INJECTABLE HYDROGELS FOR CARTILAGE AND BONE REGENERATION: MATERIAL PROPERTIES, DELIVERY STRATEGIES, AND CLINICAL APPLICATIONS

Authors

  • MUJIBULLAH SHEIKH Department of Pharmaceutics, Datta Meghe College of Pharmacy DMIHER (Deemed to be University), Wardha, Maharashtra, India.
  • ARSHIYA SAIYYAD Department of Pharmaceutics, Datta Meghe College of Pharmacy DMIHER (Deemed to be University), Wardha, Maharashtra, India.
  • PRANITA JIRVANKAR Department of Pharmaceutics, Datta Meghe College of Pharmacy DMIHER (Deemed to be University), Wardha, Maharashtra, India.

DOI:

https://doi.org/10.22159/ajpcr.2025v18i4.54016

Keywords:

Injected hydrogels, Cartilage regeneration, Bone regeneration, Tissue engineering, Biomaterials, Material properties, Delivery strategies, Growth factors, Cell therapy, Clinical applications, Biocompatibility, Regenerative medicine

Abstract

The regeneration of cartilage and bone remains a significant clinical challenge because of their limited self-healing ability. Injectable hydrogels have been identified as potential tissue engineering materials for use in minimally invasive procedures. This review provides a comprehensive overview of injectable hydrogels for cartilage and bone regeneration, encompassing material properties, delivery strategies, and clinical applications. First, we discuss the classification of natural hydrogels (e.g., polysaccharides such as alginate and hyaluronic acid, proteins such as collagen and gelatin) and synthetic (e.g., poly(ethylene glycol) (PEG), poly(vinyl alcohol) (PVA)) polymers, hybrid hydrogels, and the characteristics that make them ideal in tissue engineering, such as mechanical strength, biocompatibility, degradation profiles and injectability. The review then delves into delivery strategies for enhanced tissue regeneration, focusing on cell encapsulation, controlled release of growth factors (e.g., TGF-β, BMPs), incorporation of mineralizing agents, and drug delivery for infection control. We then explored the use of these injectable hydrogels for cartilage repair, osteoarthritis and focal cartilage defects, and bone regeneration, including fracture healing and periodontal reconstruction, on the basis of the clinical results and selected clinical products. Finally, we address the current limitations and future directions, focusing on advanced materials, improved delivery strategies, personalized medicine approaches, combination therapies, and translational opportunities. This review underscores the potential of injectable hydrogels as versatile platforms for cartilage and bone regeneration and highlights the need for further research to optimize their therapeutic efficacy and clinical translation.

Downloads

Download data is not yet available.

References

Briggs AM, Cross MJ, Hoy DG, Sànchez-Riera L, Blyth FM, Woolf AD, et al. Musculoskeletal health conditions represent a global threat to healthy aging: A report for the 2015 World Health Organization World Report on ageing and health. Gerontologist. 2016;56 Suppl 2:S243-55. doi: 10.1093/geront/gnw002. PMID: 26994264

Musculoskeletal Health. Available from: https://www.who.int/news-room/fact-sheets/detail/musculoskeletal-conditions [Last accessed on 2025 Jan 02].

Focsa MA, Florescu S, Gogulescu A. Emerging strategies in cartilage repair and joint preservation. Medicina. 2025;61:24. doi: 10.3390/ medicina61010024

Solovev I, Sergeeva A, Geraskina A, Shaposhnikov M, Vedunova M, Borysova O, et al. Aging and physiological barriers: Mechanisms of barrier integrity changes and implications for age-related diseases. Mol Biol Rep. 2024;51:917. doi: 10.1007/s11033-024-09833-7

Liu S, Manshaii F, Chen J, Wang X, Wang S, Yin J, et al. Unleashing the potential of electroactive hybrid biomaterials and self-powered systems for bone therapeutics. Nano-Micro Lett. 2024;17:44. doi: 10.1007/ s40820-024-01536-9

Fang L, Lin X, Xu R, Liu L, Zhang Y, Tian F, et al. Advances in the development of gradient scaffolds made of nano-micromaterials for musculoskeletal tissue regeneration. Nano-Micro Lett. 2024;17:75. doi: 10.1007/s40820-024-01581-4

Damme LV, Blondeel P, Vlierberghe SV. Injectable biomaterials as minimal invasive strategy towards soft tissue regeneration-an overview. J Phys Mater. 2021;4:022001. doi: 10.1088/2515-7639/abd4f3

Hou M, Wang X, Yue O, Zheng M, Zhang H, Liu X. Development of a multifunctional injectable temperature-sensitive gelatin-based adhesive double-network hydrogel. Biomater Adv. 2022;134:112556. doi: 10.1016/j.msec.2021.112556

Karami P, Laurent A, Philippe V, Applegate LA, Pioletti DP, Martin R. Cartilage repair: Promise of adhesive orthopedic hydrogels. Int J Mol Sci. 2024;25:9984. doi: 10.3390/ijms25189984

Battafarano G, Rossi M, De Martino V, Marampon F, Borro L, Secinaro A, et al. Strategies for bone regeneration: From graft to tissue engineering. Int J Mol Sci. 2021;22:1128. doi: 10.3390/ijms22031128

Alkhursani SA, Ghobashy MM, Al-Gahtany SA, Meganid AS, Abd El-Halim SM, Ahmad Z, et al. Application of nano-inspired scaffolds-based biopolymer hydrogel for bone and periodontal tissue regeneration. Polymers. 2022;14:3791. doi: 10.3390/polym14183791

Aslam Khan MU, Aslam MA, Bin Abdullah MF, Stojanović GM. Current perspectives of protein in bone tissue engineering: bone structure, ideal scaffolds, fabrication techniques, applications, scopes, and future advances. ACS Appl Bio Mater. 2024;7:5082-106. doi: 10.1021/acsabm.4c00362

Roseti L, Parisi V, Petretta M, Cavallo C, Desando G, Bartolotti I, et al. Scaffolds for bone tissue engineering: State of the art and new perspectives. Mater Sci Eng C. 2017;78:1246-62. doi: 10.1016/j. msec.2017.05.017

Reddy MS, Ponnamma D, Choudhary R, Sadasivuni KK. A comparative review of natural and synthetic biopolymer composite scaffolds. Polymers. 2021;13:1105. doi: 10.3390/polym13071105

Mredha MT, Jeon I. Biomimetic anisotropic hydrogels: Advanced fabrication strategies, extraordinary functionalities, and broad applications. Prog Mater Sci. 2022;124:100870. doi: 10.1016/j. pmatsci.2021.100870

Kondiah PJ, Choonara YE, Kondiah PP, Marimuthu T, Kumar P, Du Toit LC, et al. A review of injectable polymeric hydrogel systems for application in bone tissue engineering. Molecules. 2016;21:1580. doi: 10.3390/molecules21111580

Mukasheva F, Adilova L, Dyussenbinov A, Yernaimanova B, Abilev M, Akilbekova D. Optimizing scaffold pore size for tissue engineering: Insights across various tissue types. Front Bioeng Biotechnol. 2024;12:1444986. doi: 10.3389/fbioe.2024.1444986

Gholap AD, Rojekar S, Kapare HS, Vishwakarma N, Raikwar S, Garkal A, et al. Chitosan scaffolds: Expanding horizons in biomedical applications. Carbohydr Polym. 2024;323:121394. doi: 10.1016/j. carbpol.2023.121394

Baniasadi H, Abidnejad R, Fazeli M, Lipponen J, Niskanen J, Kontturi E, et al. Innovations in hydrogel-based manufacturing: A comprehensive review of direct ink writing technique for biomedical applications. Adv Colloid Interface Sci. 2024;324:103095. doi: 10.1016/j.cis.2024.103095

Guo X, Li J, Wu Y, Xu L. Recent advancements in hydrogels as novel tissue engineering scaffolds for dental pulp regeneration. Int J Biol Macromol. 2024;264:130708. doi: 10.1016/j.ijbiomac.2024.130708

Yao MX, Zhang YF, Liu W, Wang HC, Ren C, Zhang YQ, et al. Cartilage tissue healing and regeneration based on biocompatible materials: A systematic review and bibliometric analysis from 1993 to 2022. Front Pharmacol. 2024;14:1276849. doi: 10.3389/fphar.2023.1276849

Yang X, Huang C, Wang H, Yang K, Huang M, Zhang W, et al. Multifunctional nanoparticle-loaded injectable alginate hydrogels with deep tumor penetration for enhanced chemo-immunotherapy of cancer. ACS Nano. 2024;18:18604-21. doi: 10.1021/acsnano.4c04766

Tian Y, Zhang R, Cui J, Zhu Y, Sun M, Hamley IW, et al. An injectable antibacterial hydrogel with bacterial-targeting properties for subcutaneous suppuration treatment. Chem Eng J. 2024;488:151137. doi: 10.1016/j.cej.2024.151137

Li A, Ma B, Hua S, Ping R, Ding L, Tian B, et al. Chitosan-based injectable hydrogel with multifunction for wound healing: A critical review. Carbohydr Polym. 2024;333:121952. doi: 10.1016/j. carbpol.2024.121952

Li S, Li X, Xu Y, Fan C, Li ZA, Zheng L, et al. Collagen fibril-like injectable hydrogels from self-assembled nanoparticles for promoting wound healing. Bioactive Mater. 2024;32:149-63. doi: 10.1016/j. bioactmat.2023.09.012

Cheng Y, Zhang H, Wei H, Yu CY. Injectable hydrogels as emerging drug-delivery platforms for tumor therapy. Biomater Sci. 2024;12:1151-70. doi: 10.1039/D3BM01840G

Zhang Y, Chen J, Sun Y, Wang M, Liu H, Zhang W. Endogenous tissue engineering for chondral and osteochondral regeneration: Strategies and mechanisms. ACS Biomater Sci Eng. 2024;10:4716-39. doi: 10.1021/ acsbiomaterials.4c00603

Hameed H, Faheem S, Paiva-Santos AC, Sarwar HS, Jamshaid M. A comprehensive review of hydrogel-based drug delivery systems: Classification, properties, recent trends, and applications. AAPS PharmSciTech. 2024;25:64. doi: 10.1208/s12249-024-02786-x

Mohammadi AT, Taheri SA, Karamouz M, Sarhaddi R. Rising Innovations: Revolutionary Medical and Dental Breakthroughs Revolutionizing the Healthcare Field. Sweden: Nobel Sciences; 2024.

García-Fernández L, Olmeda-Lozano M, Benito-Garzón L, Pérez-Caballer A, San Román J, Vázquez-Lasa B. Injectable hydrogel-based drug delivery system for cartilage regeneration. Mater Sci Eng C. 2020;110:110702. doi: 10.1016/j.msec.2020.110702

Ho TC, Chang CC, Chan HP, Chung TW, Shu CW, Chuang KP, et al. Hydrogels: Properties and applications in biomedicine. Molecules. 2022;27:2902. doi: 10.3390/molecules27092902

Maji S, Lee H. Engineering hydrogels for the development of three-dimensional in vitro models. Int J Mol Sci. 2022;23:2662. doi: 10.3390/ ijms23052662

Saghazadeh S, Rinoldi C, Schot M, Kashaf SS, Sharifi F, Jalilian E, et al. Drug delivery systems and materials for wound healing applications. Adv Drug Deliv Rev. 2018;127:138-66. doi: 10.1016/j.addr.2018.04.008

Khan F, Atif M, Haseen M, Kamal S, Khan MS, Shahid S, et al. Synthesis, classification and properties of hydrogels: Their applications in drug delivery and agriculture. J Mater Chem B. 2022;10:170-203. doi: 10.1039/D1TB01345A

Yang J, Chen Y, Zhao L, Zhang J, Luo H. Constructions and properties of physically cross-linked hydrogels based on natural polymers. Polym Rev. 2023;63:574-612. doi: 10.1080/15583724.2022.2137525

Gao Y, Peng K, Mitragotri S. Covalently crosslinked hydrogels via step-growth reactions: crosslinking chemistries, polymers, and clinical impact. Adv Mater. 2021;33:2006362. doi: 10.1002/adma.202006362

Rizzo F, Kehr NS. Recent advances in injectable hydrogels for controlled and local drug delivery. Adv Healthc Mater. 2021;10:2001341. doi: 10.1002/adhm.202001341

Bertsch P, Diba M, Mooney DJ, Leeuwenburgh SC. Self-healing injectable hydrogels for tissue regeneration. Chem Rev. 2023;123:834-73. doi: 10.1021/acs.chemrev.2c00179

Cao H, Duan L, Zhang Y, Cao J, Zhang K. Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Sig Transduct Target Ther. 2021;6:1-31. doi: 10.1038/s41392- 021-00830-x

Correia CR, Moreira-Teixeira LS, Moroni L, Reis RL, van Blitterswijk CA, Karperien M, et al. Chitosan scaffolds containing hyaluronic acid for cartilage tissue engineering. Tissue Eng Part C Methods. 2011;17:717-30. doi: 10.1089/ten.tec.2010.0467

Gupta RC, Lall R, Srivastava A, Sinha A. Hyaluronic acid: Molecular mechanisms and therapeutic trajectory. Front Vet Sci. 2019;6:192.

doi: 10.3389/fvets.2019.00192

Fan D, Liu Y, Wang Y, Wang Q, Guo H, Cai Y, et al. 3D printing of bone and cartilage with polymer materials. Front Pharmacol. 2022;13:1044726. doi: 10.3389/fphar.2022.1044726

Zhao X, Hu DA, Wu D, He F, Wang H, Huang L, et al. Applications of biocompatible scaffold materials in stem cell-based cartilage tissue engineering. Front Bioeng Biotechnol. 2021;9:603444. doi: 10.3389/ fbioe.2021.603444. PMID: 33842441

Wei W, Ma Y, Yao X, Zhou W, Wang X, Li C, et al. Advanced hydrogels for the repair of cartilage defects and regeneration. Bioact Mater. 2020;6:998-1011. doi: 10.1016/j.bioactmat.2020.09.030. PMID: 33102942

Wu J, Chen Q, Deng C, Xu B, Zhang Z, Yang Y, et al. Exquisite design of injectable hydrogels in cartilage repair. Theranostics. 2020;10:9843- 64. doi: 10.7150/thno.46450. PMID: 32863963

Liu M, Zeng X, Ma C, Yi H, Ali Z, Mou X, et al. Injectable hydrogels for cartilage and bone tissue engineering. Bone Res. 2017;5:17014. doi: 10.1038/boneres.2017.14

Liu X, Sun S, Wang N, Kang R, Xie L, Liu X. Therapeutic application of hydrogels for bone-related diseases. Front Bioeng Biotechnol. 2022;10:998988. doi: 10.3389/fbioe.2022.998988

De Giorgio G, Matera B, Vurro D, Manfredi E, Galstyan V, Tarabella G, et al. Silk fibroin materials: Biomedical applications and perspectives. Bioengineering. 2024;11:167. doi: 10.3390/bioengineering11020167

Janmohammadi M, Nazemi Z, Salehi AO, Seyfoori A, John JV, Nourbakhsh MS, et al. Cellulose-based composite scaffolds for bone tissue engineering and localized drug delivery. Bioactive Mater. 2023;20:137-63. doi: 10.1016/j.bioactmat.2022.05.018

Deng J, Song Q, Liu S, Pei W, Wang P, Zheng L, et al. Advanced applications of cellulose-based composites in fighting bone diseases. Compos Part B Eng. 2022;245:110221. doi: 10.1016/j. compositesb.2022.110221

Shang F, Yu Y, Liu S, Ming L, Zhang Y, Zhou Z, et al. Advancing application of mesenchymal stem cell-based bone tissue regeneration. Bioactive Mater. 2021;6:666-83. doi: 10.1016/j.bioactmat.2020.08.014

Kazemian A. Evaluation of the Effectiveness of 3D Bone Matrices Osteoinduction by using in vitro and in vivo Models. [Thesis]. University of Leicester; 2024. Available from: https://figshare.le.ac.uk/ articles/thesis/evaluation_of_the_effectiveness_of_3d_bone_matrices_ osteoinduction_by_using_in_vitro_and_in_vivo_models_/25019765/1 [Last accessed on 2025 Jan 19].

Shi C, Yuan Z, Han F, Zhu C, Li B. Polymeric biomaterials for bone regeneration. Ann Joint. 2016;1:27. doi: 10.21037/aoj.2016.11.02

Filippi M, Born G, Chaaban M, Scherberich A. Natural polymeric scaffolds in bone regeneration. Front Bioeng Biotechnol. 2020;8:474. doi: 10.3389/fbioe.2020.00474. PMID: 32509754

Huang B, Li P, Chen M, Peng L, Luo X, Tian G, et al. Hydrogel composite scaffolds achieve recruitment and chondrogenesis in cartilage tissue engineering applications. J Nanobiotechnol. 2022;20:1-17. doi: 10.1186/s12951-021-01230-7

Fu L, Li L, Bian Q, Xue B, Jin J, Li J, et al. Cartilage-like protein hydrogels engineered via entanglement. Nature. 2023;618:740-7. doi: 10.1038/s41586-023-06037-0

Shan B, Wu F. Hydrogel‐based growth factor delivery platforms: Strategies and recent advances. Adv Mater. 2024;36:2210707. doi: 10.1002/adma.202210707

Van Vlierberghe S, Dubruel P, Schacht E. Biopolymer-based hydrogels as scaffolds for tissue engineering applications: A review. Biomacromolecules. 2011;12:1387-408. doi: 10.1021/bm200083n

Lee JH. Injectable hydrogels delivering therapeutic agents for disease treatment and tissue engineering. Biomater Res. 2018;22:27. doi: 10.1186/s40824-018-0138-6

Cui ZK, Kim S, Baljon JJ, Wu BM, Aghaloo T, Lee M. Microporous methacrylated glycol chitosan-montmorillonite nanocomposite hydrogel for bone tissue engineering. Nat Commun. 2019;10:3523. doi: 10.1038/s41467-019-11511-3

Utech S, Boccaccini AR. A review of hydrogel-based composites for biomedical applications: Enhancement of hydrogel properties by addition of rigid inorganic fillers. J Mater Sci. 2016;51:271-310. doi: 10.1007/s10853-015-9382-5

Li J, Li W, Kong M, Li Z, Yang T, Wang Q, et al. Self-healing hybrid hydrogels with sustained bioactive components release for guided bone regeneration. J Nanobiotechnol. 2023;21:62. doi: 10.1186/s12951-023- 01811-8

Li X, Li X, Yang J, Lin J, Zhu Y, Xu X, et al. Living and injectable porous hydrogel microsphere with paracrine activity for cartilage regeneration. Small. 2023;19:2207211. doi: 10.1002/smll.202207211

He H, Li H, Pu A, Li W, Ban K, Xu L. Hybrid assembly of polymeric nanofiber network for robust and electronically conductive hydrogels. Nat Commun. 2023;14:759. doi: 10.1038/s41467-023-36438-8

Sun S, Cui Y, Yuan B, Dou M, Wang G, Xu H, et al. Drug delivery systems based on polyethylene glycol hydrogels for enhanced bone regeneration. Front Bioeng Biotechnol. 2023;11:1117647. doi: 10.3389/ fbioe.2023.1117647

Wu M, Liu H, Li D, Zhu Y, Wu P, Chen Z, et al. Smart‐responsive multifunctional therapeutic system for improved regenerative microenvironment and accelerated bone regeneration via mild photothermal therapy. Adv Sci. 2024;11:2304641. doi: 10.1002/ advs.202304641

Sheikh Z, Najeeb S, Khurshid Z, Verma V, Rashid H, Glogauer M. Biodegradable materials for bone repair and tissue engineering applications. Materials. 2015;8:5744-94. doi: 10.3390/ma8095273

Huebsch N, Lippens E, Lee K, Mehta M, Koshy ST, Darnell MC, et al. Matrix elasticity of void-forming hydrogels controls transplanted-stem-cell-mediated bone formation. Nat Mater. 2015;14:1269-77. doi: 10.1038/nmat4407

Xue X, Hu Y, Deng Y, Su J. Recent advances in design of functional biocompatible hydrogels for bone tissue engineering. Adv Funct Mater. 2021;31:2009432. doi: 10.1002/adfm.202009432

Naahidi S, Jafari M, Logan M, Wang Y, Yuan Y, Bae H, et al. Biocompatibility of hydrogel-based scaffolds for tissue engineering applications. Biotechnol Adv. 2017;35:530-44. doi: 10.1016/j. biotechadv.2017.05.006

Wei H, Cui J, Lin K, Xie J, Wang X. Recent advances in smart stimuli-responsive biomaterials for bone therapeutics and regeneration. Bone Res. 2022;10:17. doi: 10.1038/s41413-021-00180-y

Eslahi N, Abdorahim M, Simchi A. Smart polymeric hydrogels for cartilage tissue engineering: A review on the chemistry and biological functions. Biomacromolecules. 2016;17:3441-63. doi: 10.1021/acs. biomac.6b01235

Afewerki S, Sheikhi A, Kannan S, Ahadian S, Khademhosseini A. Gelatin‐polysaccharide composite scaffolds for 3D cell culture and tissue engineering: Towards natural therapeutics. Bioeng Transl Med. 2019;4:96-115. doi: 10.1002/btm2.10124

Wang MO, Vorwald CE, Dreher ML, Mott EJ, Cheng M, Cinar A, et al. Evaluating 3D‐printed biomaterials as scaffolds for vascularized bone tissue engineering. Adv Mater. 2015;27:138-44. doi: 10.1002/ adma.201403943

Annabi N, Nichol JW, Zhong X, Ji C, Koshy S, Khademhosseini A, et al. Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Eng Part B Rev. 2010;16:371-83. doi: 10.1089/ten. teb.2009.0639

Wang H, Heilshorn SC. Adaptable hydrogel networks with reversible linkages for tissue engineering. Adv Mater. 2015;27:3717-36. doi: 10.1002/adma.201501558

Zhu L, Luo D, Liu Y. Effect of the nano/microscale structure of biomaterial scaffolds on bone regeneration. Int J Oral Sci. 2020;12:6. doi: 10.1038/s41368-020-0073-y

Hwang CM, Sant S, Masaeli M, Kachouie NN, Zamanian B, Lee SH, et al. Fabrication of three-dimensional porous cell-laden hydrogel for tissue engineering. Biofabrication. 2010;2:035003. doi: 10.1088/1758- 5082/2/3/035003

Kim Y, Zharkinbekov Z, Raziyeva K, Tabyldiyeva L, Berikova K, Zhumagul D, et al. Chitosan-based biomaterials for tissue regeneration. Pharmaceutics. 2023;15:807. doi: 10.3390/pharmaceutics15030807

Mo X, Zhang D, Liu K, Zhao X, Li X, Wang W. Nano-hydroxyapatite composite scaffolds loaded with bioactive factors and drugs for bone tissue engineering. Int J Mol Sci. 2023;24:1291. doi: 10.3390/ ijms24021291

Zhao Y, Lin Z, Liu W, Piao M, Li J, Zhang H. Controlled release of growth factor from heparin embedded poly(aldehyde guluronate) hydrogels and its effect on vascularization. Gels. 2023;9:589. doi: 10.3390/gels9070589

Wang P, Berry D, Moran A, He F, Tam T, Chen L, et al. Controlled growth factor release in 3D-printed hydrogels. Adv Healthc Mater. 2020;9:e1900977. doi: 10.1002/adhm.201900977. PMID: 31697028

Szwed-Georgiou A, Płociński P, Kupikowska-Stobba B, Urbaniak MM, Rusek-Wala P, Szustakiewicz K, et al. Bioactive materials for bone regeneration: Biomolecules and delivery systems. ACS Biomater Sci Eng. 2023;9:5222-54. doi: 10.1021/acsbiomaterials.3c00609

Li Y, Zhu J, Zhang X, Li Y, Zhang S, Yang L, et al. Drug-delivery nanoplatform with synergistic regulation of angiogenesis-osteogenesis coupling for promoting vascularized bone regeneration. ACS Appl Mater Interfaces. 2023;15:17543-61. doi: 10.1021/acsami.2c23107

Gu Z, Wang J, Fu Y, Pan H, He H, Gan Q, et al. Smart biomaterials for articular cartilage repair and regeneration. Adv Funct Mater. 2023;33:2212561. doi: 10.1002/adfm.202212561

Jafernik K, Ładniak A, Blicharska E, Czarnek K, Ekiert H, Wiącek AE, et al. Chitosan-based nanoparticles as effective drug delivery systems-a review. Molecules. 2023;28:1963. doi: 10.3390/molecules28041963

Wang L, Zhao Z, Dong J, Li D, Dong W, Li H, et al. Mussel-inspired multifunctional hydrogels with adhesive, self-healing, antioxidative, and antibacterial activity for wound healing. ACS Appl Mater Interfaces. 2023;15:16515-25. doi: 10.1021/acsami.3c01065

Joyce K, Fabra GT, Bozkurt Y, Pandit A. Bioactive potential of natural biomaterials: Identification, retention and assessment of biological properties. Sig Transduct Target Ther. 2021;6:1-28. doi: 10.1038/ s41392-021-00512-8

Mano JF, Silva GA, Azevedo HS, Malafaya PB, Sousa RA, Silva SS, et al. Natural origin biodegradable systems in tissue engineering and regenerative medicine: Present status and some moving trends. J R Soc Interface. 2007;4:999-1030. doi: 10.1098/rsif.2007.0220

Bao W, Li M, Yang Y, Wan Y, Wang X, Bi N, et al. Advancements and frontiers in the high performance of natural hydrogels for cartilage tissue engineering. Front Chem. 2020;8:53. doi: 10.3389/fchem.2020.00053

Chen J, Yang J, Wang L, Zhang X, Heng BC, Wang DA, et al. Modified hyaluronic acid hydrogels with chemical groups that facilitate adhesion to host tissues enhance cartilage regeneration. Bioactive Mater. 2021;6:1689-98. doi: 10.1016/j.bioactmat.2020.11.020

Zarrintaj P, Manouchehri S, Ahmadi Z, Saeb MR, Urbanska AM, Kaplan DL, et al. Agarose-based biomaterials for tissue engineering. Carbohydr Polym. 2018;187:66-84. doi: 10.1016/j.carbpol.2018.01.060

Qamar S, Karim S, Aslam S, Jahangeer M, Nelofer R, Nadeem AA, et al. Alginate-based bio-nanohybrids with unique properties for biomedical applications. Starch-Stärke. 2024;76:2200100. doi: 10.1002/star.202200100

Kudiyarasu S, Karuppan Perumal MK, Rajan Renuka R, Manickam Natrajan P. Chitosan composite with mesenchymal stem cells: Properties, mechanism, and its application in bone regeneration. Int J Biol Macromol. 2024;275:133502. doi: 10.1016/j.ijbiomac.2024.133502

Li S, Dan X, Chen H, Li T, Liu B, Ju Y, et al. Developing fibrin-based biomaterials/scaffolds in tissue engineering. Bioactive Mater. 2024;40:597-623. doi: 10.1016/j.bioactmat.2024.08.006

Hacker MC, Nawaz HA. Multi-functional macromers for hydrogel design in biomedical engineering and regenerative medicine. Int J Mol Sci. 2015;16:27677-706. doi: 10.3390/ijms161126056

Bercea M. Recent advances in poly(vinyl alcohol)-based hydrogels. Polymers. 2024;16:2021. doi: 10.3390/polym16142021

Malikmammadov E, Tanir TE, Kiziltay A, Hasirci V, Hasirci N. PCL and PCL-based materials in biomedical applications. J Biomater Sci Polym Ed. 2018;29:863-93. doi: 10.1080/09205063.2017.1394711. PMID: 29053081

Arkaban H, Barani M, Akbarizadeh MR, Pal Singh Chauhan N, Jadoun S, Dehghani Soltani M, et al. Polyacrylic acid nanoplatforms: Antimicrobial, tissue engineering, and cancer theranostic applications. Polymers. 2022;14:1259. doi: 10.3390/polym14061259

Luckanagul JA, Alcantara KP, Bulatao BP, Wong TW, Rojsitthisak P, Rojsitthisak P. Thermo-responsive polymers and their application as smart biomaterials. In: Kim JC, Alle M, Husen A, editors. Smart Nanomaterials in Biomedical Applications. Cham: Springer International Publishing; 2021. p. 291-343. doi: 10.1007/978-3-030- 84262-8_11

Cheng X, Xie Q, Sun Y. Advances in nanomaterial-based targeted drug delivery systems. Front Bioeng Biotechnol. 2023;11:1177151. doi: 10.3389/fbioe.2023.1177151

Guo B, Liang Y, Dong R. Physical dynamic double-network hydrogels as dressings to facilitate tissue repair. Nat Protoc. 2023;18:3322-54. doi: 10.1038/s41596-023-00878-9

Nguyen HM, Ngoc Le TT, Nguyen AT, Thien Le HN, Pham TT. Biomedical materials for wound dressing: Recent advances and applications. RSC Adv. 2023;13:5509-28. doi: 10.1039/ D2RA07673J

Feng W, Wang Z. Tailoring the swelling-shrinkable behavior of hydrogels for biomedical applications. Adv Sci. 2023;10:2303326. doi: 10.1002/advs.202303326

Wang Z, Ye Q, Yu S, Akhavan B. Poly ethylene glycol (PEG)‐based hydrogels for drug delivery in cancer therapy: A comprehensive review. Adv Healthc Mater. 2023;12:2300105. doi: 10.1002/ adhm.202300105

Li Q, Zhang S, Du R, Yang Y, Liu Y, Wan Z, et al. Injectable self-healing adhesive natural glycyrrhizic acid bioactive hydrogel for bacteria-infected wound healing. ACS Appl Mater Interfaces. 2023;15:17562-76. doi: 10.1021/acsami.2c23231

Dattilo M, Patitucci F, Prete S, Parisi OI, Puoci F. Polysaccharide-based hydrogels and their application as drug delivery systems in cancer treatment: A review. J Funct Biomater. 2023;14:55. doi: 10.3390/jfb14020055

Thang NH, Chien TB, Cuong DX. Polymer-based hydrogels applied in drug delivery: An overview. Gels. 2023;9:523. doi: 10.3390/ gels9070523

Ghandforoushan P, Alehosseini M, Golafshan N, Castilho M, Dolatshahi-Pirouz A, Hanaee J, et al. Injectable hydrogels for cartilage and bone tissue regeneration: A review. Int J Biol Macromol. 2023;246:125674. doi: 10.1016/j.ijbiomac.2023.125674

Published

07-04-2025

How to Cite

MUJIBULLAH SHEIKH, et al. “INJECTABLE HYDROGELS FOR CARTILAGE AND BONE REGENERATION: MATERIAL PROPERTIES, DELIVERY STRATEGIES, AND CLINICAL APPLICATIONS”. Asian Journal of Pharmaceutical and Clinical Research, vol. 18, no. 4, Apr. 2025, pp. 70-81, doi:10.22159/ajpcr.2025v18i4.54016.

Issue

Section

Review Article(s)