LEVERAGING ARTIFICIAL INTELLIGENCE IN MEDICINAL CHEMISTRY: ADVANCES IN DRUG SYNTHESIS, DEVELOPMENT AND DESIGN

Authors

DOI:

https://doi.org/10.22159/ijpps.2025v17i11.56256

Keywords:

Artificial intelligence, Productivity, Synthesis, Development, Designing, Antitubercular drug discovery

Abstract

Artificial intelligence (AI) has transitioned from a prospective innovation to an integral component of current pharmaceutical research and development. The objective of the present review is to explore the study of recently developed AI techniques that focus on enhancing human intelligence functions rather than simply imitating them. With the help of AI and Robotics, the most desirable components of industry, such as increased productivity, consistency in product quality, and the production of goods including hazardous reactants without danger to workers' lives, can be achieved. AI in drug synthesis can be applied for automated reaction prediction, retrosynthesis planning, and process optimization. As for drug design, different AI models can be used for de novo drug design, ligand and structure-based and multi-target drug design. AI, in predictive modeling, can be used for quantitative structure-activity relationship (QSAR) modeling, predictive toxicology, absorption, distribution, metabolism, excretion, and toxicity (ADMET) Profiling, and disease modeling. AI with robotics in the life of mankind has several advantages and disadvantages. Overall, AI-driven tools in drug synthesis, molecular design, and predictive modeling streamline the drug discovery process, enabling medicinal chemists to innovate more quickly and precisely. These applications help move from a trial-and-error approach to a data-driven one, ultimately bringing more effective therapies to market. The future is always hard to predict, but it will be determined by AI as it will become the next frontier in pharmacy.This review primarily focuses on the application of AI in Medicinal Chemistry, encompassing drug synthesis, development, and design.

Downloads

Download data is not yet available.

References

1. Medicinal chemistry. Available from: https://en.wikipedia.org/wiki/medicinal_chemistry. [Last accessed on 18 Aug 2025].

2. Fernandes JP. The importance of medicinal chemistry knowledge in the clinical pharmacist’s education. Am J Pharm Educ. 2018;82(2):6083. doi: 10.5688/ajpe6083, PMID 29606703.

3. Chan HC, Shan H, Dahoun T, Vogel H, Yuan S. Advancing drug discovery via artificial intelligence. Trends Pharmacol Sci. 2019 Aug;40(8):592-604. doi: 10.1016/j.tips.2019.06.004, PMID 31320117.

4. Long L, Li R, Zhang J. Artificial intelligence in retrosynthesis prediction and its applications in medicinal chemistry. J Med Chem. 2025;68(3):2333-55. doi: 10.1021/acs.jmedchem.4c02749, PMID 39883477.

5. Yang X, Wang Y, Byrne R, Schneider G, Yang S. Concepts of artificial intelligence for computer-assisted drug discovery. Chem Rev. 2019;119(18):10520-94. doi: 10.1021/acs.chemrev.8b00728, PMID 31294972.

6. Benevolent AI. Benevolent AI provides an update on its business priorities: workforce reduction of ~30% and closure of US office. London Benevolent AI; 2024 Apr 23. Available from: https://www.echemi.com/1840617.html. [Last accessed on 20 Aug 2025].

7. Benevolent AI. Benevolent AI’s cruel R and D: AI-enabled drug flunks mid-phase eczema trial to dent deal plans. Biotech Insider; 2023 May 26. Available from: https://biotech-insider.com/benevolentai-cruel-rd-ai-enabled-drug-flunks-midphase-eczema-trial-to-dent-deal-plans. [Last accessed on 20 Aug 2025].

8. Thakkar A, Johansson S, Jorner K, Buttar D, Reymond JL, Engkvist O. Artificial intelligence and automation in computer-aided synthesis planning. React Chem Eng. 2021;6(1):27-51. doi: 10.1039/D0RE00340A.

9. Kim J, Ahn S, Lee H, Shin J. Self-improved retrosynthetic planning. arXiv; 2021. doi: 10.48550/arXiv.2106.04880.

10. Nair VH, Schwaller P, Laino T. Data-driven chemical reaction prediction and retrosynthesis. Chimia (Aarau). 2019 Dec;73(12):997-1000. doi: 10.2533/chimia.2019.997, PMID 31883550.

11. Schwaller P, Laino T, Gaudin T, Bolgar P, Hunter CA, Bekas C. Molecular transformer: a model for uncertainty calibrated chemical reaction prediction. ACS Cent Sci. 2019 Sep 25;5(9):1572-83. doi: 10.1021/acscentsci.9b00576, PMID 31572784.

12. Klucznik T, Mikulak Klucznik B, Mc Cormack MP, Lima H, Szymkuc S, Bhowmick M. Efficient syntheses of diverse medicinally relevant targets planned by computer and executed in the laboratory. Chem. 2018;4(3):522-32. doi: 10.1016/j.chempr.2018.02.002.

13. Coley CW, Thomas DA, Lummiss JA, Jaworski JN, Breen CP, Schultz V. A robotic platform for flow synthesis of organic compounds informed by AI planning. Science. 2019;365(6453):eaax1566. doi: 10.1126/science.aax1566.

14. Zhao D, Tu S, Xu L. Efficient retrosynthetic planning with MCTS exploration enhanced a search. Commun Chem. 2024 Mar;7(1):52. doi: 10.1038/s42004-024-01133-2, PMID 38454002.

15. Chen B, Li C, Dai H, Song L. Retro learning: retrosynthetic planning with neural guided A* search. arXiv. 2020 Mar 28. doi: 10.48550/arXiv.2003.12725.

16. Struble TJ, Alvarez JC, Brown SP, Chytil M, Cisar J, DesJarlais RL. Current and future roles of artificial intelligence in medicinal chemistry synthesis. J Med Chem. 2020;63(16):8667-82. doi: 10.1021/acs.jmedchem.9b02120, PMID 32243158.

17. Arya H, Coumar MS. Lead identification and optimization. In: The design & development of novel drugs and vaccines. Amsterdam: Elsevier; 2021. p. 31-63. doi: 10.1016/B978-0-12-821471-8.00004-0.

18. Zhang O, Lin H, Zhang H, Zhao H, Huang Y, Hsieh CY. Deep lead optimization: leveraging generative AI for structural modification. J Am Chem Soc. 2024 Nov 5;146(46):31357-70. doi: 10.1021/jacs.4c11686, PMID 39499822.

19. Zhou G, Rusnac DV, Park H, Canzani D, Nguyen HM, Stewart L. An artificial intelligence accelerated virtual screening platform for drug discovery. Nat Commun. 2024;15(1):7761. doi: 10.1038/s41467-024-52061-7, PMID 39237523.

20. Kannan I, Ishwarya K, Premavathi RK, Shantha S. Study on diosmetin derivatives as the inhibitors of Fim H of uropathogenic Escherichia coli by molecular docking with Hex. Int J Curr Pharm Rev Res. 2015;6(2):123-33.

21. Perkins R, Fang H, Tong W, Welsh WJ. Quantitative structure activity relationship methods: perspectives on drug discovery and toxicology. Environ Toxicol Chem. 2003 Aug;22(8):1666-79. doi: 10.1897/01-171, PMID 12924569.

22. Klopman G. Multicase 1. A hierarchical computer-automated structure evaluation program. Quant Struct Act Relat. 1992;11(2):176-84. doi: 10.1002/qsar.19920110208.

23. Rosenkranz HS, Klopman G. Structural basis of carcinogenicity in rodents of genotoxicants and non-genotoxicants. Mutat Res. 1990;228(2):105-24. doi: 10.1016/0027-5107(90)90067-e, PMID 2300064.

24. Prival MJ. Evaluation of the TOPKAT system for predicting the carcinogenicity of chemicals. Environ Mol Mutagen. 2001;37(1):55-69. doi: 10.1002/1098-2280(2001)37:1<55::aid-em1006>3.0.co;2-5, PMID 11170242.

25. Mekenyan O, Nikolova N, Schmieder P, Veith G. COREPA-M: a multi-dimensional formulation of COREPA. QSAR Comb Sci. 2004;23(1):5-18. doi: 10.1002/qsar.200330853.

26. Apablaza G, Montoya L, Morales Verdejo C, Mellado M, Cuellar M, Lagos CF. 2D-QSAR and 3D-QSAR/CoMSIA Studies on a Series of (R)-2-((2-(1H-Indol-2-yl)ethyl)amino)-1-Phenylethan-1-ol with human β₃-adrenergic activity. Molecules. 2017 Mar;22(3):404. doi: 10.3390/molecules22030404, PMID 28273884.

27. Lewis RA, Wood D. Modern 2D QSAR for drug discovery. WIREs Comput Mol Sci. 2014;4(6):505-22. doi: 10.1002/wcms.1187.

28. Jhanwar B, Sharma V, Singla RK, Shrivastava B. QSAR–hansch analysis and related approaches in drug design. Pharmacologyonline. 2011;1:306-44.

29. QSAR KH. Hansch analysis and related approaches. In: Weinheim, Germany: Wiley-VCH Press; 1993 Oct 28. Available from: https://download.e bookshelf.de/download/0000/6032/76/l G 0000603276 0002365071.pdf. [Last accessed on 16 Oct 2025].

30. Katoch S, Chauhan SS, Kumar V. A review on genetic algorithm: past present and future. Multimed Tools Appl. 2021;80(5):8091-126. doi: 10.1007/s11042-020-10139-6, PMID 33162782.

31. Batista GE, Silva DF. How k-nearest neighbor parameters affect its performance; 2009.

32. Myint KZ, Xie XQ. Recent advances in fragment-based QSAR and multi-dimensional QSAR methods. Int J Mol Sci. 2010 Oct;11(10):3846-66. doi: 10.3390/ijms11103846, PMID 21152304.

33. Lowis DR. HQSAR: a new highly predictive QSAR technique. In: Proceedings of the first ECSOC conference; 1997. doi: 10.3390/ecsoc 1 02064.

34. Verma J, Khedkar VM, Coutinho EC. 3D-QSAR in drug design a review. Curr Top Med Chem. 2010;10(1):95-115. doi: 10.2174/156802610790232260, PMID 19929826.

35. Banerjee S, Baidya SK, Adhikari N, Jha T. 3D-QSAR studies: CoMFA, CoMSIA, and Topomer CoMFA methods. In: Current applications of pharmaceutical biotechnology. Boca Raton, FL: CRC Press; 2023. doi: 10.1201/9781003303282 3.

36. Sen S, Farooqui NA, Easwari TS, Roy B, CoMFA. 3D QSAR approach in drug design. J Pharm Res. 2012;5(5):2623-5.

37. Zhang L, Tsai KC, Du L, Fang H, Li M, Xu W. How to generate reliable and predictive CoMFA models. Curr Med Chem. 2011;18(6):923-30. doi: 10.2174/092986711794927702, PMID 21182474.

38. Silverman BD, Platt DE. Comparative molecular moment analysis (CoMMA): 3D-QSAR without molecular superposition. J Med Chem. 1996 Mar;39(11):2129-40. doi: 10.1021/jm950589q, PMID 8667357.

39. Mittal RR, McKinnon RA, Sorich MJ. Effect of steric molecular field settings on CoMFA predictivity. J Mol Model. 2008;14(1):59-67. doi: 10.1007/s00894-007-0252-1, PMID 18038162.

40. Klebe G. Comparative molecular similarity indices analysis: CoMSIA. In: 3D QSAR in drug design; 1998. p. 87-104. doi: 10.1007/0 306 46858 1_6.

41. Sippl W. 3D-QSAR–applications recent advances and limitations. In: Puzyn T, Leszczynski J, Cronin MT, editors. Recent advances in QSAR studies. Berlin: Springer; 2010. p. 103-25. doi: 10.1007/978-1-4020-9783-6_4.

42. Wang YL, Wang F, Shi XX, Jia CY, Wu FX, Hao GF. Cloud 3D-QSAR: a web tool for the development of quantitative structure activity relationship models in drug discovery. Brief Bioinform. 2021;22(4):bbaa276. doi: 10.1093/bib/bbaa276, PMID 33140820.

43. Jiang D, Wu Z, Hsieh CY, Chen G, Liao B, Wang Z. Could graph neural networks learn better molecular representation for drug discovery? A comparison study of descriptor-based and graph-based models. J Cheminform. 2021;13(1):12. doi: 10.1186/s13321-020-00479-8, PMID 33597034.

44. Lyu J, Irwin JJ, Shoichet BK. Modeling the expansion of virtual screening libraries. Nat Chem Biol. 2023;19(6):712-8. doi: 10.1038/s41589-022-01234-w, PMID 36646956.

45. V Kalayil NV, D Souza SS, Khan SY, Paul P. Artificial intelligence in pharmacy drug design. Asian J Pharm Clin Res. 2022;15(4):21-7. doi: 10.22159/ajpcr.2022.v15i4.43890.

46. Swanson K, Walther P, Leitz J, Mukherjee S, Wu JC, Shivnaraine RV. ADMET-AI: a machine learning ADMET platform for evaluation of large scale chemical libraries. Bioinformatics. 2024 Jul 1;40(7):btae416. doi: 10.1093/bioinformatics/btae416, PMID 38913862.

47. Heid E, Greenman KP, Chung Y, Li SC, Graff DE, Vermeire FH. Chemprop: a machine learning package for chemical property prediction. J Chem Inf Model. 2024;64(1):9-17. doi: 10.1021/acs.jcim.3c01250, PMID 38147829.

48. Landrum G. RDKit documentation release. RDKit Open Source Project; 2019 May 13. Available from: https://www.rdkit.org.

49. Barratt SL, Creamer A, Hayton C, Chaudhuri N. Idiopathic pulmonary fibrosis (IPF): an overview. J Clin Med. 2018;7(8):201. doi: 10.3390/jcm7080201, PMID 30082599.

50. Ren F, Aliper A, Chen J, Zhao H, Rao S, Kuppe C. A small molecule TNIK inhibitor targets fibrosis in preclinical and clinical models. Nat Biotechnol. 2025 Jan;43(1):63-75. doi: 10.1038/s41587-024-02143-0, PMID 38459338.

51. Ren J. The grass roots mass power and biopolitics: the politicized pandemic in shanghai’s covid quarantine. Com. 2023;47(1):363-78. doi: 10.1353/com.2023.a911948.

52. Hessler G, Baringhaus KH. Artificial intelligence in drug design. Molecules. 2018 Oct;23(10):2520. doi: 10.3390/molecules23102520, PMID 30279331.

53. Sahu A, Mishra J, Kushwaha N. Artificial intelligence (AI) in drugs and pharmaceuticals. Comb Chem High Throughput Screen. 2022;25(11):1818-37. doi: 10.2174/1386207325666211207153943, PMID 34875986.

54. Paul D, Sanap G, Shenoy S, Kalyane D, Kalia K, Tekade RK. Artificial intelligence in drug discovery and development. Drug Discov Today. 2021 Jan;26(1):80-93. doi: 10.1016/j.drudis.2020.10.010, PMID 33099022.

55. Duch W, Swaminathan K, Meller J. Artificial intelligence approaches for rational drug design and discovery. Curr Pharm Des. 2007;13(14):1497-508. doi: 10.2174/138161207780765954, PMID 17504169.

56. Jing Y, Bian Y, Hu Z, Wang L, Xie XQ. Deep learning for drug design: an artificial intelligence paradigm for drug discovery in the big data era. AAPS J. 2018;20(3):58. doi: 10.1208/s12248-018-0210-0, PMID 29603063.

57. Gupta R, Srivastava D, Sahu M, Tiwari S, Ambasta RK, Kumar P. Artificial intelligence to deep learning: machine intelligence approach for drug discovery. Mol Divers. 2021;25(3):1315-60. doi: 10.1007/s11030-021-10217-3, PMID 33844136.

58. Zhang D, Han X, Deng C. Review on the research and practice of deep learning and reinforcement learning in smart grids. CSEE JPES. 2018;4(3):362-70. doi: 10.17775/CSEEJPES.2018.00520.

59. Selvaraj C, Chandra I, Singh SK. Artificial intelligence and machine learning approaches for drug design: challenges and opportunities for the pharmaceutical industries. Mol Divers. 2022;26(3):1893-913. doi: 10.1007/s11030-021-10326-z, PMID 34686947.

60. Parrot M, Tajmouati H, Da Silva VB, Atwood BR, Fourcade R, Gaston Mathe Y. Integrating synthetic accessibility with AI-based generative drug design. J Cheminform. 2023;15(1):83. doi: 10.1186/s13321-023-00742-8, PMID 37726842.

61. Exscientia Plc. Exscientia presents novel immuno-oncology biomarker for EXS-21546 at the ESMO I-O Annual Congress. In: Vienna and Oxford: Exscientiaplc; 2022 Dec 06. Available from: Websitehttps://investors.exscientia.ai/press releases/press release details/2022/exscientia presents novel immuno oncology biomarker for exs 21546 at the esmo i o annual congress/default.aspx. [Last accessed on 20 Aug 2025].

62. Vattikuti MC. Improving drug discovery and development using AI: opportunities and challenges. Res J (Research Gate). 2024;10(10):1-24.

63. Pasrija P, Jha P, Upadhyaya P, Khan MS, Chopra M. Machine learning and artificial intelligence: a paradigm shift in big data-driven drug design and discovery. Curr Top Med Chem. 2022 Oct;22(20):1692-727. doi: 10.2174/1568026622666220701091339, PMID 35786336.

64. U. S. Food and Drug Administration. Considerations for the use of artificial intelligence to support regulatory decision-making for drug and biological products. Draft guidance for industry and other interested parties. In: Silver Spring, MD: United States Food and Drug Administration; 2025 Jan 6. Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/considerations-use-artificial-intelligence-support-regulatory-decision-making-drug-and-biological. [Last accessed on 21 Aug 2025].

65. European Medicines Agency. Reflection paper on the use of artificial intelligence (AI) in the medicinal product lifecycle. EMA/CHMP/CVMP/83833/2023. Amsterdam, NLE: European Medicines Agency; 2024 Sep 9. Available from: https://www.ema.europa.eu/system/files/documents/scientific-guideline/reflection-paper-use-artificial-intelligence-ai-medicinal-product-lifecycle-en.pdf. [Last accessed on 27 Aug 2025].

66. Gurung AB, Ali MA, Lee J, Farah MA, Al Anazi KM. An updated review of computer-aided drug design and its application to COVID-19. Bio Med Res Int. 2021;2021:8853056. doi: 10.1155/2021/8853056, PMID 34258282.

67. Nadjir KP, Lahari R, Nithyashree M, Manasa S, Shruthi MN. Patentability of AI-generated inventions: a comparative analysis of global patent law frameworks and their adaptation to artificial intelligence innovation. Int J Multidiscip Res (IJFMR). 2025 Jun 22;7(3). doi: 10.36948/ijfmr.2025.v07i03.48811.

68. Kretschmer M, Meletti B, Porangaba LH. Artificial intelligence and intellectual property: copyright and patents a response by the CREATe Centre to the UK Intellectual Property Office’s open consultation. Journal of Intellectual Property Law & Practice. 2022;17(3):321-6. doi: 10.1093/jiplp/jpac013.

69. Ipleaders. Patentability of AI inventions; 2023. Available from: https://blog.ipleaders.in/patentability-of-ai-inventions. [Last accessed on 24 Aug 2025].

70. Kapustana O, Burmakina P, Gubina N, Serov N, Vinogradov V. User-friendly and industry-integrated AI for medicinal chemists and pharmaceuticals. ArtifIntell Chem. 2024. doi: 10.1016/j.aichem.2024.100072.

71. Han R, Yoon H, Kim G, Lee H, Lee Y. Revolutionizing medicinal chemistry: the application of artificial intelligence (AI) in early drug discovery. Pharmaceuticals (Basel). 2023 Sep 6;16(9):1259. doi: 10.3390/ph16091259, PMID 37765069.

Published

01-11-2025

How to Cite

SHASTRI, MANJIRI, et al. “LEVERAGING ARTIFICIAL INTELLIGENCE IN MEDICINAL CHEMISTRY: ADVANCES IN DRUG SYNTHESIS, DEVELOPMENT AND DESIGN”. International Journal of Pharmacy and Pharmaceutical Sciences, vol. 17, no. 11, Nov. 2025, pp. 15-24, doi:10.22159/ijpps.2025v17i11.56256.

Issue

Section

Review Article(s)

Similar Articles

<< < 4 5 6 7 8 > >> 

You may also start an advanced similarity search for this article.