CHITOSAN-BASED NON-PARTICULATE VACCINE DELIVERY, CHALLENGES, AND FUTURE DIRECTIONS

Authors

  • ARSHIYA SAIYYAD Department of Pharmaceutics, Datta Meghe College of Pharmacy DMIHER (Deemed to be University), Wardha, Maharashtra, India.
  • POONAM I LAL Department of Pharmaceutics, Datta Meghe College of Pharmacy DMIHER (Deemed to be University), Wardha, Maharashtra, India.

DOI:

https://doi.org/10.22159/ajpcr.2025v18i6.54192

Keywords:

Chitosan,, Non-particulate vaccine delivery, Vaccine administration, Drug delivery systems, Vaccine efficacy

Abstract

Vaccination, a cornerstone of modern medicine, faces challenges with traditional injection methods, including pain, safety concerns, and cold-chain distribution issues. This review explores the potential of chitosan-based non-particulate vaccine delivery systems as a patient-friendly and effective alternative. Chitosan, a biocompatible and biodegradable polysaccharide, offers inherent mucoadhesive properties and a positive charge, facilitating interaction with mucosal surfaces and negatively charged antigens. Non-particulate systems (solutions, films, and hydrogels) offer advantages such as simplified manufacturing, antigen stability, and controlled release. This review focuses on the properties of chitosan relevant to non-particulate vaccine delivery, including physicochemical characteristics (molecular weight, degree of deacetylation, viscosity) and biological properties (biocompatibility, biodegradability, antimicrobial/antiviral potential). It examines the formulation considerations for chitosan-based hydrogels, films, and solutions, highlighting their mechanisms of action and applications in mucosal vaccine administration. The review further addresses current challenges, such as dosage control and long-term stability, and discusses future opportunities for innovation in this rapidly evolving field, with an emphasis on recent trends in nasal and oral vaccine delivery.

Downloads

Download data is not yet available.

References

Immunization Coverage. Available from: https://www.who.int/news-room/fact-sheets/detail/immunization-coverage [Last accessed on 2024 Dec 28].

Cheong JK, Tang YC, Zhou L, Cheng H, Too HP. Advances in quantifying circulatory microRNA for early disease detection. Curr Opin Biotechnol. 2022;74:256-62. doi: 10.1016/j.copbio.2021.12.007, PMID 34999430

Choi S, Kim JY, Kang H, Daehyun K, Rhee J, Choi SJ, et al. Effect of oxygen content on current stress-induced instability in bottom-gate amorphous InGaZnO Thin-Film Transistors. Materials (Basel). 2019;12(19):3149. doi: 10.3390/ma12193149, PMID 31561545

Khalaf EM, Abood NA, Atta RZ, Ramírez-Coronel AA, Alazragi R, Parra RM, et al. Recent progressions in biomedical and pharmaceutical applications of chitosan nanoparticles: A comprehensive review. Int J Biol Macromol. 2023;231:123354. doi: 10.1016/j.ijbiomac.2023.123354, PMID 36681228

Hamidi M, Azadi A, Rafiei P. Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev. 2008;60(15):1638-49. doi: 10.1016/j. addr.2008.08.002, PMID 18840488

Vyas SP, Khar RK. Targeted and Controlled Drug Delivery: Novel Carrier Systems. Darya Ganj: CBS Publishers Distributors; 2004.

Zundler S, Neurath MF. Pathogenic T cell subsets in allergic and chronic inflammatory bowel disorders. Immunol Rev. 2017;278(1):263-76. doi: 10.1111/imr.12544, PMID 28658546

Peptu C, Humelnicu AC, Rotaru R, Fortuna MU, Patras X, Teodorescu M, et al. Chitosan-Based Drug Delivery Systems. United States: John Wiley and Sons, Limited.; 2019. p. 259-89.

Shutkov IA, Okulova YN, Mazur DM, Melnichuk NA, Babkov DA, Sokolova EV, et al. New organometallic Ru(II) compounds with lonidamine motif as antitumor agents. Pharmaceutics. 2023;15(5):1366. doi: 10.3390/pharmaceutics15051366, PMID 37242608

Quach HQ, Ovsyannikova IG, Grill DE, Warner ND, Poland GA, Kennedy RB. Seroprevalence of measles antibodies in a highly MMR-vaccinated population. Vaccines. 2022;10(11):1859. doi: 10.3390/ vaccines10111859, PMID 36366367

Berger J, Reist M, Mayer JM, Felt O, Gurny R. Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications. Eur J Pharm Biopharm. 2004;57(1):35-52. doi: 10.1016/S0939-6411(03)00160-7, PMID 14729079

Daungkumsawat J, Okhawilai M, Charoensuk K, Prastowo RB, Jubsilp C, Karagiannidis P, et al. Development of lightweight and high-performance ballistic helmet based on poly(benzoxazine-co-urethane) matrix reinforced with aramid fabric and multi-walled carbon nanotubes. Polymers (Basel). 2020;12(12):2897. doi: 10.3390/ polym12122897, PMID 33287286

Rinaudo M. Chitin and chitosan: Properties and applications. Prog Polym Sci. 2006;31(7):603-32. doi: 10.1016/j.progpolymsci.2006.06.001

Golshani S, Vatanara A, Amin M. Recent advances in oral mucoadhesive drug delivery. J Pharm Pharm Sci. 2022;25:201-17. doi: 10.18433/ jpps32705, PMID 35714375

Parhi R. Drug delivery applications of chitin and chitosan: A review. Environ Chem Lett. 2020;18(3):577-94. doi: 10.1007/s10311-020- 00963-5

Porta GD, Campardelli R, Falco N, Reverchon E. PLGA microdevices for retinoids sustained release produced by supercritical emulsion extraction: Continuous versus batch operation layouts. J Pharm Sci. 2011;100(10):4357-67. doi: 10.1002/jps.22647, PMID 21638283

Mei J, Ding Z, Sun X, Mo S, Zheng X, Li Z. A solvent-template ethyl cellulose-polydimethylsiloxane crosslinking sponge for rapid and efficient oil adsorption. Int J Biol Macromol. 2023;244:125399. doi: 10.1016/j.ijbiomac.2023.125399, PMID 37331535

Rajasekharan SK, Byun J, Lee J. Inhibitory effects of deoxynivalenol on pathogenesis of Candida albicans. J Appl Microbiol. 2018;125(5):1266-75. doi: 10.1111/jam.14032, PMID 29953693

Sun W, Liu W, Wu Z, Chen H. Chemical surface modification of polymeric biomaterials for biomedical applications. Macromol Rapid Commun. 2020;41(8):e1900430. doi: 10.1002/marc.201900430, PMID 32134540

Agarwal H, Shanmugam VK. Synthesis and optimization of zinc oxide nanoparticles using Kalanchoe pinnata towards the evaluation of its anti-inflammatory activity. J Drug Deliv Sci Technol. 2019;54:101291. doi: 10.1016/j.jddst.2019.101291

Fan R, Cheng Y, Wang R, Zhang T, Zhang H, Li J, et al. Thermosensitive hydrogels and advances in their application in disease therapy. Polymers. 2022;14(12):2379. doi: 10.3390/polym14122379, PMID 35745954

Li X, Kong X, Wang X, Shi S, Guo G, Luo F, et al. Gel-sol-gel thermo-gelation behavior study of chitosan-inorganic phosphate solutions. Eur J Pharm Biopharm. 2010;75(3):388-92. doi: 10.1016/j.ejpb.2010.04.015, PMID 2043455723. Erfani A, Diaz AE, Doyle PS. Hydrogel-enabled, local administration and combinatorial delivery of immunotherapies for cancer treatment. Mater Today. 2023;65:227-43. doi: 10.1016/j.mattod.2023.03.006

Muñoz NM, Williams M, Dixon K, Dupuis C, McWatters A, Avritscher R, et al. Influence of injection technique, drug formulation and tumor microenvironment on intratumoral immunotherapy delivery and efficacy. J Immunother Cancer. 2021;9(2):e001800. doi: 10.1136/ jitc-2020-001800, PMID 33589526

Zhang J, Chen C, Li A, Jing W, Sun P, Huang X, et al. Immunostimulant hydrogel for the inhibition of malignant glioma relapse post-resection. Nat Nanotechnol. 2021;16(5):538-48. doi: 10.1038/s41565-020- 00843-7, PMID 33526838

Nikjoo D, Van der Zwaan I, Brülls M, Tehler U, Frenning G. Hyaluronic acid hydrogels for controlled pulmonary drug delivery-a particle engineering approach. Pharmaceutics. 2021;13(11):1878. doi: 10.3390/ pharmaceutics13111878, PMID 34834293

Ali OA, Lewin SA, Dranoff G, Mooney DJ. Vaccines combined with immune checkpoint antibodies promote cytotoxic T-cell activity and tumor eradication. Cancer Immunol Res. 2016;4(2):95-100. doi: 10.1158/2326-6066.CIR-14-0126, PMID 26669718

Hamman JH. Chitosan based polyelectrolyte complexes as potential carrier materials in drug delivery systems. Mar Drugs. 2010;8(4):1305-22. doi: 10.3390/md8041305, PMID 20479980

Garg U, Chauhan S, Nagaich U, Jain N. Current advances in chitosan nanoparticles based drug delivery and targeting. Adv Pharm Bull. 2019;9(2):195-204. doi: 10.15171/apb.2019.023, PMID 31380245

Mikušová V, Mikuš P. Advances in chitosan-based nanoparticles for drug delivery. Int J Mol Sci. 2021;22(17):9652. doi: 10.3390/ ijms22179652, PMID 34502560

Liang Y, Zhao X, Ma PX, Guo B, Du Y, Han X. pH-responsive injectable hydrogels with mucosal adhesiveness based on chitosan-grafted-dihydrocaffeic acid and oxidized pullulan for localized drug delivery. J Colloid Interface Sci. 2019;536:224-34. doi: 10.1016/j. jcis.2018.10.056, PMID 30368094

Peers S, Montembault A, Ladavière C. Chitosan hydrogels for sustained drug delivery. J Control Release. 2020;326:150-63. doi: 10.1016/j. jconrel.2020.06.012, PMID 32562854

Crowe LK, Norris JA, Hoffman PR. Training caregivers to facilitate communicative participation of preschool children with language impairment during storybook reading. J Commun Disord. 2004;37(2):177-96. doi: 10.1016/j.jcomdis.2003.09.001, PMID 15013732

Poet TS, Corley RA, Thrall KD, Edwards JA, Tanojo H, Weitz KK, et al. Assessment of the percutaneous absorption of trichloroethylene in rats and humans using MS/MS real-time breath analysis and physiologically based pharmacokinetic modeling. Toxicol Sci. 2000;56(1):61-72. doi: 10.1093/toxsci/56.1.61, PMID 10869454

Koteeswaran K, Natarajan P. Comparitive study of dendritic cell vaccine preparation with presence and absence of Malpighia emarginata fruit extract using tumor RNA transfection method: A promising approach for prostate cancer. Asian J Pharm Clin Res. 2023;16:1-6. doi: 10.22159/ ajpcr.2023.v16i7.47374

Dunn EJ, Markert R, Hayes K, McCollom J, Bains L, Kahlon D, et al. The influence of palliative care consultation on health-care resource utilization during the last 2 months of life: Report from an integrated palliative care program and review of the literature. Am J Hosp Palliat Care. 2018;35(1):117-22. doi: 10.1177/1049909116683719, PMID 28273754

Sirvent JM, González J. Reply to ‘antibiotic resistance: Thinking outside the hospital’. Med Intensiva. 2017;41(8):505. doi: 10.1016/j. medin.2017.06.001, PMID 28705635

Menon I, Bagwe P, Gomes KB, Bajaj L, Gala R, Uddin MN, et al. Microneedles: A new generation vaccine delivery system. Micromachines (Basel). 2021;12(4):435. doi: 10.3390/mi12040435, PMID 33919925

Daturpalli S, Knieß RA, Lee CT, Mayer MP. Large rotation of the N-terminal domain of Hsp90 is important for interaction with some but not all client proteins. J Mol Biol. 2017;429(9):1406-23. doi: 10.1016/j. jmb.2017.03.025, PMID 28363677

Schmidt-Kastner R, Guloksuz S, Kietzmann T, Van Os J, Rutten BP. Analysis of GWAS-derived schizophrenia genes for links to ischemia-hypoxia response of the brain. Front Psychiatry. 2020;11:393. doi: 10.3389/fpsyt.2020.00393, PMID 32477182

Kaur B, Thakur N, Goswami M. Microneedles a possible successor technology for TDDS: A patent analysis. Int J Appl Pharm. 2023;15:10-22. doi: 10.22159/ijap.2023v15i2.47076

Duroux G, Robin L, Liu P, Dols E, Mendes MS, Buffière S, et al. Induced circular dichroism from helicoidal nano substrates to porphyrins: The role of chiral self-assembly. Nanoscale. 2023;15(28):12095-104. doi: 10.1039/d3nr02670a, PMID 37424328

Jiang D, Liu XB, Xing WQ, Chen PN, Feng SK, Yan S, et al. Survival impact of the number of lymph nodes dissection in patients receiving neoadjuvant chemotherapy for esophageal squamous cell carcinoma. Dis Esophagus. 2023;36(5):doac082. doi: 10.1093/dote/doac082, PMID 36385581

Vora LK, Sabri AH, McKenna PE, Himawan A, Hutton AR, Detamornrat U, et al. Microneedle-based biosensing. Nat Rev Bioeng. 2023;2(1):64-81. doi: 10.1038/s44222-023-00108-7

Erdem Ö, Ismail EŞ, Akceoglu GA, Saylan Y, Inci F. Recent advances in microneedle-based sensors for sampling, diagnosis and monitoring of chronic diseases. Biosensors (Basel). 2021;11(9):296. doi: 10.3390/ bios11090296, PMID 34562886

Kim YC, Park JH, Prausnitz MR. Microneedles for drug and vaccine delivery. Adv Drug Deliv Rev. 2012;64(14):1547-68. doi: 10.1016/j. addr.2012.04.005, PMID 22575858

Aldawood FK, Andar A, Desai S. A comprehensive review of microneedles: Types, materials, processes, characterizations and applications. Polymers (Basel). 2021;13(16):2815. doi: 10.3390/ polym13162815, PMID 34451353

Rzhevskiy AS, Singh TR, Donnelly RF, Anissimov YG. Microneedles as the technique of drug delivery enhancement in diverse organs and tissues. J Control Release. 2018;270:184-202. doi: 10.1016/j. jconrel.2017.11.048, PMID 29203415

Feng YX, Hu H, Wong YY, Yao X, He ML. Microneedles: An emerging vaccine delivery tool and a prospective solution to the challenges of SARS-CoV-2 mass vaccination. Pharmaceutics. 2023;15(5):1349. doi: 10.3390/pharmaceutics15051349, PMID 37242591

Oliveira C, Teixeira JA, Oliveira N, Ferreira S, Botelho CM. Microneedles’ device: Design, fabrication, and applications. Macromol. 2024;4(2):320-55. doi: 10.3390/macromol4020019

Nguyen TT, Oh Y, Kim Y, Shin Y, Baek SK, Park JH. Progress in microneedle array patch (MAP) for vaccine delivery. Hum Vaccin Immunother. 2021;17(1):316-27. doi: 10.1080/21645515.2020.1767997, PMID 32667239

Zaharoff DA, Rogers CJ, Hance KW, Schlom J, Greiner JW. Chitosan solution enhances both humoral and cell-mediated immune responses to subcutaneous vaccination. Vaccine. 2007;25(11):2085-94. doi: 10.1016/j.vaccine.2006.11.034, PMID 17258843

Sheikh M, Makkad S, Shende S, Deshmukh M. Antimicrobial efficacy of metal-doped titanium dioxide nanoparticles: A comprehensive review. Int J Pharm Investig. 2024;14(4):1042-51. doi: 10.5530/ ijpi.14.4.114

Renu S, Feliciano-Ruiz N, Patil V, Schrock J, Han Y, Ramesh A, et al. Immunity and protective efficacy of mannose conjugated chitosan-based influenza nanovaccine in maternal antibody positive pigs. Front Immunol. 2021;12:584299. doi: 10.3389/fimmu.2021.584299, PMID 33746943

Masimov R, Wasan EK. Chitosan non-particulate vaccine delivery systems. J Pharm Pharm Sci. 2024;27:12921. doi: 10.3389/ jpps.2024.12921, PMID 39114808

Liang X, Zhou J, Wang M, Wang J, Song H, Xu Y, et al. Progress and prospect of polysaccharides as adjuvants in vaccine development. Virulence. 2024;15(1):2435373. doi: 10.1080/21505594.2024.2435373, PMID 39601191

Stefanetti G, Borriello F, Richichi B, Zanoni I, Lay L. Immunobiology of carbohydrates: Implications for novel vaccine and adjuvant design against infectious diseases. Front Cell Infect Microbiol. 2021;11:808005. doi: 10.3389/fcimb.2021.808005, PMID 35118012

Uddin MN, Roni MA. Challenges of storage and stability of mRNA-based COVID-19 vaccines. Vaccines (Basel). 2021;9(9):1033. doi: 10.3390/vaccines9091033, PMID 34579270

Carneiro J, Tedim J, Fernandes SC, Freire CS, Silvestre AJ, Gandini A, et al. Chitosan-based self-healing protective coatings doped with cerium nitrate for corrosion protection of aluminum alloy 2024. Prog Org Coat. 2012;75(1-2):8-13. doi: 10.1016/j.porgcoat.2012.02.012

Nguyen TM, Zhang Y, Pandolfi PP. Virus against virus: A potential treatment for 2019-nCov (SARS-CoV-2) and other RNA viruses. Cell Res. 2020;30(3):189-90. doi: 10.1038/s41422-020-0290-0, PMID 32071427

Upadhyay RK. Drug delivery systems, CNS protection, and the blood brain barrier. BioMed Res Int. 2014;2014:869269. doi: 10.1155/2014/869269, PMID 25136634

Zhang Z, Tsai PC, Ramezanli T, Michniak‐Kohn BB. Polymeric nanoparticles‐based topical delivery systems for the treatmentof dermatological diseases. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2013;5(3):205-18. doi: 10.1002/wnan.1211, PMID 23386536

Hurley LP, Bridges CB, Harpaz R, Allison MA, O’Leary ST, Crane LA, et al. U.S. physicians’ perspective of adult vaccine delivery. Ann Intern Med. 2014;160(3):161. doi: 10.7326/M13-2332, PMID 24658693

Zhu W, Wei T, Xu Y, Jin Q, Chao Y, Lu J, et al. Non-invasive transdermal delivery of biomacromolecules with fluorocarbon-modified chitosan for melanoma immunotherapy and viral vaccines. Nat Commun. 2024;15(1):820. doi: 10.1038/s41467-024-45158-6, PMID 38280876

Gong X, Gao Y, Shu J, Zhang C, Zhao K. Chitosan-based nanomaterial as immune adjuvant and delivery carrier for vaccines. Vaccines (Basel). 2022;10(11):1906. doi: 10.3390/vaccines10111906, PMID 36423002

Parmaksız S, Şenel S. An overview on chitosan-based adjuvant/vaccine delivery systems. In: Jayakumar R, Prabaharan M, editors. Chitosan for biomaterials IV. Vol 1007/12. Cham: Springer International Publishing; 2021. p. 293-379. doi: 10.1007/12_2021_93

Published

07-06-2025

How to Cite

ARSHIYA SAIYYAD, and POONAM I LAL. “CHITOSAN-BASED NON-PARTICULATE VACCINE DELIVERY, CHALLENGES, AND FUTURE DIRECTIONS”. Asian Journal of Pharmaceutical and Clinical Research, vol. 18, no. 6, June 2025, pp. 38-46, doi:10.22159/ajpcr.2025v18i6.54192.

Issue

Section

Review Article(s)