, Bernardo Gusmao K, Mignoni ML. Mesoporous materials of the MCM type: synthesis, application use of ionic solids and functionalization with graphene: a review. Silicon. 2023;15(10):4345-64. doi: 10.1007/s12633-023-02344-3.

57. Chandrakala V, Aruna V, Angajala G. Review on metal nanoparticles as nanocarriers: current challenges and perspectives in drug delivery systems. Emergent Mater. 2022;5(6):1593-615. doi: 10.1007/s42247-021-00335-x, PMID 35005431.

58. Abdelkawi A, Slim A, Zinoune Z, Pathak Y. Surface modification of metallic nanoparticles for targeting drugs. Coatings. 2023;13(9):1660. doi: 10.3390/coatings13091660.

59. Tawfeeq N, Al Naffakh J, Talei MR. Metal nanoparticles as novel drug delivery systems: a review of current challenges and opportunities. Iraqi J Nanotechnol Synth Appl. 2023;4:113-40. doi: 10.47758/ijn.vi4.77.

60. Rajeshkanna A, Senthamilselvi M, Prabhakaran D. Anti-oxidant and anti-inflammatory activity of ethyl acetate fraction of Moringa oleifera flowers. Eur J Med Plants. 2020;30(4):1-8. doi: 10.9734/ejmp/2019/v30i430184.

61. Zhao C, Zhou B. Polyethyleneimine-based drug delivery systems for cancer theranostics. J Funct Biomater. 2022;14(1):12. doi: 10.3390/jfb14010012, PMID 36662059.

62. Lohani A, Verma A. Vesicles: potential nano carriers for the delivery of skin cosmetics. J Cosmet Laser Ther. 2017;19(8):485-93. doi: 10.1080/14764172.2017.1358451, PMID 28753057.

63. Garcia Orue I, Pedraz JL, Hernandez RM, Igartua M. Nanotechnology-based delivery systems to release growth factors and other endogenous molecules for chronic wound healing. J Drug Deliv Sci Technol. 2017;42:2-17. doi: 10.1016/j.jddst.2017.03.002.

Published

01-12-2025

How to Cite

GOLATKAR, SAMIDHA S., et al. “NANOTECHNOLOGY IN TOPICAL DRUG DELIVERY: ENHANCING EFFICACY AND OVERCOMING LIMITATIONS”. International Journal of Pharmacy and Pharmaceutical Sciences, vol. 17, no. 12, Dec. 2025, pp. 1-6, doi:10.22159/ijpps.2025v17i12.54986.

Issue

Section

Review Article(s)

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.