HARNESSING THE NEUROPROTECTIVE POTENTIAL OF PUERARIA TUBEROSA TUBER THROUGH OXIDATIVE STRESS MODULATION AND ANTICONVULSANT ACTIVITY
DOI:
https://doi.org/10.22159/ajpcr.2025v18i11.56042Keywords:
Epilepsy, Flavonoids, Indian Kudzu, Reactive nitrogen species, Reactive oxygen speciesAbstract
Objectives: The study aimed to assess the phytochemical profile, anticonvulsant activity, and antioxidant potential of ethanol, butanol, and aqueous Pueraria tuberosa tuber extracts.
Methods: Preliminary phytochemical screening was performed using standard chemical tests. In male Swiss albino mice, anticonvulsant activity was assessed using two models: seizures caused by pentylenetetrazole (PTZ) and maximal electroshock seizures (MES). Male Wistar rats were administered the extracts (100 mg/kg, p.o.) for 14 days to evaluate their antioxidant levels. Catalase, superoxide dismutase (SOD), glutathione (GSH), and malondialdehyde (MDA) levels were assessed in brain tissue homogenates. One-way analysis of variance and Dunnett’s test were used for statistical analysis.
Results: Phytochemical analysis confirmed the presence of steroids, saponins, flavonoids, alkaloids, and tannins in all extracts. In the MES model, the ethanol and butanol extracts significantly reduced extensor phase duration (6.54±1 s and 6.32±0.57 s, p<0.001, respectively) compared to the control, closely approaching the standard drug phenytoin (4.33±0.57 s, p<0.001). In the PTZ model, the butanol extract showed the highest anticonvulsant activity, with a delayed onset of clonus (138.33±0.57 s, p<0.001), prolonged clonus duration (304.23±1.52 s, p<0.001), and 83.3% protection. The ethanol and aqueous extracts provided 66.6% and 33.3% protection, respectively. According to antioxidant analysis, the butanol and ethanol extracts had substantial antioxidant effects, as evidenced by the considerable increases in catalase, SOD, and GSH levels and the decrease in MDA concentrations.
Conclusion: The extracts of P. tuberosa, particularly the butanol and ethanol fractions, exhibited strong anticonvulsant and antioxidant activities, indicating their therapeutic potential in the management of seizures and oxidative stress-associated neurological disorders.
Downloads
References
1. Houghton PJ, Howes MJ, Lee CC, Steventon G. Uses and abuses of in vitro tests in ethnopharmacology: Visualizing an elephant. J Ethnopharmacol. 2007;110(3):391-400. doi: 10.1016/j. jep.2007.01.032, PMID 17317057
2. Devi PU, Manocha A, Vohora D. Seizures, antiepileptics, antioxidants and oxidative stress: An insight for researchers. Expert Opin Pharmacother. 2008;9(18):3169-77. doi: 10.1517/14656560802568230, PMID 19040338
3. Sorg O. Oxidative stress: A theoretical model or a biological reality? C R Biol. 2004;327(7):649-62. doi: 10.1016/j.crvi.2004.05.007, PMID 15344815
4. Mazhar F, Malhi SM, Simjee SU. Comparative studies on the effects of clinically used anticonvulsants on the oxidative stress biomarkers in pentylenetetrazole-induced kindling model of epileptogenesis in mice. J Basic Clin Physiol Pharmacol. 2017;28(1):31-42. doi: 10.1515/ jbcpp-2016-0034, PMID 27658141
5. Palipoch S. A review of oxidative stress in acute kidney injury: Protective role of medicinal plants-derived antioxidants. Afr J Tradit Complement Altern Med. 2013;10(4):88-93. doi: 10.4314/ajtcam. v10i4.15, PMID 24146507
6. de Oliveira CC, de Oliveira CV, Grigoletto J, Ribeiro LR, Funck VR, Grauncke AC, et al. Anticonvulsant activity of beta-caryophyllene against pentylenetetrazol-induced seizures. Epilepsy Behav. 2016;56:26-31. doi: 10.1016/j.yebeh.2015.12.040. PMID 26827298
7. Tavakoli Z, Tahmasebi Dehkordi H, Lorigooini Z, Rahimi-Madiseh M, Korani MS, Amini-Khoei H. Anticonvulsant effect of quercetin in pentylenetetrazole (PTZ)-induced seizures in male mice: The role of anti-neuroinflammatory and anti-oxidative stress. Int Immunopharmacol. 2023;116:109772. doi: 10.1016/j.intimp.2023.109772, PMID 36731152
8. Bharti R, Chopra BS, Raut S, Khatri N. Pueraria tuberosa: A review on traditional uses, pharmacology, and phytochemistry. Front Pharmacol. 2020;11:582506. doi: 10.3389/fphar.2020.582506, PMID 33708108
9. Srivastava S, Koley TK, Singh SK, Tripathi YB. The tuber extract of Pueraria tuberosa Linn. competitively inhibits DPP-IV activity in normoglycemic rats. Int J Pharm Pharm Sci. 2015;20(90):4.
10. Shukla R, Banerjee S, Tripathi YB. Antioxidant and antiapoptotic effect of aqueous extract of Pueraria tuberosa (Roxb. ex Willd.) DC. On streptozotocin-induced diabetic nephropathy in rats. BMC Complement Altern Med. 2018;18(1):156. doi: 10.1186/s12906-018- 2221-x, PMID 29751837
11. Satpathy S, Patra A, Ahirwar B, Delwar Hussain M. Antioxidant and anticancer activities of green synthesized silver nanoparticles using aqueous extract of tubers of Pueraria tuberosa. Artif Cells Nanomed Biotechnol. 2018;46(sup3):S71-85. doi: 10.1080/21691401.2018.1489265, PMID 30043665
12. Jäger AK, Saaby L. Flavonoids and the CNS. Molecules. 2011;16(2):1471-85. doi: 10.3390/molecules16021471, PMID 21311414
13. Harborne JB. Plant drug analysis. Phytochemistry. 1997;8(44):1596-7.
14. Sulistyowati B, Elya B, Nur S, Iswandana R. Formulation, antioxidant, and anti-aging activity of Rubus fraxinifolius fraction. Int J Appl Pharm. 2024;16(4):121-8. doi: 10.22159/ijap.2024v16i4.51013.
15. Khandelwal KR. Practical Pharmacognosy. Pune: Pragati Books Pvt. Ltd.; 2008.
16. Jain R, Prabitha P, Kumar BR, Jain V, Kohli D, Shivaji KS, et al. Design, synthesis, in silico studies, and pharmacological evaluation of 5-aryl-4-(chloroacetylamino)-3-mercapto-1, 2, 4-triazole derivatives as anticonvulsant agents. Int J Appl Pharm. 2024;16(6):190-200. doi: 10.22159/ijap.2024v16i6.52379
17. Bolaris S, Constantinou C, Valcana T, Margarity M. Pentylenetetrazole-induced convulsions affect cellular and molecular parameters of the mechanism of action of triiodothyronine in adult rat brain. Neuropharmacology. 2005;48(6):894-902. doi: 10.1016/j. neuropharm.2004.10.020, PMID 15829259
18. Ito JM, Valcana T, Timiras PS. Effect of hypo- and hyperthyroidism on regional monoamine metabolism in the adult rat brain. Neuroendocrinology. 1977;24(1):55-64. doi: 10.1159/000122696, PMID 600365
19. Debnath S, Kannadasan M, Ghosh S, Ghosh NS, Chakraborty R, Sen S. Antiepileptic activity of the hydroalcoholic extract of Erythrina fusca lour bark against the animal models of MES, PTX and PTZ induced epileptic seizure models. Int J Chem Res. 2010;1:6-10.
20. Noeman SA, Hamooda HE, Baalash AA. Biochemical study of oxidative stress markers in the liver, kidney and heart of high fat diet induced obesity in rats. Diabetol Metab Syndr. 2011;3(1):17. doi: 10.1186/1758- 5996-3-17, PMID 21812977
21. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J biol Chem. 1951;193(1):265-75. PMID 14907713
22. Kubiliene A, Mickute K, Baranauskaite J, Marksa M, Liekis A, Sadauskiene I. The effects of Cannabis sativa L. extract on oxidative stress markers in vivo. Life (Basel). 2021;11(7):647. doi: 10.3390/ life11070647, PMID 34357019
23. Saio V, Syiem D, Sharma R, Dkhar J. Amelioration of age-dependent increase in oxidative stress markers in male mice by extract of Potentilla fulgens. Redox Rep. 2016;21(3):130-8. doi: 10.1179/1351000215Y.0000000006, PMID 25856159
24. Rotruck JT, Pope AL, Ganther HE, Swanson A, Hafeman DG, Hoekstra W. Selenium: Biochemical role as a component of glutathione peroxidase. Science. 1973;179(4073):588-90. doi: 10.1126/ science.179.4073.588. PMID 4686466.
25. Usoh IF, Akpan EJ, Etim EO, Farombi EO. Antioxidant actions of dried flower extracts of Hibiscus sabdariffa L. on sodium arsenite-induced oxidative stress in rats. Pak J Nutr. 2005;4(3):135-41. doi: 10.3923/ pjn.2005.135.141
26. Priyadharsini KS, Nirmala P, Kumar PA. Effect of lutein in hypercholesterolemia induced oxidative stress in male Wistar rats. Int J Curr Pharm Res. 2015;7(2):97-100.
27. Raja S, Ahamed HN, Kumar V, Mukherjee K, Bandyopadhyay A, Mukherjee PK. Exploring the effect of Cytisus scoparius on markers of oxidative stress in rats. Iran J Pharmacol Ther. 2007;6(1):15-21.
28. Kakkar P, Das B, Viswanathan P. A modified spectrophotometric assay of superoxide dismutase. Indian J Biochem Biophys. 1984;21(2):130-2. PMID 6490072
29. Kaur J, Famta P, Famta M, Mehta M, Satija S, Sharma N, et al. Potential anti-epileptic phytoconstituents: An updated review. J Ethnopharmacol. 2021;268:113565. doi: 10.1016/j.jep.2020.113565, PMID 33166627
30. Kumar GP, Anilakumar KR, Naveen S. Phytochemicals having neuroprotective properties from dietary sources and medicinal herbs. Pharmacogn J. 2015;7(1):1-17. doi: 10.5530/pj.2015.1.1
31. Löscher W. Basic pharmacology of valproate: A review after 35 years of clinical use for the treatment of epilepsy. CNS Drugs. 2002;16(10):669-94. doi: 10.2165/00023210-200216100-00003, PMID 12269861
32. Meldrum BS, Rogawski MA. Molecular targets for antiepileptic drug development. Neurotherapeutics. 2007;4(1):18-61. doi: 10.1016/j. nurt.2006.11.010, PMID 17199015
33. Pardridge WM. The blood-brain barrier: Bottleneck in brain drug development. Neurorx. 2005;2(1):3-14. doi: 10.1602/neurorx.2.1.3, PMID 15717053
34. Macdonald RL, Olsen RW. GABAA receptor channels. Annu Rev Neurosci. 1994;17(1):569-602. doi: 10.1146/annurev. ne.17.030194.003033, PMID 7516126
35. Houghton P, Howes M-J, Lee C, Steventon G. Uses and abuses of in vitro tests in ethnopharmacology: visualizing an elephant. Journal of Ethnopharmacology. 2007;110(3):391-400. doi: 10.1016/j. jep.2007.01.032, PMID 17317057
Published
How to Cite
Issue
Section
Copyright (c) 2025 Trupti Durgawale, Jyotiram Sawale, Pratik Durgawale, Suhas Padmane

This work is licensed under a Creative Commons Attribution 4.0 International License.
The publication is licensed under CC By and is open access. Copyright is with author and allowed to retain publishing rights without restrictions.