BIOACTIVE POTENTIAL OF SOUTH AFRICAN MEDICINAL PLANT ASPARAGUS SUAVEOLENS: PHYTOCHEMICAL SCREENING, ANTIOXIDANT, AND ANTIBACTERIAL ACTIVITIES

Authors

  • HNE MASHILOANE Department of Biochemistry, School of Science and Technology, Sefako Makgatho Health Sciences University, South Africa https://orcid.org/0000-0001-5036-1048
  • MT OLIVIER Department of Chemistry, School of Science and Technology, Sefako Makgatho Health Sciences University, South Africa https://orcid.org/0000-0003-0147-6361
  • NS MAPFUMARI Department of Physiology, School of Medicine, Sefako Makgatho Health Sciences University, South Africa https://orcid.org/0000-0002-5096-5367
  • SS GOLOLO Department of Biochemistry, School of Science and Technology, Sefako Makgatho Health Sciences University, South Africa https://orcid.org/0000-0002-8059-1941

DOI:

https://doi.org/10.22159/ijpps.2025v17i12.56584

Keywords:

Asparagus suaveolens, Phytochemical screening, TLC-bioautography, GC–MS, Antioxidant activity, Antibacterial activity, South African medicinal plants

Abstract

Objective: To evaluate the phytochemical composition, antioxidant, and antibacterial activities of root extracts of A. suaveolens.

Methods: The roots of A. suaveolens were collected from Bolahlakgomo village in Zebediela subregion, Limpopo province (South Africa) and ground into powder after drying. The ground plant material was extracted sequentially with hexane, dichloromethane (DCM), methanol (MeOH), and water (H2O). The resultant extracts were then subjected to phytochemical screening, thin-layer chromatography (TLC) fingerprinting, and gas chromatography – mass spectrometry (GC–MS) for the detection of different classes of compounds. Antioxidant activity was assessed using 1,1-diphenyl-2-picrylhydrazyl(DPPH) free radical scavenging, hydrogen peroxide (H2O2) scavenging, and ferric chloride (FeCl3)reducing power assays. Antibacterial activity was evaluated against four pathogenic bacterial strains (Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli, and Streptococcus pyogenes) using a minimum inhibitory concentration (MIC) assay and TLC-bioautography.

Results: Extraction with methanol yielded the highest extract mass, followed by H2O, DCM, and hexane extracts, indicating predominant extraction of polar compounds. Phytochemical screening of the root extracts revealed the presence of alkaloids, flavonoids, phenols, tannins, terpenoids, and other secondary metabolites. TLC fingerprinting confirmed the presence of diverse vanillin-sulfuric acid reagent reactive compounds, while GC–MS. Analysis enabled the identification of phytoconstituents with known antioxidant and antibacterial properties. Water extract showed the strongest antioxidant activity, half maximal effective concentration (EC50) (EC₅₀ = 0.058 mg/ml), surpassing ascorbic acid and BHT, followed by methanol extract (EC₅₀ = 0.152 mg/ml). DCM and methanol extracts exhibited notable antibacterial activity against S. pyogenes (MICs of 0.078 and 0.312 mg/ml, respectively) but were largely inactive against the other tested strains.

Conclusion: This study represents the first report on the phytochemical profile and bioactivities of A. suaveolens roots. The findings demonstrate strong antioxidant potential and selective antibacterial activity that support the plant’s usage in traditional medicine and highlight its potential as a source of natural therapeutic agents. Further studies should focus on isolating bioactive constituents and elucidating their mechanisms of action.

Downloads

Download data is not yet available.

References

1. Street RA, Prinsloo G. Commercially important medicinal plants of South Africa: a review. J Chem. 2013;2013(1):205048. doi: 10.1155/2013/205048.

2. Vasisht K, Kumar V. Compendium of medicinal and aromatic plants of Africa. Trieste, Italy: ICS-UNIDO; 2004.

3. Van Wyk BE. A broad review of commercially important southern African medicinal plants. J Ethnopharmacol. 2008;119(3):342-55. doi: 10.1016/j.jep.2008.05.029, PMID 18577439.

4. Shirinda H, Leonard C, Candy G, Van Vuuren S. Antimicrobial activity and toxicity profile of selected southern African medicinal plants against neglected gut pathogens. S Afr J Sci. 2019;115(11/12):1-10. doi: 10.17159/sajs.2019/6199.

5. Tilburt JC, Kaptchuk TJ. Herbal medicine research and global health: an ethical analysis. Bull World Health Organ. 2008;86(8):594-9. doi: 10.2471/BLT.07.042820, PMID 18797616.

6. Salehi B, Martorell M, Arbiser JL, Sureda A, Martins N, Maurya PK. Antioxidants: positive or negative actors. Biomolecules. 2018;8(4):124. doi: 10.3390/biom8040124, PMID 30366441.

7. Pagare S, Bhatia M, Tripathi N, Pagare S, Bansal YK. Secondary metabolites of plants and their role: overview. Curr Trends Biotechnol Pharm. 2015;9(3):293-304. doi: 10.5958/2249‑0035.2015.00016.9.

8. Jain C, Khatana S, Vijayvergia R. Bioactivity of secondary metabolites of various plants: a review. Int J Pharm Sci Res. 2019;10(2):494-504. doi: 10.13040/IJPSR.0975-8232.10(2).494-04.

9. Thawabteh A, Juma S, Bader M, Karaman D, Scrano L, Bufo SA. The biological activity of natural alkaloids against herbivores cancerous cells and pathogens. Toxins (Basel). 2019;11(11):656. doi: 10.3390/toxins11110656, PMID 31717922.

10. Norup MF, Petersen G, Burrows S, Bouchenak Khelladi Y, Leebens Mack J, Pires JC. Evolution of asparagus L. (Asparagaceae): out-of-South-Africa and multiple origins of sexual dimorphism. Mol Phylogenet Evol. 2015;92:25-44. doi: 10.1016/j.ympev.2015.06.002, PMID 26079131.

11. Boubetra K, Amirouche N, Amirouche R. Comparative morphological and cytogenetic study of five Asparagus (Asparagaceae) species from Algeria, including the endemic A. altissimus Munby. Turk J Bot. 2017;41(6):588-99. doi: 10.3906/bot-1612-63.

12. Shevale UL, Mundrawale AS, Yadav SR, Chavan JJ, Jamdade CB, Patil DB. Phytochemical and antimicrobial studies on asparagus racemosus. World J Pharm Res. 2015;4(9):1805-10.

13. Begum A, Sindhu K, Giri K, Umera F, Gauthami G, Kumar JV. Pharmacognostical and physico-chemical evaluation of Indian Asparagus officinalis Linn family Lamiaceae. Int J Pharmacogn Phytochem Res. 2017;9(3):327-36. doi: 10.25258/phyto.v9i2.8083.

14. Dold AP, Cocks ML. Traditional veterinary medicine in the Alice district of the Eastern Cape Province, South Africa: research in action. S Afr J Sci. 2001;97(9):375-9.

15. Jayawickreme KP, Janaka KV, Subasinghe SA. Unknowing ingestion of Brugmansia suaveolens leaves presenting with signs of anticholinergic toxicity: a case report. J Med Case Rep. 2019;13(1):322. doi: 10.1186/s13256-019-2250-1, PMID 31665073.

16. Daemane ME, Cilliers SS, Bezuidenhout H. Classification and description of the vegetation in the Spitskop area in the proposed Highveld National Park, North West Province, South Africa. Koedoe. 2012;54(1):1-7. doi: 10.4102/koedoe.v54i1.1020.

17. Sobhy Y, Mady M, Mina S, Abo Zeid Y. Phytochemical and pharmacological values of two major constituents of asparagus species and their nano formulations: a review. J Adv Pharm Res. 2022;6(3):94-106. doi: 10.21608/aprh.2022.141715.1176.

18. Jain C, Khatana S, Vijayvergia R. Bioactivity of secondary metabolites of various plants: a review. Int J Pharm Sci Res. 2019;10(2):494-504. doi: 10.13040/IJPSR.0975-8232.10(2).494-04.

19. Kowalska Krochmal B, Dudek Wicher R. The minimum inhibitory concentration of antibiotics: methods, interpretation clinical relevance. Pathogens. 2021;10(2):165. doi: 10.3390/pathogens10020165, PMID 33557078.

20. Gomes EC, Silva AN, De Oliveira MR. Oxidants, antioxidants and the beneficial roles of exercise-induced production of reactive species. Oxid Med Cell Longev. 2012;2012:756132. doi: 10.1155/2012/756132, PMID 22701757.

21. Abdu M, Saad MG, Shafik HM. Phytochemical screening and antimicrobial activities of some green algae from Egypt. J Med Plants Stud. 2019;7(3):12-6.

22. Mukul DS, Kumar DA, Mokhtar DE, Pandey DS, Singh DS. Diagnostic dilemma in temporomandibular joint tuberculosis: a case report. IJMSCI. 2017;4(4):2856-58. doi: 10.18535/ijmsci/v4i4.09.

23. Usman H, Abdulrahman FI, Usman A. Qualitative phytochemical screening and in vitro antimicrobial effects of methanol stem bark extract of Ficus thonningii (Moraceae). Afr J Tradit Complement Altern Med. 2009;6(3):289-95. doi: 10.4314/ajtcam.v6i3.57178, PMID 20448855.

24. Siddeeg A, Al Kehayez NM, Abu Hiamed HA, Al Sanea EA, Al Farga AM. Mode of action and determination of antioxidant activity in the dietary sources: an overview. Saudi J Biol Sci. 2021;28(3):1633-44. doi: 10.1016/j.sjbs.2020.11.064, PMID 33732049.

25. Abu F, Mat Taib CN, Mohd Moklas MA, Mohd Akhir S. Antioxidant properties of crude extract, partition extract and fermented medium of dendrobium sabin flower. Evid Based Complement Alternat Med. 2017;2017:2907219. doi: 10.1155/2017/2907219, PMID 28761496.

26. Vasyliev GS, Vorobyova VI, Linyucheva OV. Evaluation of reducing ability and antioxidant activity of fruit pomace extracts by spectrophotometric and electrochemical methods. J Anal Methods Chem. 2020;2020:8869436. doi: 10.1155/2020/8869436, PMID 33489417.

27. Pleh A, Mahmutovic L, Hromic Jahjefendic A. Evaluation of phytochemical antioxidant levels by hydrogen peroxide scavenging assay. Bioeng Stud. 2021;2(1):1-10. doi: 10.37868/bes.v2i1.id178.

28. Suleiman MM, Mc Gaw LI, Naidoo V, Eloff JN. Detection of antimicrobial compounds by bioautography of different extracts of leaves of selected South African tree species. Afr J Tradit Complement Altern Med. 2010;7(1):64-78. doi: 10.4314/ajtcam.v7i1.57221.

29. Itumeleng TB, Idowu JA, Abdullahi AY, Sekelwa C. Antibacterial antiquorum sensing antibiofilm activities and chemical profiling of selected South African medicinal plants against multi-drug resistant bacteria. J Med Plants Res. 2022;16(2):52-65. doi: 10.5897/JMPR2021.7192.

30. Hostettmann K, Wolfender JL. The search for biologically active secondary metabolites. Pestic Sci. 1997;51(4):471-82. doi: 10.1002/(SICI)1096-9063(199712)51:4<471::AID-PS662>3.0.CO;2-S.

31. Schugerl K. Extraction of primary and secondary metabolites. Adv Biochem Eng Biotechnol. 2005;92:1-48. doi: 10.1007/b98920, PMID 15791931.

32. Jones WP, Kinghorn AD. Extraction of plant secondary metabolites. In: Cannell RJ, editor. Natural products isolation. Totowa, NJ: Humana Press; 2006. p. 323-51.

33. Matsuura HN, Fett Neto AG. Plant alkaloids: main features, toxicity and mechanisms of action. In: Gopalakrishnakone P, editor. Plant toxins. Berlin: Springer; 2015. p. 1-15. doi: 10.1007/978-94-007-6728-7_2-1.

34. Ziegler J, Facchini PJ. Alkaloid biosynthesis: metabolism and trafficking. Annu Rev Plant Biol. 2008;59:735-69. doi: 10.1146/annurev.arplant.59.032607.092730, PMID 18251710.

35. Dusemund B, Nowak N, Sommerfeld C, Lindtner O, Schafer B, Lampen A. Risk assessment of pyrrolizidine alkaloids in food of plant and animal origin. Food Chem Toxicol. 2018;115:63-72. doi: 10.1016/j.fct.2018.03.005, PMID 29524571.

36. Falcone Ferreyra ML, Rius SP, Casati P. Flavonoids: biosynthesis, biological functions and biotechnological applications. Front Plant Sci. 2012;3:222. doi: 10.3389/fpls.2012.00222, PMID 23060891.

37. Grotewold E. The science of flavonoids. New York: Springer; 2006.

38. Hodek P. Flavonoids. In: Anzenbacher P, Zanger UM, editors. Metabolism of drugs and other xenobiotics. Weinheim: Wiley-VCH Press; 2012. p. 543-82. doi: 10.1002/9783527630905.ch20.

39. Irshad M, Zafaryab MD, Singh M, Rizvi MM. Comparative analysis of the antioxidant activity of Cassia fistula extracts. Int J Med Chem. 2012;2012:157125. doi: 10.1155/2012/157125, PMID 25374682.

40. Pereira DM, Valentao P, Pereira JA, Andrade PB. Phenolics: from chemistry to biology. Molecules. 2009;14(6):2202-11. doi: 10.3390/molecules14062202.

41. Ozcan T, Akpinar Bayizit A, Yilmaz Ersan L, Delikanli B. Phenolics in human health. Int J Chem Eng Appl. 2014;5(5):393-6. doi: 10.7763/IJCEA.2014.V5.416.

42. Noda Y, Asada C, Sasaki C, Nakamura Y. Effects of hydrothermal methods such as steam explosion and microwave irradiation on extraction of water-soluble antioxidant materials from garlic husk. Waste Biomass Valor. 2019;10(11):3397-402. doi: 10.1007/s12649-018-0353-3.

Published

01-12-2025

How to Cite

MASHILOANE, HNE, et al. “BIOACTIVE POTENTIAL OF SOUTH AFRICAN MEDICINAL PLANT ASPARAGUS SUAVEOLENS: PHYTOCHEMICAL SCREENING, ANTIOXIDANT, AND ANTIBACTERIAL ACTIVITIES”. International Journal of Pharmacy and Pharmaceutical Sciences, vol. 17, no. 12, Dec. 2025, pp. 27-35, doi:10.22159/ijpps.2025v17i12.56584.

Issue

Section

Original Article(s)

Similar Articles

<< < 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.