NANOTECHNOLOGY-DRIVEN INNOVATIONS IN HYPERTENSION MANAGEMENT: FORMULATION STRATEGIES, CHALLENGES, AND FUTURE DIRECTIONS
DOI:
https://doi.org/10.22159/ajpcr.2025v18i4.53969Keywords:
Hypertension, Nanotechnology, Liposomes, Solid Lipid Nanoparticles, Targeted drug delivery, Chronomodulated therapy, Microneedles for antihypertensive therapyAbstract
Abstract:
Hypertension creates a worldwide public health challenge that significantly increases risks for cardiovascular diseases, strokes, and kidney failure. The standard therapeutic treatments comprising ACE inhibitors and beta blockers struggle with several problems, including limited solubility together with short half-life duration along with unwanted effects causing reduced patient treatment adherence. Drug delivery systems powered by nanotechnology offer innovative solutions to address the problems through techniques like nanoparticles together with liposomes and microneedles. Nanotechnology-based drug delivery systems enhance drug effectiveness and improve stability while enabling precise drug distribution, which leads to reduced first-pass metabolism and lowered systemic side effects. Drug delivery according to circadian rhythms achieves better therapeutic effects at reduced risks. Researchers have developed two new approaches for medication delivery that utilise intranasal systems together with dissolvable microneedle patches for providing fast and easy administration capability. Hypertension management through nanotechnology applications delivers a transformational method that addresses numerous limitations of existing treatment approaches. Although the preclinical data holds promise, the clinical implementation of such innovative systems faces substantial obstacles. The implementation of nanotechnology in regular clinical practices will reshape hypertension treatment through performance-enhanced approaches that offer tailor-made patient-centred management.
Downloads
References
Mills KT, Stefanescu A, He J. The global epidemiology of hypertension. Nat Rev Nephrol. 2020;16:223-37. doi: 10.1038/s41581-019-0244-2
Sharma M, Sharma R, Jain DK, Saraf A. Enhancement of oral bioavailability of poorly water soluble carvedilol by chitosan nanoparticles: Optimization and pharmacokinetic study. Int J Biol Macromol. 2019;135:246-60. doi: 10.1016/j.ijbiomac.2019.05.162
Hettiarachchi SD, Kwon YM, Omidi Y, Speth RC. Nanoparticle approaches for the renin-angiotensin system. Heliyon. 2023;9:e16951. doi: 10.1016/j.heliyon.2023.e16951
Astiani R, Sadikin M, Eff AR, Firdayani F, Suyatna FD. In silico identification testing of triterpene saponines on Centella asiatica on inhibitor renin activity antihypertensive. Int J Appl Pharm. 2022;14:1- 4. doi: 10.22159/ijap.2022.v14s2.44737
Gumz ML, Shimbo D, Abdalla M, Balijepalli RC, Benedict C, Chen Y, et al. Toward precision medicine: Circadian rhythm of blood pressure and chronotherapy for hypertension - 2021 NHLBI workshop report. Hypertension. 2023;80:503-22. doi: 10.1161/ HYPERTENSIONAHA.122.19372
Alam T, Khan S, Gaba B, Haider MF, Baboota S, Ali J. Nanocarriers as treatment modalities for hypertension. Drug Deliv. 2017;24:358-69. doi: 10.1080/10717544.2016.1255999
Atlas S. The Renin-Angiotensin Aldosterone System: Pathophysiological Role and Pharmacologic Inhibition; 2007. Available from: https://www. amcp.org
DeLalio LJ, Sved AF, Stocker SD. Sympathetic nervous system contributions to hypertension: Updates and therapeutic relevance. Can J Cardiol. 2020;36:712-20. doi: 10.1016/j.cjca.2020.03.003
Higashi Y, Kihara Y, Noma K. Endothelial dysfunction and hypertension in aging. Hypertens Res. 2012;35:1039-47. doi: 10.1038/hr.2012.138
Humphrey JD. Mechanisms of vascular remodeling in hypertension. Am J Hypertens. 2021;34:432-41. doi: 10.1093/ajh/hpaa195
Suzumoto Y, Zucaro L, Iervolino A, Capasso G. Kidney and blood pressure regulation-latest evidence for molecular mechanisms. Clin Kidney J. 2023;16:952-64. doi: 10.1093/ckj/sfad015
Wright JM, Musini VM, Gill R. First-line drugs for hypertension. Cochrane Database Syst Rev. 2018;4:CD001841. doi: 10.1002/14651858.CD001841.pub3
Messerli FH, Bangalore S, Bavishi C, Rimoldi SF. Angiotensin-converting enzyme inhibitors in hypertension: To use or not to use? J Am Coll Cardiol. 2018;71:1474-82. doi: 10.1016/j.jacc.2018.01.058
Elliott WJ, Ram CVS. Calcium channel blockers. J Clin Hypertens. 2011;13:687-9. doi: 10.1111/j.1751-7176.2011.00513.x
Burnier M, Bakris G, Williams B. Redefining diuretics use in hypertension: Why select a thiazide-like diuretic? J Hypertens. 2019;37:1574-86. doi: 10.1097/HJH.0000000000002088
Preeti, Sambhakar S, Malik R, Bhatia S, Al Harrasi A, Saharan R, et al. Lipid horizons: Recent advances and future prospects in LBDDS for oral administration of antihypertensive agents. Int J Hypertens. 2024;2024:2430147. doi: 10.1155/2024/2430147
Sharma M, Sharma R, Jain DK. Nanotechnology based approaches for enhancing oral bioavailability of poorly water soluble antihypertensive drugs. Scientifica (Cairo). 2016;2016:8525679. doi: 10.1155/2016/8525679
Mehrdadi S. Lipid-based nanoparticles as oral drug delivery systems: Overcoming poor gastrointestinal absorption and enhancing bioavailability of peptide and protein therapeutics. Adv Pharm Bull. 2024;14:48-66. doi: 10.34172/apb.2024.016
Cheng X, Xie Q, Sun Y. Advances in nanomaterial-based targeted drug delivery systems. Front Bioeng Biotechnol. 2023;11:1177151. doi: 10.3389/fbioe.2023.1177151
Liu P, Chen G, Zhang J. A review of liposomes as a drug delivery system: Current status of approved products, regulatory environments, and future perspectives. Molecules. 2022;27:1372. doi: 10.3390/ molecules27041372
El-Mezayen NS, El-Hadidy WF, El-Refaie WM, Shalaby TI, Khattab MM, El-Khatib AS. Oral vitamin-A-coupled valsartan nanomedicine: High hepatic stellate cell receptors accessibility and prolonged enterohepatic residence. J Control Release. 2018;283:32-44. doi: 10.1016/j.jconrel.2018.05.021
Haddad F, Mohammed N, Gopalan RC, Al Ayoub Y, Nasim MT, Assi KH. Development and optimisation of inhalable EGCG nano-liposomes as a potential treatment for pulmonary arterial hypertension by implementation of the design of experiments approach. Pharmaceutics. 2023;15:539. doi: 10.3390/pharmaceutics15020539
Yue Shen, Richard Lamptey, Jagdish Singh, Chengwen Sun, Delivery of Human ACE2 Across the Blood Brain Barrier Attenuated Development of Neurogenic Hypertension Using An Engineered Liposome-Based Delivery System, The Journal of Pharmacology and Experimental Therapeutics, Volume 385, Supplement 3, 2023, Page 502, ISSN 0022- 3565, https://doi.org/10.1124/jpet.122.186440.
Salem HF, El-Menshawe SF, Khallaf RA, Rabea YK. A novel transdermal nanoethosomal gel of lercanidipine HCl for treatment of hypertension: Optimization using Box-Benkhen design, in vitro and in vivo characterization. Drug Deliv Transl Res. 2020;10:227-40. doi: 10.1007/s13346-019-00676-5
Deshpande PB, Gurram AK, Deshpande A, Shavi GV, Musmade P, Arumugam K, et al. A novel nanoproliposomes of lercanidipine: Development, in vitro and preclinical studies to support its effectiveness in hypertension therapy. Life Sci. 2016;162:125-37. doi: 10.1016/j. lfs.2016.08.01626. Nahar K, Absar S, Gupta N, Kotamraju VR, McMurtry IF, Oka M, et al. Peptide-coated liposomal fasudil enhances site specific vasodilation in pulmonary arterial hypertension. Mol Pharm. 2014;11:4374-84. doi: 10.1021/mp500456k
Keshavarz A, Alobaida A, McMurtry IF, Nozik-Grayck E, Stenmark KR, Ahsan F. CAR, a homing peptide, prolongs pulmonary preferential vasodilation by increasing pulmonary retention and reducing systemic absorption of liposomal fasudil. Mol Pharm. 2019;16:3414-29. doi: 10.1021/acs.molpharmaceut.9b00208
Zhang Z, Gao F, Bu H, Xiao J, Li Y. Solid lipid nanoparticles loading candesartan cilexetil enhance oral bioavailability: In vitro characteristics and absorption mechanism in rats. Nanomedicine. 2012;8:740-7. doi: 10.1016/j.nano.2011.08.016
Bagul US, Tagalpallewar AA, Kshirsagar AA. Formulation and evaluation of candesartan cilexetil loaded solid lipid nanoparticles with improved bioavailability. Int J Pharm Sci Res. 2022;13:1616-23. doi: 10.13040/IJPSR.0975-8232.13(4).1616-23
Thakkar HP, Desai JL, Parmar MP. Application of box-behnken design for optimization of formulation parameters for nanostructured lipid carriers of candesartan cilexetil. Asian J Pharm. 2014;8:81-9. doi: 10.4103/0973-8398.134921
Arun B, Narendar D, Veerabrahma K. Development of olmesartan medoxomil lipid-based nanoparticles and nanosuspension: Preparation, characterization and comparative pharmacokinetic evaluation. Artif Cells Nanomed Biotechnol. 2018;46:126-37. doi: 10.1080/21691401.2017.1299160
Pandya NT, Jani P, Vanza J, Tandel H. Solid lipid nanoparticles as an efficient drug delivery system of olmesartan medoxomil for the treatment of hypertension. Colloids Surf B Biointerfaces. 2018;165:37- 44. doi: 10.1016/j.colsurfb.2018.02.011
Cirri M, Mennini N, Maestrelli F, Mura P, Ghelardini C, Di Cesare Mannelli L. Development and in vivo evaluation of an innovative “hydrochlorothiazide-in cyclodextrins-in solid lipid nanoparticles” formulation with sustained release and enhanced oral bioavailability for potential hypertension treatment in paediatrics. Int J Pharm. 2017;521:73-83. doi: 10.1016/j.ijpharm.2017.02.022
Alqahtani MS, Kazi M, Alsenaidy MA, Ahmad MZ. Advances in oral drug delivery. Front Pharmacol. 2021;12:618411. doi: 10.3389/ fphar.2021.618411
Mcginity JW, O’donnell PB. Preparation of microspheres by the solvent evaporation technique. Adv Drug Deliv Rev. 1997;28:25-42.
Ranpise NS, Korabu SS, Ghodake VN. Second generation lipid nanoparticles (NLC) as an oral drug carrier for delivery of lercanidipine hydrochloride. Colloids Surf B Biointerfaces. 2014;116:81-7. doi: 10.1016/j.colsurfb.2013.12.012
Mishra A, Imam SS, Aqil M, Ahad A, Sultana Y, Ameeduzzafar, et al. Carvedilol nano lipid carriers: Formulation, characterization and in-vivo evaluation. Drug Deliv. 2016;23:1486-94. doi: 10.3109/10717544.2016.1165314
Jaiswal M, Dudhe R, Sharma PK. Nanoemulsion: An advanced mode of drug delivery system. 3 Biotech. 2015;5:123-7. doi: 10.1007/s13205- 014-0214-0
Preeti, Sambhakar S, Malik R, Bhatia S, Al Harrasi A, Rani C, et al. Nanoemulsion: An emerging novel technology for improving the bioavailability of drugs. Scientifica (Cairo). 2023;2023:6640103. doi: 10.1155/2023/6640103
Funde A, Kokat J. A validated stability indicating uv-spectrophotometric simultaneous estimation of rosuvastatin calcium and fenofibrate in bulk and pharmaceutical formulation. Int J Chem Res. 2021;5:1-8. doi: 10.22159/ijcr.2021v5i1.144
Wilson RJ, Li Y, Yang G, Zhao CX. Nanoemulsions for drug delivery. Particuology. 2022;64:85-97. doi: 10.1016/j.partic.2021.05.009
Gorain B, Choudhury H, Kundu A, Sarkar L, Karmakar S, Jaisankar P, et al. Nanoemulsion strategy for olmesartan medoxomil improves oral absorption and extended antihypertensive activity in hypertensive rats. Colloids Surf B Biointerfaces. 2014;115:286-94. doi: 10.1016/j. colsurfb.2013.12.016
Ajayi O. Thermodynamic and Kinetic Stability of Cosmetic Nanoemulsions. n.d. Available from: https://www.intechopen.com
Liu M, Yang C, Liu E, Zhang F, Meng X, Liu B. Effect of environmental stresses on physicochemical properties of ALA oil-in-water nanoemulsion system prepared by emulsion phase inversion. Food Chem. 2021;343:128475. doi: 10.1016/j.foodchem.2020.128475
Karim K, Mandal A, Biswas N, Guha A, Chatterjee S, Behera M, et al. Niosome: A future of targeted drug delivery systems. J Adv Pharm Technol Res. 2010;1:374-80. doi: 10.4103/0110-5558.76435
Witika BA, Bassey KE, Demana PH, Siwe-Noundou X, Poka MS. Current advances in specialised niosomal drug delivery: Manufacture, characterization and drug delivery applications. Int J Mol Sci. 2022;23:9668. doi: 10.3390/ijms23179668
Moammeri A, Chegeni MM, Sahrayi H, Ghafelehbashi R, Memarzadeh F, Mansouri A, et al. Current advances in niosomes applications for drug delivery and cancer treatment. Mater Today Bio. 2023;23:100837. doi: 10.1016/j.mtbio.2023.100837
Sayyad N, Maji R, Omolo CA, Ganai AM, Ibrahim UH, Pathan TK, et al. Development of niosomes for encapsulating captopril-quercetin prodrug to combat hypertension. Int J Pharm. 2021;609:121191. doi: 10.1016/j.ijpharm.2021.121191
Salem EM, Dawaba HM, Elbaset MA, Gad S, Hassan TH. Optimizing bioavailability and antihypertensive activity of carvedilol cubosomes using D-optimal design: Comparative analysis of cremophor RH 40 and Polyvinyl alcohol as secondary stabilizers. J Drug Deliv Sci Technol. 2024;97:105817. doi: 10.1016/j.jddst.2024.105817
Nath AG, Dubey P, Kumar A, Vaiphei KK, Rosenholm JM, Bansal KK, et al. Recent advances in the use of cubosomes as drug carriers with special emphasis on topical applications. J Lipids. 2024;2024:2683466. doi: 10.1155/2024/2683466
Sivadasan D, Sultan MH, Alqahtani SS, Javed S. Cubosomes in drug delivery-A comprehensive review on its structural components, preparation techniques and therapeutic applications. Biomedicines. 2023;11:1114. doi: 10.3390/biomedicines11041114
Faisal MM, Gomaa E, Ibrahim AE, El Deeb S, Al-Harrasi A, Ibrahim TM. Verapamil-loaded cubosomes for enhancing intranasal drug delivery: Development, characterization, ex vivo permeation, and brain biodistribution studies. AAPS PharmSciTech. 2024;25:95.doi: 10.1208/s12249-024-02814-w
Ramkanth S, Anitha P, Gayathri R, Mohan S, Babu D. Formulation and design optimization of nano-transferosomes using pioglitazone and eprosartan mesylate for concomitant therapy against diabetes and hypertension. Eur J Pharm Sci. 2021;162:105811. doi: 10.1016/j.ejps.2021.105811
Ahad A, Al-Saleh AA, Al-Mohizea AM, Al-Jenoobi FI, Raish M, Yassin AE, et al. Pharmacodynamic study of eprosartan mesylate-loaded transfersomes Carbopol® gel under Dermaroller® on rats with methyl prednisolone acetate-induced hypertension. Biomed Pharmacother. 2017;89:177-84. doi: 10.1016/j.biopha.2017.01.164
Khatoon K, Rizwanullah M, Amin S, Mir SR, Akhter S. Cilnidipine loaded transfersomes for transdermal application: Formulation optimization, in-vitro and in-vivo study. J Drug Deliv Sci Technol. 2019;54:101303. doi: 10.1016/j.jddst.2019.101303
Pechanova O, Dayar E, Cebova M. Therapeutic potential of polyphenols-loaded polymeric nanoparticles in cardiovascular system. Molecules. 2020;25:3322. doi: 10.3390/molecules25153322
S. Akhtar, F. Babiker, A. Al-Kouh, I. F Benter, The cardiac toxicity of PAMAM dendrimer drug delivery systems can be attenuated with the adjunct use of cardioprotective agents, Biomolecules and Biomedicine (2024). Vol. 25 No. 4. https://doi.org/10.17305/bb.2024.10735.
Singh MK, Pooja D, Kulhari H, Jain SK, Sistla R, Chauhan AS. Poly (amidoamine) dendrimer-mediated hybrid formulation for combination therapy of ramipril and hydrochlorothiazide. Eur J Pharm Sci. 2017;96:84-92. doi: 10.1016/j.ejps.2016.09.005
Yu M, Jie X, Xu L, Chen C, Shen W, Cao Y, et al. Recent advances in dendrimer research for cardiovascular diseases. Biomacromolecules. 2015;16:2588-98. doi: 10.1021/acs.biomac.5b00979
Hou H, Li Y, Xu Z, Yu Z, Peng B, Wang C, et al. Applications and research progress of traditional Chinese medicine delivered via nasal administration. Biomed Pharmacother. 2023;157:113933. doi: 10.1016/j.biopha.2022.113933
Tai J, Han M, Lee D, Park IH, Lee SH, Kim TH. Different methods and formulations of drugs and vaccines for nasal administration. Pharmaceutics. 2022;14:1073. doi: 10.3390/pharmaceutics14051073
Grassin-Delyle S, Buenestado A, Naline E, Faisy C, Blouquit-Laye S, Couderc LJ, et al. Intranasal drug delivery: An efficient and non-invasive route for systemic administration - Focus on opioids. Pharmacol Ther. 2012;134:366-79. doi: 10.1016/j.pharmthera.2012.03.003
Sreeharsha N, Naveen NR, Anitha P, Goudanavar PS, Ramkanth S, Fattepur S, et al. Development of nanocrystal compressed minitablets for chronotherapeutic drug delivery. Pharmaceuticals (Basel). 2022;15:311. doi: 10.3390/ph15030311
Butler CT, Rodgers AM, Curtis AM, Donnelly RF. Chrono-tailored drug delivery systems: Recent advances and future directions. Drug Deliv Transl Res. 2024;14:1756-75. doi: 10.1007/s13346-024-01539-4
O. Rahić, A. Tucak, M. Sirbubalo, L. Hindija, J. Hadžiabdić, Antihypertensives’ Rock around the Clock, J — MultidisciplinaryScientific Journal, 4 (2021) 62–81. https://doi.org/10.3390/j4010005.
Aldawood FK, Andar A, Desai S. A comprehensive review of microneedles: Types, materials, processes, characterizations and applications. Polymers (Basel). 2021;13:2815. doi: 10.3390/ polym13162815
Reinke A, Whiteside EJ, Windus L, Desai D, Stehr E, Rad ZF. The advantages of microneedle patches compared to conventional needle-based drug delivery and biopsy devices in medicine. Biomed Eng Adv. 2024;8:100127. doi: 10.1016/j.bea.2024.100127
Ahad A, Aqil M, Kohli K, Sultana Y, Mujeeb M, Ali A. Formulation and optimization of nanotransfersomes using experimental design technique for accentuated transdermal delivery of valsartan. Nanomedicine. 2012;8:237-49. doi: 10.1016/j.nano.2011.06.004
Chhabra G, Chuttani K, Mishra AK, Pathak K. Design and development of nanoemulsion drug delivery system of amlodipine besilate for improvement of oral bioavailability. Drug Dev Ind Pharm. 2011;37:907- 16. doi: 10.3109/03639045.2010.550050
Parmar N, Singla N, Amin S, Kohli K. Study of cosurfactant effect on nanoemulsifying area and development of lercanidipine loaded (SNEDDS) self nanoemulsifying drug delivery system. Colloids Surf B Biointerfaces. 2011;86:327-38. doi: 10.1016/j.colsurfb.2011.04.016
Shelar DB, Pawar SK, Vavia PR. Fabrication of isradipine nanosuspension by anti-solvent microprecipitation-high-pressure homogenization method for enhancing dissolution rate and oral bioavailability. Drug Deliv Transl Res. 2013;3:384-91. doi: 10.1007/ s13346-012-0081-3
Komesli Y, Burak Ozkaya A, Ugur Ergur B, Kirilmaz L, Karasulu E. Design and development of a self-microemulsifying drug delivery system of olmesartan medoxomil for enhanced bioavailability. Drug Dev Ind Pharm. 2019;45:1292-305. doi: 10.1080/03639045.2019.1607868
Majumdar S, Mahanti B, Kar AK, Parya H, Ghosh A, Kar B. Nanoliposome: As a smart nanocarrier in transdermal drug delivery system. Intell Pharm. 2024;2:768-76. doi: 10.1016/j.ipha.2024.04.004
Elsegaie D, Teaima M, Tadrous MI, Louis D, El-Nabarawi MA. Formulation and in-vitro characterization of self nano-emulsifying drug delivery system (SNEDDS) for enhanced solubility of candesartan cilexetil. Res J Pharm Technol. 2019;12:2628. doi: 10.5958/0974- 360x.2019.00440.2
Trideva Sastri K, Radha GV. Development of self nano-emulsifying drug delivery system for an antihypertensive agent felodipine: A systematic approach for lipid nano-formulation with improved oral bioavailability in rats. Int J Appl Pharm. 2020;12:86-94. doi: 10.22159/ ijap.2020v12i3.37203
Published
How to Cite
Issue
Section
Copyright (c) 2025 UDAYA KIRAN SAHOO, PRITAM KAYAL, S. VIDYACHARAN, N JAWAHAR

This work is licensed under a Creative Commons Attribution 4.0 International License.
The publication is licensed under CC By and is open access. Copyright is with author and allowed to retain publishing rights without restrictions.