IN SILICO CHARACTERIZATION OF IMEGLIMIN’S INTERACTION WITH INFLAMMATORY AND MITOCHONDRIAL TARGETS USING MOLECULAR DOCKING AND MOLECULAR DYNAMICS
DOI:
https://doi.org/10.22159/ajpcr.2025v18i10.55851Keywords:
Imeglimin, Molecular dynamics, mitochondrial function, parkin, DRP1, NLRP3, AKT1, Hexokinase2, In-silico analysesAbstract
Objectives: The objective of the study is to elucidate the molecular basis of Imeglimin’s mitochondrial protective and anti-inflammatory effects through in silico analysis of its interactions with key mitochondrial and inflammatory regulatory proteins.
Methods: Molecular docking and 100 ns molecular dynamics simulations were performed to assess Imeglimin’s binding to five key targets: AKT1, Parkin, DRP1, NLRP3, and hexokinase 2. Analyses included root mean square deviation, root mean square fluctuation, radius of gyration, principal component analysis, dynamic cross-correlation matrices, and MM/GBSA-based binding-free energy calculations.
Results: Imeglimin exhibited stable interactions with critical regulatory residues in AKT1 (kinase domain), Parkin (Ubl and RING regions), DRP1 (GTPase domain), and NLRP3 (NATCH and LRR domains). These interactions were associated with constrained conformational mobility and stabilization of inactive-like states. Hexokinase 2 showed lower binding affinity and higher flexibility. MM/GBSA analysis indicated favorable binding energetics.
Conclusion: Imeglimin acts as a multi-target modulator of mitochondrial proteins, stabilizing functionally inactive or constrained conformations without inducing structural destabilization. These findings provide a structural framework for its reported mitochondrial protective and anti-inflammatory function.
Downloads
References
1. Tait SW, Green DR. Mitochondria and cell signalling. J Cell Sci. 2012 Feb 15;125(4):807-15. doi: 10.1242/jcs.099234, PMID 22448037
2. López-Armada MJ, Riveiro-Naveira RR, Vaamonde-García C, Valcárcel-Ares MN. Mitochondrial dysfunction and the inflammatory response. Mitochondrion. 2013 Mar 1;13(2):106-18. doi: 10.1016/j. mito.2013.01.003, PMID 23333405
3. Bhatti JS, Bhatti GK, Reddy PH. Mitochondrial dysfunction and oxidative stress in metabolic disorders - a step towards mitochondria based therapeutic strategies. Biochim Biophys Acta Mol Basis Dis. 2017 May 1;1863(5):1066-77. doi: 10.1016/j.bbadis.2016.11.010, PMID 27836629
4. Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol. 2003 Oct 15;552(2):335-44. doi: 10.1113/ jphysiol.2003.049478, PMID 14561818
5. Naik E, Dixit VM. Mitochondrial reactive oxygen species drive proinflammatory cytokine production. J Exp Med. 2011 Mar 14;208(3):417-20. doi: 10.1084/jem.20110367, PMID 21357740
6. Moodley D, Mody G, Patel N, Chuturgoon AA. Mitochondrial depolarisation and oxidative stress in rheumatoid arthritis patients. Clin Biochem. 2008 Nov;41(16-17):1396-401. doi: 10.1016/j. clinbiochem.2008.08.072, PMID 18789914
7. Harty LC, Biniecka M, O’Sullivan J, Fox E, Mulhall K, Veale DJ, et al. Mitochondrial mutagenesis correlates with the local inflammatory environment in arthritis. Ann Rheum Dis. 2012 Apr;71(4):582-8. doi: 10.1136/annrheumdis-2011-200245, PMID 22121133
8. Gergely P Jr., Grossman C, Niland B, Puskas F, Neupane H, Allam F, et al. Mitochondrial hyperpolarization and ATP depletion in patients with systemic lupus erythematosus. Arthritis Rheum. 2002;46(1):175-90. doi: 10.1002/1529-0131(200201)46:1<175:AID-ART10015>3.0.CO;2-H, PMID 11817589
9. Vaamonde-García C, Riveiro-Naveira RR, Valcárcel-Ares MN, Hermida-Carballo L, Blanco FJ, Lõpez-Armada MJ. Mitochondrial dysfunction increases inflammatory responsiveness to cytokines in normal human chondrocytes. Arthritis Rheum. 2012 Sep;64(9):2927-36. doi: 10.1002/art.34508, PMID 22549761
10. Yang J, Guo Q, Feng X, Liu Y, Zhou Y. Mitochondrial dysfunction in cardiovascular diseases: Potential targets for treatment. Front Cell Dev Biol. 2022 May 13;10:841523. doi: 10.3389/fcell.2022.841523, PMID 35646910
11. Killackey SA, Philpott DJ, Girardin SE. Mitophagy pathways in health and disease. J Cell Biol. 2020 Nov 2;219(11):e202004029. doi: 10.1083/jcb.202004029, PMID 32926082
12. Witte ME, Geurts JJ, De Vries HE, Van Der Valk P, Van Horssen J. Mitochondrial dysfunction: A potential link between neuroinflammation and neurodegeneration? Mitochondrion. 2010 Aug;10(5):411-8. doi: 10.1016/j.mito.2010.05.014, PMID 20573557
13. Pizarro-Galleguillos BM, Kunert L, Brüggemann N, Prasuhn J. Neuroinflammation and mitochondrial dysfunction in Parkinson’s disease: connecting neuroimaging with pathophysiology. Antioxidants (Basel). 2023 Jul 12;12(7):1411. doi: 10.3390/antiox12071411, PMID 37507950
14. Di Filippo M, Chiasserini D, Tozzi A, Picconi B, Calabresi P. Mitochondria and the link between neuroinflammation and neurodegeneration. J Alzheimers Dis. 2010;20 Suppl 2:S369-79. doi: 10.3233/JAD-2010-100543, PMID 20463396
15. Mandemakers W, Morais VA, De Strooper B. A cell biological perspective on mitochondrial dysfunction in Parkinson disease and other neurodegenerative diseases. J Cell Sci. 2007 May 15;120(10):1707-16. doi: 10.1242/jcs.03443, PMID 17502481
16. Morán M, Moreno-Lastres D, Marín-Buera L, Arenas J, Martín MA, Ugalde C. Mitochondrial respiratory chain dysfunction: Implications in neurodegeneration. Free Radic Biol Med. 2012 Aug 1;53(3):595-609. doi: 10.1016/j.freeradbiomed.2012.05.009, PMID 22595027
17. Cozzolino M, Seli E. Mitochondrial function in women with polycystic ovary syndrome. Curr Opin Obstet Gynecol. 2020 Jun 1;32(3):205-12. doi: 10.1097/GCO.0000000000000619, PMID 32068544
18. Sangwung P, Petersen KF, Shulman GI, Knowles JW. Potential role of alterations in mitochondrial function in the pathogenesis of insulin resistance and type 2 diabetes. Endocrinology (US). 2021;161(4):1-10.
19. Das M, Sauceda C, Webster NJ. Mitochondrial dysfunction in obesity and reproduction. Endocrinology. 2021 Jan 1;162(1):bqaa158. doi: 10.1210/endocr/bqaa158, PMID 32945868
20. Hebert JF, Myatt L. Placental mitochondrial dysfunction with metabolic diseases: Therapeutic approaches. Biochim Biophys Acta Mol Basis Dis. 2021 Jan 1;1867(1):165967. doi: 10.1016/j.bbadis.2020.165967, PMID 32920120
21. Kasapoǧlu I, Seli E. Mitochondrial dysfunction and ovarian aging. Endocrinology. 2020 Feb 1;161(2):bqaa001. doi: 10.1210/endocr/ bqaa001, PMID 31927571
22. Moore MP, Cunningham RP, Meers GM, Johnson SA, Wheeler AA, Ganga RR, et al. Compromised hepatic mitochondrial fatty acid oxidation and reduced markers of mitochondrial turnover in human NAFLD. Hepatology. 2022 Nov 1;76(5):1452-65. doi: 10.1002/ hep.32324, PMID 35000203
23. Chen P, Yao L, Yuan M, Wang Z, Zhang Q, Jiang Y, et al. Mitochondrial dysfunction: A promising therapeutic target for liver diseases. Genes Dis. 2024 May 1;11(3):101115. doi: 10.1016/j.gendis.2023.101115, PMID 38299199
24. Chiu HY, Tay EX, Ong DS, Taneja R. Mitochondrial dysfunction at the center of cancer therapy. Antioxid Redox Signal. 2020 Jan 8;32(5):309-30. doi: 10.1089/ars.2019.7898, PMID 31578870
25. Boland ML, Chourasia AH, Macleod KF. Mitochondrial dysfunction in cancer. Front Oncol. 2013;3:292. doi: 10.3389/fonc.2013.00292, PMID 24350057
26. Guerra F, Guaragnella N, Arbini AA, Bucci C, Giannattasio S, Moro L. Mitochondrial dysfunction: A novel potential driver of epithelial-to-mesenchymal transition in cancer. Front Oncol. 2017 Dec 1;7:295. doi: 10.3389/fonc.2017.00295, PMID 29250487
27. Zeviani M, Di Donato S. Mitochondrial disorders. Brain. 2004 Oct 1;127(10):2153-72. doi: 10.1093/brain/awh259, PMID 15358637
28. Niyazov DM, Kahler SG, Frye RE. Primary mitochondrial disease and secondary mitochondrial dysfunction: Importance of distinction for diagnosis and treatment. Mol Syndromol. 2016 Jul 1;7(3):122-37. doi: 10.1159/000446586, PMID 27587988
29. Grel H, Woznica D, Ratajczak K, Kalwarczyk E, Anchimowicz J, Switlik W, et al. Mitochondrial dynamics in neurodegenerative diseases: Unraveling the role of fusion and fission processes. Int J Mol Sci. 2023 Aug 22;24(17):13033. doi: 10.3390/ijms241713033, PMID 37685840
30. Archer SL. Mitochondrial dynamics--mitochondrial fission and fusion in human diseases. N Engl J Med. 2013 Dec 5;369(23):2236-51. doi: 10.1056/NEJMra1215233, PMID 24304053
31. Valero T. Mitochondrial biogenesis: Pharmacological approaches. Curr Pharm Des. 2014 Sep 15;20(35):5507-9. doi: 10.2174/1381612820351 40911142118, PMID 24606795
32. Singh A, Faccenda D, Campanella M. Pharmacological advances in mitochondrial therapy. EBioMedicine. 2021 Mar 1;65:103244. doi: 10.1016/j.ebiom.2021.103244, PMID 33647769
33. Rahman MM, Tumpa MA, Rahaman MS, Islam F, Sutradhar PR, Ahmed M, et al. Emerging promise of therapeutic approaches targeting mitochondria in neurodegenerative disorders. Curr Neuropharmacol. 2023 Mar 17;21(5):1081-99. doi: 10.2174/1570159X21666230316150 559, PMID 36927428
34. Mangrulkar SV, Wankhede NL, Kale MB, Upaganlawar AB, Taksande BG, Umekar MJ, et al. Mitochondrial dysfunction as a signaling target for therapeutic intervention in major neurodegenerative disease. Neurotox Res. 2023 Dec 1;41(6):708-29. doi: 10.1007/s12640- 023-00647-2, PMID 37162686
35. Brown DA, Perry JB, Allen ME, Sabbah HN, Stauffer BL, Shaikh SR, et al. Mitochondrial function as a therapeutic target in heart failure. Nat Rev Cardiol. 2016;14(4):238-250.
36. Murphy MP, Hartley RC. Mitochondria as a therapeutic target for common pathologies. Nat Rev Drug Discov. 2018 Nov 28;17(12):865- 86. doi: 10.1038/nrd.2018.174, PMID 30393373
37. Konkwo C, Perry RJ. Imeglimin: Current development and future potential in type 2 diabetes. Drugs. 2021 Feb 1;81(2):185-90. doi: 10.1007/s40265-020-01434-5, PMID 33247829
38. Yaribeygi H, Maleki M, Sathyapalan T, Jamialahmadi T, Sahebkar A. Molecular mechanisms by which imeglimin improves glucose homeostasis. J Diabetes Res. 2020;2020:8768954. doi: 10.1155/2020/8768954, PMID 32215274
39. Detaille D, Vial G, Borel AL, Cottet-Rouselle C, Hallakou-Bozec S, Bolze S, et al. Imeglimin prevents human endothelial cell death by inhibiting mitochondrial permeability transition without inhibiting mitochondrial respiration. Cell Death Discov. 2016;2(1):15072. doi: 10.1038/cddiscovery.2015.72, PMID 27551496
40. Sanada J, Obata A, Fushimi Y, Kimura T, Shimoda M, Ikeda T, et al. Imeglimin exerts favorable effects on pancreatic β-cells by improving morphology in mitochondria and increasing the number of insulin granules. Sci Rep. 2022;12(1):13220. doi: 10.1038/s41598-022- 17657-3, PMID 35918386
41. Zemgulyte G, Umbrasas D, Cizas P, Jankeviciute S, Pampuscenko K, Grigaleviciute R, et al. Imeglimin is neuroprotective against ischemic brain injury in rats- a study evaluating neuroinflammation and mitochondrial functions. Mol Neurobiol. 2022 May 1;59(5):2977-91. doi: 10.1007/s12035-022-02765-y, PMID 35257284
42. Lee JY, Kang Y, Jeon JY, Kim HJ, Kim DJ, Lee KW, et al. Imeglimin attenuates NLRP3 inflammasome activation by restoring mitochondrial functions in macrophages. J Pharmacol Sci. 2024 Jun 1;155(2):35-43. doi: 10.1016/j.jphs.2024.03.004, PMID 38677784
43. Kato H, Iwashita K, Iwasa M, Kato S, Yamakage H, Suganami T, et al. Imeglimin exhibits novel anti-inflammatory effects on high-glucose-stimulated mouse microglia through ULK1-mediated suppression of the TXNIP-NLRP3 axis. Cells. 2024 Feb 1;13(3):284. doi: 10.3390/ cells13030284, PMID 38334676
44. RCSB PDB - 7NH5: Co-crystal structure of Akt1. In: Complex Covalent- Allosteric Akt Inhibitor. Vol. 6. California: RCSB; 2021 Sep 08. Available from: https://www.rcsb.org/structure/7NH5 [Last accessed on 2025 Feb 12].
45. Crystal Structure of Human Dlp1 in Complex with GDP; 2014 Feb 19. p. AlF4. Available from: https://www.wwpdb.org/pdb?id=pdb_00003w6p [Last accessed on 2025 Feb 12].
46. RCSB PDB - 5C1Z: Parkin (UblR0RBR). Available from: https://www. rcsb.org/structure/5C1Z [Last accessed on 2025 Feb 12].
47. Crystal Structure of NLRP3 NACHT Domain in Complex with a Potent Inhibitor; 2021 Oct 20. Available from: https://www.wwpdb.org/ pdb?id=pdb_00007alv [Last accessed on 2025 Feb 12].
48. RCSB PDB - 2NZT: Crystal Structure of Human Hexokinase. Vol. 2. Available from: https://www.rcsb.org/structure/2NZT [Last accessed on 2025 Feb 12].
49. Tian C, Kasavajhala K, Belfon KA, Raguette L, Huang H, Migues AN, et al. Ff19SB: Amino-acid-specific protein backbone parameters trained against quantum mechanics energy surfaces in solution. J Chem Theor Comput. 2020 Jan 14;16(1):528-52. doi: 10.1021/acs.jctc.9b00591, PMID 31714766
50. Case DA, Aktulga HM, Belfon K, Cerutti DS, Cisneros GA, Cruzeiro VW, et al. AmberTools. J Chem Inf Model. 2023 Oct 23;63(20):6183-91. doi: 10.1021/acs.jcim.3c01153, PMID 37805934
51. Eastman P, Swails J, Chodera JD, McGibbon RT, Zhao Y, Beauchamp KA, et al. OpenMM 7: Rapid development of high performance algorithms for molecular dynamics. PLOS Comput Biol. 2017 Jul 1;13(7):e1005659. doi: 10.1371/journal.pcbi.1005659, PMID 28746339
52. Roe DR, Cheatham TE 3rd. PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. J Chem Theor Comput. 2013 Jul 9;9(7):3084-95. doi: 10.1021/ct400341p, PMID 26583988
53. Truebestein L, Hornegger H, Anrather D, Hartl M, Fleming KD, Stariha JT, et al. Structure of autoinhibited Akt1 reveals mechanism of PIP3-mediated activation. Proc Natl Acad Sci U S A. 2021 Aug 17;118(33):e2101496118. doi: 10.1073/pnas.2101496118, PMID 34385319
54. Pearce LR, Komander D, Alessi DR. The nuts and bolts of AGC protein kinases. Nat Rev Mol Cell Biol. 2010;11(1):9-22. doi: 10.1038/ nrm2822, PMID 20027184
55. Heron-Milhavet L, Khouya N, Fernandez A, Lamb NJ. Akt1 and Akt2: Differentiating the action. Histol Histopathol. 2011 May;26(5):651-62. doi: 10.14670/HH-26.651, PMID 21432781
56. Häggblad Sahlberg SH, Mortensen AC, Haglöf J, Engskog MK, Arvidsson T, Pettersson C, et al. Different functions of AKT1 and AKT2 in molecular pathways, cell migration and metabolism in colon cancer cells. Int J Oncol. 2017 Jan 1;50(1):5-14. doi: 10.3892/ijo.2016.3771, PMID 27878243
57. Duggal S, Jailkhani N, Midha MK, Agrawal N, Rao KV, Kumar A. Defining the Akt1 interactome and its role in regulating the cell cycle. Sci Rep. 2018 Dec 1;8(1):1303. doi: 10.1038/s41598-018-19689-0, PMID 29358593
58. Guerau-De-Arellano M, Piedra-Quintero ZL, Tsichlis PN. Akt isoforms in the immune system. Front Immunol. 2022 Aug 23;13:990874. doi: 10.3389/fimmu.2022.990874, PMID 36081513
59. Datta SR, Brunet A, Greenberg ME. Cellular survival: A play in three Akts. Genes Dev. 1999;13(22):2905-27. doi: 10.1101/gad.13.22.2905, PMID 10579998
60. Liao Y, Hung MC. Physiological regulation of Akt activity and stability. Am J Transl Res. 2010;2(1):19-42. PMID 20182580
61. Bos JL. A target for phosphoinositide 3-kinase: Akt/PKB. Trends Biochem Sci. 1995;20(11):441-2. doi: 10.1016/s0968-0004(00)89097- 0, PMID 8578585
62. Hanada M, Feng J, Hemmings BA. Structure, regulation and function of PKB/AKT--a major therapeutic target. Biochim Biophys Acta. 2004 Mar 11;1697(1-2):3-16. doi: 10.1016/j.bbapap.2003.11.009, PMID 15023346
63. Lučic I, Rathinaswamy MK, Truebestein L, Hamelin DJ, Burke JE, Leonard TA. Conformational sampling of membranes by Akt controls its activation and inactivation. Proc Natl Acad Sci U S A. 2018 Apr 24;115(17):E3940-9. doi: 10.1073/pnas.1716109115, PMID 29632185
64. Xie X, Shu R, Yu C, Fu Z, Li Z. Mammalian AKT, the emerging roles on mitochondrial function in diseases. Aging Dis. 2022 Feb 1;13(1):157-74. doi: 10.14336/AD.2021.0729, PMID 35111368
65. Parcellier A, Tintignac LA, Zhuravleva E, Hemmings BA. PKB and the mitochondria: AKTing on apoptosis. Cell Signal. 2008 Jan;20(1):21-30. doi: 10.1016/j.cellsig.2007.07.010, PMID 17716864
66. Guha M, Fang JK, Monks R, Birnbaum MJ, Avadhani NG. Activation of Akt is essential for the propagation of mitochondrial respiratory stress signaling and activation of the transcriptional coactivator heterogeneous ribonucleoprotein A2. Mol Biol Cell. 2010 Oct 15;21(20):3578-89. doi: 10.1091/mbc.E10-03-0192, PMID 20719961
67. Cantrell D. Protein kinase B (Akt) regulation and function in T lymphocytes. Semin Immunol. 2002;14(1):19-26. doi: 10.1006/ smim.2001.0338, PMID 11884227
68. Vergadi E, Ieronymaki E, Lyroni K, Vaporidi K, Tsatsanis C. Akt signaling pathway in macrophage activation and M1/M2
polarization. J Immunol. 2017 Feb 1;198(3):1006-14. doi: 10.4049/ jimmunol.1601515, PMID 28115590
69. Takahashi N, Kimura AP, Yoshizaki T, Ohmura K. Imeglimin modulates mitochondria biology and facilitates mitokine secretion in 3T3-L1 adipocytes. Life Sci. 2024 Jul 15;349:122735. doi: 10.1016/j. lfs.2024.122735, PMID 38768776
70. Gundogdu M, Tadayon R, Salzano G, Shaw GS, Walden H. A mechanistic review of Parkin activation. Biochim Biophys Acta Gen Subj. 2021 Jun 1;1865(6):129894. doi: 10.1016/j.bbagen.2021.129894, PMID 33753174
71. Koyano F, Matsuda N. Molecular mechanisms underlying PINK1 and Parkin catalyzed ubiquitylation of substrates on damaged mitochondria. Biochim Biophys Acta Mol Cell Res. 2015 Oct 1;1853;10:2791-6.
72. Wauer T, Komander D. Structure of the human Parkin ligase domain in an autoinhibited State. EMBO J. 2013 Jul 31;32(15):2099-112. doi: 10.1038/emboj.2013.125, PMID 23727886
73. Chaugule VK, Burchell L, Barber KR, Sidhu A, Leslie SJ, Shaw GS, et al. Autoregulation of Parkin activity through its ubiquitin-like domain. EMBO J. 2011 Jul 20;30(14):2853-67. doi: 10.1038/emboj.2011.204, PMID 21694720
74. Trempe JF, Sauvé V, Grenier K, Seirafi M, Tang MY, Meńade M, et al. Structure of parkin reveals mechanisms for ubiquitin ligase activation. Science. 2013 Jun 21;340(6139):1451-5.
75. Islam NN, Weber CA, Coban M, Cocker LT, Fiesel FC, Springer W, et al. In silico investigation of parkin-activating mutations using simulations and network modeling. Biomolecules. 2024 Mar 1;14(3):365. doi: 10.3390/biom14030365, PMID 38540783
76. Kumar A, Aguirre JD, Condos TE, Martinez-Torres RJ, Chaugule VK, Toth R, et al. Disruption of the autoinhibited state primes the E3 ligase Parkin for activation and catalysis. EMBO J. 2015 Oct 14;34(20):2506-21. doi: 10.15252/embj.201592337, PMID 26254304
77. Dove KK, Klevit RE, Rittinger K. pUBLically unzipping Parkin: How phosphorylation exposes a ligase bit by bit. EMBO J. 2015 Oct 14;34(20):2486-8. doi: 10.15252/embj.201592857, PMID 26346274
78. Wasner K, Smajic S, Ghelfi J, Delcambre S, Prada-Medina CA, Knappe E, et al. Parkin deficiency impairs mitochondrial DNA dynamics and propagates inflammation. Mov Disord. 2022 Jul 1;37(7):1405-15. doi: 10.1002/mds.29025, PMID 35460111
79. Frank-Cannon TC, Tran T, Ruhn KA, Martinez TN, Hong J, Marvin M, et al. Parkin deficiency increases vulnerability to inflammation-related nigral degeneration. J Neurosci. 2008 Oct 22;28(43):10825-34. doi: 10.1523/JNEUROSCI.3001-08.2008, PMID 18945890
80. Henn IH, Bouman L, Schlehe JS, Schlierf A, Schramm JE, Wegener E, et al. Parkin mediates neuroprotection through activation of IkappaB kinase/nuclear factor-kappa B signaling. J Neurosci. 2007 Feb 21;27(8):1868-78. doi: 10.1523/JNEUROSCI.5537-06.2007, PMID 17314283
81. Amadoro G, Corsetti V, Florenzano F, Atlante A, Bobba A, Nicolin V, et al. Morphological and bioenergetic demands underlying the mitophagy in post-mitotic neurons: The pink-parkin pathway. Front Aging Neurosci. 2014;6:18. doi: 10.3389/fnagi.2014.00018, PMID 24600391
82. Grenier K, McLelland GL, Fon EA. Parkin- and PINK1-dependent mitophagy in neurons: Will the real pathway please stand up? Front Neurol. 2013;4:100. doi: 10.3389/fneur.2013.00100, PMID 23882257
83. Ge P, Dawson VL, Dawson TM. PINK1 and Parkin mitochondrial quality control: A source of regional vulnerability in Parkinson’s disease. Mol Neurodegener. 2020;15(1):20. doi: 10.1186/s13024-020- 00367-7, PMID 32169097
84. Vial G, Chauvin MA, Bendridi N, Durand A, Meugnier E, Madec AM, et al. Imeglimin normalizes glucose tolerance and insulin sensitivity and improves mitochondrial function in liver of a high-fat, high-sucrose diet mice model. Diabetes. 2015 Jun 1;64(6):2254-64. doi: 10.2337/ db14-1220, PMID 25552598
85. Ji WK, Hatch AL, Merrill RA, Strack S, Higgs HN. Actin filaments target the oligomeric maturation of the dynamin GTpase Drp1 to mitochondrial fission sites. eLife. 2015 Nov 26;4:e11553. doi: 10.7554/ eLife.11553, PMID 26609810
86. Wenger J, Klinglmayr E, Fröhlich C, Eibl C, Gimeno A, Hessenberger M, et al. Functional mapping of human Dynamin-1-Like GTPase domain based on X-ray structure analyses. PLOS One. 2013;8(8):e71835. doi: 10.1371/journal.pone.0071835, PMID 23977156
87. Faelber K, Held M, Gao S, Posor Y, Haucke V, Noé F, et al. Structural insights into dynamin-mediated membrane fission. Structure. 2012 Oct 10;20(10):1621-8. doi: 10.1016/j.str.2012.08.028, PMID 23063009
88. Otera H, Ishihara N, Mihara K. New insights into the function and regulation of mitochondrial fission. Biochim Biophys Acta Mol Cell Res. 2013 May;1833(5):1256-68. doi: 10.1016/j.bbamcr.2013.02.002
89. Wu D, Dasgupta A, Chen KH, Neuber-Hess M, Patel J, Hurst TE, et al. Identification of novel dynamin-related protein 1 (Drp1) GTPase inhibitors: Therapeutic potential of Drpitor1 and Drpitor1a in cancer and cardiac ischemia-reperfusion injury. FASEB J. 2020 Jan 1;34(1):1447-64. doi: 10.1096/fj.201901467R, PMID 31914641
90. Ruiz A, Alberdi E, Matute C. Mitochondrial division inhibitor 1 (Mdivi-1) protects neurons against excitotoxicity through the modulation of mitochondrial function and intracellular Ca2+ signaling. Front Mol Neurosci. 2018 Jan 17;11:3. doi: 10.3389/fnmol.2018.00003, PMID 29386996
91. Roberts DJ, Miyamoto S. Hexokinase II integrates energy metabolism and cellular protection: Akting on mitochondria and TORCing to autophagy. Cell Death Differ. 2014;22(2):248-57.
92. Botzer LE, Maman S, Sagi-Assif O, Meshel T, Nevo I, Yron I, et al. Hexokinase 2 is a determinant of neuroblastoma metastasis. Br J Cancer. 2016 Mar 1;114(7):759-66. doi: 10.1038/bjc.2016.26, PMID 26986252
93. Ferreira JC, Khrbtli AR, Shetler CL, Mansoor S, Ali L, Sensoy O, et al. Linker residues regulate the activity and stability of hexokinase 2, a promising anticancer target. J Biol Chem. 2020 Jan 1;296:100071.
94. HK1 - Hexokinase-2 - Homo sapiens (Human). UniProtKB. UniProt. Available from: https://www.uniprot.org/uniprotkb/a0A994J758/entry [Last accessed on 2025 Mar 04].
95. Brinkschulte R, Fußhöller DM, Hoss F, Rodríguez-Alcázar JF, Lauterbach MA, Kolbe CC, et al. ATP-binding and hydrolysis of human NLRP3. Commun Biol. 2022;5(1):1176. doi: 10.1038/s42003- 022-04120-2, PMID 36329210
96. Fu J, Wu H. Structural mechanisms of NLRP3 inflammasome assembly and activation. Annu Rev Immunol. 2023 Apr 26;41:301-16. doi: 10.1146/annurev-immunol-081022-021207, PMID 36750315
97. Dekker C, Mattes H, Wright M, Boettcher A, Hinniger A, Hughes N, et al. Crystal structure of NLRP3 NACHT domain with an inhibitor defines mechanism of inflammasome inhibition. J Mol Biol. 2021 Dec 3;433(24):167309. doi: 10.1016/j.jmb.2021.167309, PMID 34687713
98. Jin C, Flavell RA. Molecular mechanism of NLRP3 inflammasome activation. J Clin Immunol. 2010 Sep 30;30(5):628-31. doi: 10.1007/ s10875-010-9440-3, PMID 20589420
99. Ma Q. Pharmacological inhibition of the NLRP3 inflammasome: Structure, molecular activation, and inhibitor-NLRP3 interaction. Pharmacol Rev. 2023 May 1;75(3):487-520. doi: 10.1124/ pharmrev.122.000629, PMID 36669831
100.Tapia-Abellán A, Angosto-Bazarra D, Martínez-Banaclocha H, De Torre-Minguela C, Cerón-Carrasco JP, Pérez-Sánchez H, et al. MCC950 closes the active conformation of NLRP3 to an inactive state. Nat Chem Biol. 2019 Jun 1;15(6):560-4. doi: 10.1038/s41589-019- 0278-6, PMID 31086329
101.Dos Santos Nascimento IJ, De Aquino TM, Da Silva-Júnior EF. Molecular docking and dynamics simulation studies of a dataset of NLRP3 inflammasome inhibitors. Recent Adv Inflamm Allergy Drug Discov. 2021;15(2):80-6.
Published
How to Cite
Issue
Section
Copyright (c) 2025 Yazhini P M, Dr Ramya, Dr Sowmya, Dr Kavitha

This work is licensed under a Creative Commons Attribution 4.0 International License.
The publication is licensed under CC By and is open access. Copyright is with author and allowed to retain publishing rights without restrictions.