NEUROPROTECTIVE EFFECT OF 7,3´-DIHYDROXYFLAVONE AGAINST PACLITAXEL-INDUCED NEUROTOXICITY IN SH-SY5Y NEUROBLASTOMA CELL LINE: AN IN VITRO MODEL

Authors

  • KEERTHANA VIJAYARAJAN Department of Pharmacology, Sri Ramachandra Medical College and Research Institute, Chennai, Tamil Nadu, India https://orcid.org/0009-0003-5841-6623
  • KAVITHA RAMASAMY Department of Pharmacology, Sri Ramachandra Medical College and Research Institute, Chennai, Tamil Nadu, India
  • KRANTHI KARUNAI KADAL Department of Pharmacology, Sri Ramachandra Medical College and Research Institute, Chennai, Tamil Nadu, India

DOI:

https://doi.org/10.22159/ajpcr.2025v18i3.53659

Keywords:

7,3´-Dihydroxyflavone, SH-SY5Y cells, Tumour necrosis factor-alpha, Interleukin-6

Abstract

Objectives: Paclitaxel (PT) induced peripheral neuropathy is associated with the neurotoxic effects of this chemotherapeutic drug. As a result, the need for natural substances that can mitigate neural toxicity is rising. This study investigated the Neuroprotective effects of 7,3´-dihydroxyflavone (7,3´-DHF) on PT-induced neurotoxicity in SH-SY5Y neuroblastoma cells.

Methods: The cells were exposed to a 1 μM concentration of PT, and the protective effects of various concentrations of 7,3´-DHF were evaluated. The reactive oxygen species (ROS) level in SH-SY5Y cells was measured using confocal fluorescence microscopy. The concentration of proinflammatory cytokines, interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) was determined by enzyme-linked immunosorbent assay.

Results: Treatment of SH-SY5Y cells with 1 μM PT significantly reduced cell viability to 19±4.8%. However, treatment with 7,3´-DHF in PT-exposed cells elevated SH-SY5Y cell viability in a dose-dependent manner, with viability reaching 55.34±3.8% and 83.93±4.1% at 7,3´-DHF concentrations of 75 μg/mL and 100 μg/mL, respectively. PT exposure elevated ROS levels in SH-SY5Y cells, but the presence of 7,3´-DHF reduced ROS levels against PT-induced toxicity. In addition, treatment with 7,3´-DHF lowered the increased levels of IL-6 and TNF-α induced by PT exposure.

Conclusion: 7,3´-DHF effectively preserved the viability of SH-SY5Y cells under PT-induced toxicity. This protective effect was mediated through the suppression of ROS production and the attenuation of proinflammatory cytokine release, highlighting its potential as a neuroprotective agent.

Downloads

Download data is not yet available.

References

Wu S, Xiong T, Guo S, Zhu C, He J, Wang S. An up-to-date view of paclitaxel-induced peripheral neuropathy. J Cancer Res Ther. 2023;19(6):1501-8. doi: 10.4103/jcrt.jcrt_1982_22, PMID: 38156915

Casanova-Martinez C, Romero-Ventosa EY, González-Costas S, Arroyo-Conde C, Piñeiro-Corrales G. Evaluation of the use of nab-paclitaxel and gemcitabine in clinical practice. J Cancer Res Ther. 2018;14:S730-5. doi: 10.4103/0973-1482.188292, PMID: 30249895

Banerjee A, Kasmala LT. Differential assembly kinetics of alpha-tubulin isoforms in the presence of paclitaxel. Biochem Biophys Res Commun. 1998;245(2):349-51. doi: 10.1006/bbrc.1998.8426, PMID: 9571153

Wang TH, Wang HS, Soong YK. Paclitaxel‐induced cell death: Where the cell cycle and apoptosis come together. Cancer. 2000;88(11):2619-28. doi: 10.1002/1097-0142(20000601)88:11<2619:aid-cncr26>3.0.co;2-j, PMID: 10861441

Staff NP, Fehrenbacher JC, Caillaud M, Damaj MI, Segal RA, Rieger S. Pathogenesis of paclitaxel-induced peripheral neuropathy: A current review of in vitro and in vivo findings using rodent and human model systems. Exp Neurol. 2020;324:113121. doi: 10.1016/j. expneurol.2019.113121, PMID: 31758983

Fernandes R, Mazzarello S, Hutton B, Shorr R, Majeed H, Ibrahim MF, et al. Taxane acute pain syndrome (TAPS) in patients receiving taxane-based chemotherapy for breast cancer-a systematic review. Support Care Cancer. 2016;24(8):3633-50. doi: 10.1007/s00520-016-3256-5, PMID: 27146496

Miaskowski C, Mastick J, Paul SM, Abrams G, Cheung S, Sabes JH, et al. Impact of chemotherapy-induced neurotoxicities on adult cancer survivors’ symptom burden and quality of life. J Cancer Surviv. 2018;12(2):234-45. doi: 10.1007/s11764-017-0662-8, PMID: 29159795

Okubo K, Takahashi T, Sekiguchi F, Kanaoka D, Matsunami M, Ohkubo T, et al. Inhibition of T-type calcium channels and hydrogen sulfide-forming enzyme reverses paclitaxel-evoked neuropathic hyperalgesia in rats. Neuroscience. 2011;188:148-56. doi: 10.1016/j. neuroscience.2011.05.004, PMID: 21596106

Ibrahim EY, Ehrlich BE. Prevention of chemotherapy-induced peripheral neuropathy: A review of recent findings. Crit Rev Oncol Hematol. 2020;145:102831. doi: 10.1016/j.critrevonc.2019.102831, PMID: 31783290

Lees JG, Makker PG, Tonkin RS, Abdulla M, Park SB, Goldstein D, et al. Immune-mediated processes implicated in chemotherapy-induced peripheral neuropathy. Eur J Cancer. 2017;73:22-9. doi: 10.1016/j. ejca.2016.12.006, PMID: 28104535

Duggett NA, Griffiths LA, McKenna OE, De Santis V, Yongsanguanchai N, Mokori EB, et al. Oxidative stress in the development, maintenance and resolution of paclitaxel-induced painful neuropathy. Neuroscience. 2016;333:13-26. doi: 10.1016/j. neuroscience.2016.06.050, PMID: 27393249

Mallet ML, Hadjivassiliou M, Sarrigiannis PG, Zis P. The role of oxidative stress in peripheral neuropathy. J Mol Neurosci. 2020;70(7):1009-17. doi: 10.1007/s12031-020-01495-x, PMID: 32103400

Staff NP, Grisold A, Grisold W, Windebank AJ. Chemotherapy‐induced peripheral neuropathy: A current review. Ann Neurol. 2017;81(6):772-81. doi: 10.1002/ana.24951, PMID: 28486769

Wang XM, Lehky TJ, Brell JM, Dorsey SG. Discovering cytokines as targets for chemotherapy-induced painful peripheral neuropathy. Cytokine. 2012;59(1):3-9. doi: 10.1016/j.cyto.2012.03.027, PMID: 22537849

Zhang H, Li Y, de Carvalho-Barbosa M, Kavelaars A, Heijnen CJ, Albrecht PJ, et al. Dorsal root ganglion infiltration by macrophages contributes to paclitaxel chemotherapy-induced peripheral neuropathy. J Pain. 2016;17(7):775-86. doi: 10.1016/j.jpain.2016.02.011, PMID: 26979998

Lv Z, Shen J, Gao X, Ruan Y, Ling J, Sun R, et al. Herbal formula Huangqi Guizhi Wuwu decoction attenuates paclitaxel-related neurotoxicity via inhibition of inflammation and oxidative stress. Chin Med. 2021;16(1):76. doi: 10.1186/s13020-021-00488-1, PMID: 34376246

Mahmoud AM, El Said NO, Shash E, Ateyya H. Prevention of paclitaxel-induced peripheral neuropathy: Literature review of potential pharmacological interventions. Future J Pharm Sci. 2024;10(1):67. doi: 10.1186/s43094-024-00638-w

Wu P, Chen Y. Evodiamine ameliorates paclitaxel-induced neuropathic pain by inhibiting inflammation and maintaining mitochondrial anti-oxidant functions. Hum Cell. 2019;32(3):251-9. doi: 10.1007/s13577- 019-00238-4, PMID: 30701373

Huang X, Hyuga S, Ito M, Goda Y, Kobayashi Y. Preventive and therapeutic effects of ephedrine alkaloids-free Ephedra Herb extract on paclitaxel-induced neuropathic pain. J Nat Med. 2024;79:107-21. doi: 10.1007/s11418-024-01853-8, PMID: 39470960

Faheem M, Khan AU, Saleem MW, Shah FA, Ali F, Khan AW, et al. Neuroprotective effect of natural compounds in paclitaxel-induced chronic inflammatory pain. Molecules. 2022;27(15):4926. doi: 10.3390/molecules27154926, PMID: 35956877

Kawashiri T, Inoue M, Mori K, Kobayashi D, Mine K, Ushio S, et al. Preclinical and clinical evidence of therapeutic agents for paclitaxel-induced peripheral neuropathy. Int J Mol Sci. 2021;22(16):8733. doi: 10.3390/ijms22168733, PMID: 34445439

Ramasamy K, Shanmugasundaram J, Manoharan R, Subramanian V, Kathirvelu P, Vijayaraghavan R. Anti-neuropathic effect of 7, 3’-dihydroxyflavone in paclitaxel induced peripheral neuropathy

in mice involving GABAA, KATP channel and adenosine receptors. Neurochem Int. 2022;159:105388. doi: 10.1016/j.neuint.2022.105388, PMID: 35809719

Miloso M, Rigolio R, Nicolini G, Crimi M, Donzelli E, Di Silvestro A, et al. Paclitaxel neurotoxicity: Anti‐apoptotic effect of resveratrol. J Peripher Nerv Syst. 2000;5(1):45. doi: 10.1046/j.1529- 8027.2000.00513-40.x

Sánchez JC, Muñoz LV, Galindo-Márquez ML, Valencia-Vásquez A, García AM. Paclitaxel regulates TRPA1 function and expression through PKA and PKC. Neurochem Res. 2023;48(1):295-304. doi: 10.1007/ s11064-022-03748-0, PMID: 36098890

McCormick B, Lowes DA, Colvin L, Torsney C, Galley HF. MitoVitE, a mitochondria-targeted antioxidant, limits paclitaxel-induced oxidative stress and mitochondrial damage in vitro, and paclitaxel-induced mechanical hypersensitivity in a rat pain model. Br J Anaesth. 2016;117(5):659-66. doi: 10.1093/bja/aew309, PMID: 27799181

Xi J, Zhang Z, Wang Z, Wu Q, He Y, Xu Y, et al. Hinokitiol functions as a ferroptosis inhibitor to confer neuroprotection. Free Radic Biol Med. 2022;190:202-15. doi: 10.1016/j.freeradbiomed.2022.08.011, PMID: 35985562

Nicolini G, Rigolio R, Miloso M, Bertelli AA, Tredici G. Anti-apoptotic effect of trans-resveratrol on paclitaxel-induced apoptosis in the human neuroblastoma SH-SY5Y cell line. Neurosci Lett. 2001;302(1):41-4. doi: 10.1016/s0304-3940(01)01654-8, PMID: 11278107

Sayeli V, Nadipelly J, Kadhirvelu P, Cheriyan BV, Shanmugasundaram J, Subramanian V. Effect of flavonol and its dimethoxy derivatives on paclitaxel-induced peripheral neuropathy in mice. J Basic Clin Physiol Pharmacol. 2018;29(5):525-35. doi: 10.1515/ jbcpp-2016-0127, PMID: 29652665

Gui Y, Zhang J, Chen L, Duan S, Tang J, Xu W, et al. Icariin, a flavonoid with anti-cancer effects, alleviated paclitaxel-induced neuropathic pain in a SIRT1-dependent manner. Mol Pain. 2018;14:1744806918768970. doi: 10.1177/1744806918768970, PMID: 29623757

Ullah R, Ali G, Subhan F, Naveed M, Khan A, Khan J, et al. Attenuation of nociceptive and paclitaxel-induced neuropathic pain by targeting inflammatory, CGRP and substance P signaling using 3-hydroxyflavone. Neurochem Int. 2021;144:104981. doi: 10.1016/j. neuint.2021.104981, PMID: 33549629

Rezaee R, Monemi A, SadeghiBonjar MA, Hashemzaei M. Berberine alleviates paclitaxel-induced neuropathy. J Pharmacopuncture. 2019;22(2):90-4. doi: 10.3831/KPI.2019.22.011, PMID: 31338248

Cho SJ, Kang KA, Piao MJ, Ryu YS, Fernando PD, Zhen AX, et al. 7, 8-dihydroxyflavone protects high glucose-damaged neuronal cells against oxidative stress. Biomol Ther (Seoul). 2019;27(1):85-91. doi: 10.4062/biomolther.2018.202, PMID: 30481956

Chen J, Chua KW, Chua CC, Yu H, Pei A, Chua BH, et al. Antioxidant activity of 7, 8-dihydroxyflavone provides neuroprotection against glutamate-induced toxicity. Neurosci Lett. 2011;499(3):181-5. doi: 10.1016/j.neulet.2011.05.054, PMID: 21651962

Yueniwati Y, Syaban MF, Kurniawan DB, Azam AA, Alvenia DM, Savira YN, et al. 8-dihydroxyflavone functions as an antioxidant through the inhibition of kelch-like ECH-associated protein 1: Molecular docking and an in vivo approach in a rat model of ischemia-reperfusion brain injury. World Acad Sci J. 2024;6(2):1-14. doi: 10.3892/wasj.2024.230

Li XH, Dai CF, Chen L, Zhou WT, Han HL, Dong ZF. 7, 8‐ dihydroxyflavone ameliorates motor deficits via suppressing α‐ synuclein expression and oxidative stress in the MPTP‐induced mouse model of Parkinson’s disease. CNS Neurosci Ther. 2016;22(7):617-24. doi: 10.1111/cns.12555, PMID: 27079181

Li D, Huang ZZ, Ling YZ, Wei JY, Cui Y, Zhang XZ, et al. Up-regulation of CX3CL1 via nuclear factor-κB-dependent histone acetylation is involved in paclitaxel-induced peripheral neuropathy. Anesthesiology. 2015;122(5):1142-51. doi: 10.1097/ALN.0000000000000560, PMID: 25494456

Hara Y, Sakagami H, Shi H, Abe T, Tamura N, Takeshima H, et al. Partial protection of paclitaxel-induced neurotoxicity by antioxidants. In Vivo. 2018;32(4):745-52. doi: 10.21873/invivo.11303, PMID: 29936454

Siddiqui M, Abdellatif B, Zhai K, Liskova A, Kubatka P, Büsselberg D. Flavonoids alleviate peripheral neuropathy induced by anticancer drugs. Cancers (Basel). 2021;13(7):1576. doi: 10.3390/cancers13071576, PMID: 33805565

Umamaheswari S, Sangeetha KS. Anti-inflammatory effect of selected dihydroxyflavones. J Clin Diagn Res. 2015;9(5):FF05-7. doi: 10.7860/ JCDR/2015/12543.5928, PMID: 26155493

Park HY, Park C, Hwang HJ, Kim BW, Kim GY, Kim CM, et al. 7, 8-dihydroxyflavone attenuates the release of pro-inflammatory mediators and cytokines in lipopolysaccharide-stimulated BV2 microglial cells through the suppression of the NF-κB and MAPK signaling pathways. Int J Mol Med. 2014;33(4):1027-34. doi: 10.3892/ ijmm.2014.1652, PMID: 24535427

Ahamed T, Ramasamy K, Ramya S. An in silico and in vitro evaluation of cytotoxicity, apoptotic activity and gene expression modulation of sarsasapogenin in human colorectal cancer cell line HT-29. Int J Appl Pharm. 2024;16(4):84-91. doi: 10.22159/ijap.2024v16i4.50855

Widowati W, Gunanegara RF, Wargasetia TL, Kusuma HS, Arumwardana S, Wahyuni CD, et al. Effect of flavonoids on oxidative stress, apoptosis, and cell markers of peripheral blood-derived endothelial progenitor cells: An in vitro study. Int J Appl Pharm. 2021;13(3):39-42. doi: 10.22159/ijap.2021.v13s3.07

Published

07-03-2025

How to Cite

KEERTHANA VIJAYARAJAN, et al. “NEUROPROTECTIVE EFFECT OF 7,3´-DIHYDROXYFLAVONE AGAINST PACLITAXEL-INDUCED NEUROTOXICITY IN SH-SY5Y NEUROBLASTOMA CELL LINE: AN IN VITRO MODEL”. Asian Journal of Pharmaceutical and Clinical Research, vol. 18, no. 3, Mar. 2025, pp. 130-5, doi:10.22159/ajpcr.2025v18i3.53659.

Issue

Section

Original Article(s)