UNVEILING THE CYTOTOXIC POTENTIAL OF HYLOCEREUS COSTARICENSIS (F.A.C. WEBER) BRITTON AND ROSE LEAF: PHYTOCHEMICAL PROFILING AND MOLECULAR DOCKING INSIGHTS
DOI:
https://doi.org/10.22159/ajpcr.2025v18i6.54637Keywords:
Cactaceae, Hylocereus costaricensis, Gas chromatography-mass spectrometry, SwissADME, Brine shrimp lethality bioassayAbstract
Objectives: Hylocereus costaricensis (F.A.C. Weber) Britton and Rose, a member of the Cactaceae family, is a well-known plant for its anticancer properties. This study evaluates the gas chromatography-mass spectrometry (GC-MS) analysis, molecular docking and in vitro anticancer activity of ethanolic (ETH) and aqueous (Aq.) extracts derived from its leaves.
Methods: GC-MS analysis was utilized to screen plant extracts and identify pharmacologically active compounds. The physicochemical and pharmacokinetic properties of n-hexadecanoic acid, octadecanoic acid, and 17-pentatriacontene were analyzed using SwissADME. Molecular docking studies were also conducted using AutoDock software to evaluate the binding interactions of these three phytoconstituents with the glucose regulatory protein 78 (GRP78) receptor. In addition, the brine shrimp lethality bioassay was performed to assess the in vitro cytotoxic activity of the ETH and Aq. extracts.
Results: GC-MS analysis of the ETH extract identified 19 bioactive compounds. Molecular docking showed strong binding of n-hexadecanoic acid, octadecanoic acid, and 17-pentatriacontene to the GRP78 receptor. In vitro cytotoxicity assay revealed dose-dependent effects, with the Aq. extract displayed greater toxicity (LC50: 6.6 μg/mL; mortality: 50±0.94% to 86.66±0.33%) compared to the ETH extract (LC50: 18.57 μg/mL; mortality: 43.33±0.66% to 83.33±0.66%), both showed significant cytotoxicity at higher concentrations (p<0.05, p<0.01).
Conclusion: The bioactive compounds present in H. costaricensis may contribute to its pharmacological properties and hold significant potential for the development of novel therapeutic targets. Among the three studied phytoconstituents, n-hexadecanoic acid exhibited the strongest cytotoxic potential, as indicated by its highest binding affinity in molecular docking analysis.
Downloads
References
Padmavathy K, Kanakarajan S, Karthika S, Selvaraj R, Kamalanathan A. Phytochemical profiling and anticancer activity of dragon fruit Hylocereus undatus extracts against human hepatocellular carcinoma cancer (HepG-2) cells. Int J Pharm Sci Res. 2021;12(5):2770-8.
Madriwala B, Suma B, Jays J. Molecular docking study of hentriacontane for anticancer and antitubercular activity. Int J Chem Res. 2022;16:1-4. doi: 10.22159/ijcr.2022v6i4.208
Hassan BO, Ese SO, Kehinde AJ. Assessment of cytotoxicity, antioxidant and free radical scavenging activities of the ethylacetate extract of Calliandra portoricensis root bark. Int J Pharm Sci R Esearch. 2013;4(5):1-8.
Michael RZ. Evaluation of in vitro anticancer activity of aerial parts of Avicennia alba plant methanolic extract against Hela and MCF-7 cell lines. Asian J Pharm Clin Res. 2021;14(6):73-9. doi: 10.22159/ ajpcr.2021.v14i6.41259
Guimarães DA, De Castro DS, Oliveira FL, Nogueira EM, Silva MA, Teodoro AJ. Pitaya extracts induce growth inhibition and proapoptotic effects on human cell lines of breast cancer via downregulation of estrogen receptor gene expression. Oxid Med Cell Longev. 2017;2017(1):7865073. doi: 10.1155/2017/7865073
Salam HS, Tawfik MM, Elnagar MR, Mohammed HA, Zarka MA, Awad NS. Potential apoptotic activities of Hylocereus undatus peel and pulp extracts in MCF-7 and Caco-2 cancer cell lines. Plants (Basel). 2022;11(17):2192. doi: 10.3390/plants11172192, PMID 36079573
Zhang A, Demain AL. Natural Products: Discovery and Therapeutic Medicine. New Jersey: Humana Press; 2005. p. 382.
Sofowora A, Ogunbodede E, Onayade A. The role and place of medicinal plants in the strategies for disease prevention. Afr J Tradit Complement Altern Med. 2013;10(5):210-29. doi: 10.4314/ajtcam. v10i5.2, PMID 24311829
Abirami K, Swain S, Baskaran V, Venkatesan K, Sakthivel K, Bommayasamy N. Distinguishing three dragon fruit (Hylocereus spp.) species grown in Andaman and Nicobar Islands of India using morphological, biochemical and molecular traits. Sci Rep. 2021;11(1):2894. doi: 10.1038/s41598-021-81682-x, PMID 33536453
Bassiag SK, Aguinaldo KR, Singson ZA, Guzman R. Phytochemical analysis of dragon fruit (Hylocereus Spp.) and Carica Papaya Stems. Research Square [Preprint]; 2023.
Britton NL, Rose JN. The Cactaceae: Descriptions and Illustrations of Plants of the Cactus Family. Washington, DC: Carnegie Institution of Washington; 1923.
Freitas ST, Mitcham EJ. Quality of pitaya fruit (Hylocereus undatus) as influenced by storage temperature and packaging. Sci Agric. 2013;70(4):257-62. doi: 10.1590/S0103-90162013000400006
Mande DD, Kumbhare MR, Surana AR. Phytochemical composition, biological activities and nutritional aspects of Hylocereus undatus: A review. Infect Dis Herbal Med. 2023;4(1):291. doi: 10.4081/ idhm.2023.291
Fidrianny I, Ilham N, Hartati R. Antioxidant profile and phytochemical content of different parts of super red dragon fruit (Hylocereus costaricensis) collected from west Java-Indonesia. Asian J Pharm Clin Res. 2017;10(12):290-4. doi: 10.22159/ajpcr.2017.v10i12.21571
Ritarwan K, Nerdy N. Antibacterial activity of red dragon fruit leaves extract and white dragon fruit leaves extract against meningitis bacterial. Orient J Chem. 2018;34(5):2534-8. doi: 10.13005/ojc/340540
Hendra R, Masdeatresa L, Abdulah R, Haryani Y. Red dragon peel (Hylocereus polyrhizus) as antioxidant source. AIP Conf Proc. 2020;2243:030007.
Nurul S, Asmah R. Variability in nutritional composition and phytochemical properties of red pitaya (Hylocereus polyrhizus) from Malaysia and Australia. Int Food Res J. 2014;21(4):1689-97.
Nishikito DF, Borges AC, Laurindo LF, Otoboni AM, Direito R, Goulart RA, et al. Anti-inflammatory, antioxidant, and other health effects of dragon fruit and potential delivery systems for its bioactive compounds. Pharmaceutics. 2023;15(1):159. doi: 10.3390/ pharmaceutics15010159, PMID 36678789
Gomathi D, Kalaiselvi M, Ravikumar G, Devaki K, Uma C. GC-MS analysis of bioactive compounds from the whole plant ethanolic extract of Evolvulus alsinoides (L.) L. J Food Sci Technol. 2015;52(2):1212-7. doi: 10.1007/s13197-013-1105-9, PMID 25694742
Kavitha R. Phytochemical screening and GC-MS analysis of bioactive compounds present in ethanolic extracts of leaf and fruit of Trichosanthesis dioica roxb. Int J Pharm Sci Res. 2021;12(5):2755-64.
Riyadi P, Sari I, Kurniasih R, Agustini T, Swastawati F, Herawati V, et al. SwissADME predictions of pharmacokinetics and drug-likeness properties of small molecules present in Spirulina platensis. IOP Conf S Earth Environ Sci. 2021;890:012021.
Gaikwad RP. Molecular docking studies of phytochemicals from five medicinal plants against resistance genes protein isolated from MDR Salmonella Typhimurium. Asian J Pharm (AJP). 2023;17(1):114-122.
Khandelwal KR. Practical Pharmacognosy. Pune: Pragati Books Pvt. Ltd.; 2008.
Konappa N, Udayashankar AC, Krishnamurthy S, Pradeep CK, Chowdappa S, Jogaiah S. GC-MS analysis of phytoconstituents from Amomum nilgiricum and molecular docking interactions of bioactive serverogenin acetate with target proteins. Sci Rep. 2020;10(1):16438. doi: 10.1038/s41598-020-73442-0, PMID 33009462
Mukherjee PK. Quality Control and Evaluation of Herbal Drugs: Evaluating Natural Products and Traditional Medicine. Netherlands: Elsevier; 2019.
World Health Organization. Quality Control Methods for Medicinal Plant Materials. Geneva: World Health Organization; 1998.
Mehta S, Kamboj P, Faujdar S, Sawale J, Kalia A. In-vitro antioxidant activity of Cassia occidentalis seeds. Pharmacologyonline. 2010;3:217-24.
Tiwari A, Tiwari A. A comparative study of polyphenolic content in Acacia catechu bark extracts and bibliographic analysis with reference to Guna (Madhya Pradesh), India. Asian J Pharm Clin Res. 2024;17(6):45-50.
Warake RA, Jarag RJ, Dhavale RP, Jarag RR, Lohar NS. Evaluation of in vitro antioxidant, anticancer activities and molecular docking studies of Capparis zeylanica Linn. leaves. Future J Pharm Sci. 2021;7:1-12.
Firdouse S, Ahmed S, Munaim MA. Qualitative and quantitative analysis of phytoconstituents in the UNANI formulation HABB-E-BUKHAR. Int J Curr Pharm Res. 2024;16(3):36-41. doi: 10.22159/ ijcpr.2024v16i3.4060
Daina A, Michielin O, Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7(1):42717. doi: 10.1038/srep42717, PMID 28256516
Tiwari S, Prakash K. Unrevealing the complex interplay: Molecular docking: A comprehensive review on current scenario, upcoming difficulties initiatives, and viewpoints. Int J Chem Res. 2024;8:405-16.
Gauttam VK, Munjal K, Mujwar S, Sawale J, Rohilla M, Gupta S. Comparative study of developed formulation and market formulation for antidiabetic potential in alloxan induced diabetic Wistar rats. J Young Pharm. 2022;14(4):387-93. doi: 10.5530/jyp.2022.14.78
Acutangula B. Cytotoxic (brine shrimp lethality bioassay) and antioxidant investigation of Barringtonia acutangula. Int J Pharma Sci Res. 2015;6:1179-85.
Wakawa HY, Fasihuddin BA. Brine shrimp lethality bioassay of Abrus precatorius (Linn) leaves and root extract. Int J Pharm Pharm Sci. 2016;9(1):179-81. doi: 10.22159/ijpps.2017v9i1.15057
Riaz S, Haider F, Ur-Rehman R, Zafar A. Exploring the therapeutic potential of Asparagus africanus in polycystic ovarian syndrome: A computational analysis. J Integr Bioinform. 2025;21(4):20240019.
Akaho E. An overview of epigenetic drugs, and their virtual screening study retrieved from zinc database along with an autodock study of the best inhibitor. Int J Appl Pharm. 2021;13:122-31. doi: 10.22159/ ijap.2021v13i5.42275
Uddin KM, Hosen MA, Khan MF, Ozeki Y, Kawsar S. Investigation of structural, physicochemical, pharmacokinetics, PASS prediction, and molecular docking analysis of methyl 6-O-Myristoyl-α-D-Glucopyranoside derivatives against SARS-CoV-2. Philipp J Sci. 2022;151(6A):2215-31. doi: 10.56899/151.6A.13
Majid M, Farhan A, Baig MW, Khan MT, Kamal Y, Hassan SS, et al. Ameliorative effect of structurally divergent oleanane triterpenoid, 3-epifriedelinol from Ipomoea batatas against BPA-induced gonadotoxicity by targeting PARP and NF-κB signaling in rats. Molecules. 2022;28(1):290. doi: 10.3390/molecules28010290, PMID 36615482
Bhatti MZ, Ismail H, Kayani WK. Plant secondary metabolites: Therapeutic potential and pharmacological properties. In: Secondary Metabolites-trends and Reviews. London: IntechOpen; 2022.
Moni SS, Mohan S, Alam MF, Elmobark ME, Jabeen A, Sabei FY, et al. Spectral analysis and bioactive profiling of hot methanolic extracts from Phoenix dactylifera seeds: Antibacterial efficacy and in vitro cytotoxicity insights. Not Bot Horti Agrobot Cluj-Napoca. 2024;52(2):13600. doi: 10.15835/nbha52213600
Acheampong A, Quartey E, Acquaye MA, Naazo AA, Baah KA, Amankwaa LT, et al. In vitro anthelminthic and anti-inflammatory activities, and GC-MS analysis of methanol and acetone extracts of Mareya micrantha leaves. J Pharmacogn Phytochem. 2024;13(2):799-805. doi: 10.22271/phyto.2024.v13.i2f.14926
Alshahrani A, Ali A, Abdelwahab SF. Chemoprofiling and antimicrobial activity of medicinal herbs used in the treatment of inflammatory bowel disease. Cell Mol Biol (Noisy-le-grand). 2023;69(13):36-44. doi: 10.14715/cmb/2023.69.13.6, PMID 38158691
Published
How to Cite
Issue
Section
Copyright (c) 2025 ASHPAK TAMBOLI, DEVATA SHINDE, NAZIYA TAMBOLI, KIRAN PATIL , Jyotiram Sawale

This work is licensed under a Creative Commons Attribution 4.0 International License.
The publication is licensed under CC By and is open access. Copyright is with author and allowed to retain publishing rights without restrictions.