STIMULI-RESPONSIVE SMART POLYMERS: INNOVATIONS, APPLICATIONS, AND FUTURE HORIZONS IN ADAPTIVE MATERIAL SCIENCE
DOI:
https://doi.org/10.22159/ajpcr.2025v18i12.54640Keywords:
Smart polymers, Adaptive materials, Drug delivery, Tissue engineering, Biosensing, Light-responsive polymers, Temperature-responsive polymers, pH-responsive polymers, Enzyme-responsive polymersAbstract
Stimuli-responsive smart polymers have emerged as a transformative force in adaptive material science, offering unprecedented versatility and responsiveness to environmental changes. These polymers, capable of altering their properties in response to physical, chemical, or biological stimuli, have garnered significant attention across diverse fields, including medicine, engineering, and biotechnology. This review provides a comprehensive overview of recent innovations in stimuli-responsive polymers, highlighting their applications in drug delivery, tissue engineering, biosensing, and industrial technologies. Key advancements include the development of light-, temperature-, pH-, and enzyme-responsive polymers, each tailored for specific applications such as targeted drug delivery and smart coatings. The future of smart polymers lies in the design of multi-stimuli responsive materials, self-healing polymers, and bio-inspired systems. However, challenges such as scalability, biocompatibility, and toxicity must be addressed. The integration of AI and machine learning in polymer design and the development of sustainable materials are envisioned as critical future directions. Ultimately, stimuli-responsive smart polymers hold immense potential to revolutionize various sectors by providing adaptive solutions to complex challenges.
Downloads
References
1. Priya James H, John R, Alex A, Anoop KR. Smart polymers for the controlled delivery of drugs - a concise overview. Acta Pharm Sin B. 2014;4(2):120-7. doi: 10.1016/j.apsb.2014.02.005, PMID 26579373
2. Balcerak-Woźniak A, Dzwonkowska-Zarzycka M, Kabatc-Borcz J. A comprehensive review of stimuli-responsive smart polymer materials-recent advances and future perspectives. Materials (Basel). 2024;17(17):4255. doi: 10.3390/ma17174255, PMID 39274645
3. Jingcheng L, Reddy VS, Jayathilaka WA, Chinnappan A, Ramakrishna S, Ghosh R. Intelligent polymers, fibers and applications. Polymers (Basel). 2021;13(9):1427. doi: 10.3390/polym13091427, PMID 33925249
4. Zorah M, Mudhafar M, Naser HA, Mustapa IR. The promises of the potential uses of polymer biomaterials in biomedical applications and their challenges. Int J Appl Pharm. 2023;15:27-36. doi: 10.22159/ ijap.2023v15i4.48119
5. Imato K, Ooyama Y. Stimuli-responsive smart polymers based on functional dyes. Polym J. 2024;56(12):1093-109. doi: 10.1038/s41428- 024-00951-4
6. Ma Z, Zhang J, Liu L, Zheng H, Dai J, Tang LC, et al. A highly fire-retardant rigid polyurethane foam capable of fire-warning. Compos Commun. 2022;29:101046. doi: 10.1016/j.coco.2021.101046
7. Das A, Mahanwar P. A brief discussion on advances in polyurethane applications. Adv Ind Eng Polym Res. 2020;3(3):93-101. doi: 10.1016/j. aiepr.2020.07.002
8. Wei M, Gao Y, Li X, Serpe MJ. Stimuli-responsive polymers and their applications. Polym Chem. 2017;8(1):127-43. doi: 10.1039/ C6PY01585A
9. Muhammed RA, Mohammed S, Visht S, Yassen AO. A review on development of colon targeted drug delivery system. Int J Appl Pharm. 2024;16:12-27. doi: 10.22159/ijap.2024v16i2.49293
10. Hu L, Zhang Q, Li X, Serpe MJ. Stimuli-responsive polymers for sensing and actuation. Mater Horiz. 2019;6(9):1774-93. doi: 10.1039/ C9MH00490D
11. Fugolin AP, Huynh B, Rajasekaran SP. Innovations in the design and application of stimuli-responsive restorative dental polymers. Polymers (Basel). 2023;15(16):3346. doi: 10.3390/polym15163346, PMID 37631403
12. Cabane E, Zhang X, Langowska K, Palivan CG, Meier W. Stimuli-responsive polymers and their applications in nanomedicine. Biointerphases. 2012;7(1-4):9. doi: 10.1007/s13758-011-0009-3, PMID 22589052
13. Lam KY, Lee CS, Pichika MR, Cheng SF, Hang Tan RY. Light-responsive polyurethanes: classification of light-responsive moieties, light-responsive reactions, and their applications. RSC Adv. 2022;12(24):15261-83. doi: 10.1039/d2ra01506d, PMID 35693222
14. Chen JK, Chang CJ. Fabrications and applications of stimulus-responsive polymer films and patterns on surfaces: A review. Materials (Basel). 2014;7(2):805-75. doi: 10.3390/ma7020805, PMID 28788489
15. Nicoletta FP, Cupelli D, Formoso P, De Filpo G, Colella V, Gugliuzza A. Light responsive polymer membranes: A review. Membranes (Basel). 2012;2(1):134-97. doi: 10.3390/membranes2010134, PMID 24957966
16. Wells CM, Harris M, Choi L, Murali VP, Guerra FD, Jennings JA. Stimuli-responsive drug release from smart polymers. J Funct Biomater. 2019;10(3):34. doi: 10.3390/jfb10030034, PMID 31370252
17. Tkachenko IM, Kurioz YI, Kravchuk RM, Litoshenko DV, Nazarenko VG, Shevchenko VV. Aromatic polymer having both azobenzene and azomethine units in the main chain as an efficient photo-responsive material. Polym J. 2023;45(4):269-77. doi: 10.15407/ polymerj.45.04.269
18. Mahimwalla Z, Yager KG, Mamiya J, Shishido A, Priimagi A, Barrett CJ. Azobenzene photomechanics: Prospects and potential applications. Polym Bull. 2012;69(8):967-1006. doi: 10.1007/s00289- 012-0792-0
19. Pasparakis G, Tsitsilianis C. LCST polymers: Thermoresponsive nanostructured assemblies towards bioapplications. Polymer. 2020;211:123146. doi: 10.1016/j.polymer.2020.123146
20. Yar Y, Khodadust R, Akkoç Y, Utkur M, Saritas EU, Gozuacik D, et al. Development of tailored SPION-PNIPAM nanoparticles by ATRP for dually responsive doxorubicin delivery and MR imaging. J Mater Chem B. 2017;6(2):289-300. doi: 10.1039/C7TB00646B, PMID 32254171
21. Di Martino M, Sessa L, Panunzi B, Diana R, Piotto S, Concilio S. Cationic azobenzenes as light-responsive crosslinkers for alginate-based supramolecular hydrogels. Polymers (Basel). 2024;16(9):1233. doi: 10.3390/polym16091233, PMID 38732700
22. Tian J, Jin L, Liu H, Hua Z. Stilbenes: A promising small molecule modulator for epigenetic regulation in human diseases. Front Pharmacol. 2023;14:1326682. doi: 10.3389/fphar.2023.1326682, PMID 38155902
23. Liu T, Bao B, Li Y, Lin Q, Zhu L. Photo-responsive polymers based on b-nitrobenzyl derivatives: from structural design to applications. Prog Polym Sci. 2023;146:101741. doi: 10.1016/j. progpolymsci.2023.101741
24. Ashraf S, Park HK, Park H, Lee SH. Snapshot of phase transition in thermoresponsive hydrogel PNIPAM: role in drug delivery and tissue engineering. Macromol Res. 2016;24(4):297-304. doi: 10.1007/ s13233-016-4052-2
25. Kotsuchibashi Y. Recent advances in multi-temperature-responsive polymeric materials. Polym J. 2020;52(7):681-9. doi: 10.1038/s41428- 020-0330-0
26. Musarurwa H, Tavengwa NT. Stimuli-responsive molecularly imprinted polymers as adsorbents of analytes in complex matrices. Microchem J. 2022;181:107750. doi: 10.1016/j.microc.2022.107750
27. Garrido A. Smart polymers: Applications in responsive and adaptive materials. Arch Ind Biotechnol. 2023;7:179. doi: 10.35841/ aaaib-8.6241.
28. Abdollahi A, Roghani-Mamaqani H, Razavi B, Salami-Kalajahi M. The light-controlling of temperature-responsivity in stimuli-responsive polymers. Polym Chem. 2019;10(42):5686-720. doi: 10.1039/ C9PY00890J
29. Kidder-Wolff ND, Thomas SW 3rd. Proximal photocleavage: Controlling polymer solubility through pathway dependent wavelength-orthogonal photoreactions. Macromol Chem Phys. 2024;225(21):2400216. doi: 10.1002/macp.202400216
30. Guo R, Mei P, Zhong Q, Yao Y, Su Q, Zhang J. Well-defined triblock copolymers with a photolabile middle block of poly(phenyl vinyl ketone): Facile synthesis, chain-scission mechanism and controllable photocleavability. RSC Adv. 2015;5(40):31365-74. doi: 10.1039/ C5RA02863A
31. Zhan TG, Lin MD, Wei J, Liu LJ, Yun MY, Wu L, et al. Visible-light responsive hydrogen-bonded supramolecular polymers based on ortho-tetrafluorinated azobenzene. Polym Chem. 2017;8(47):7384-9. doi: 10.1039/C7PY01612C
32. Zhou Q, Fursule I, Berron BJ, Beck MJ. Toward spatiotemporally controlled synthesis of photoresponsive polymers: Computational design of azobenzene-containing monomers for light-mediated ROMP. J Phys Chem A. 2016;120(36):7101-11. doi: 10.1021/acs.jpca.6b05807, PMID 27552379
33. Huang Y, Dong R, Zhu X, Yan D. Photo-responsive polymeric micelles. Soft Matter. 2014;10(33):6121-38. doi: 10.1039/c4sm00871e, PMID 25046479
34. Zhao Y. Photocontrollable block copolymer micelles: What can we control? J Mater Chem. 2009;19(28):4887-95. doi: 10.1039/B819968J
35. Beauté L, Mcclenaghan N, Lecommandoux S. Photo-triggered polymer nanomedicines: From molecular mechanisms to therapeutic applications. Adv Drug Deliv Rev. 2019;138:148-66. doi: 10.1016/j. addr.2018.12.010, PMID 30553952
36. Le M, Huang W, Chen KF, Lin C, Cai L, Zhang H, et al. Upper critical solution temperature polymeric drug carriers. Chem Eng J.
2022;432:134354. doi: 10.1016/j.cej.2021.134354
37. Bajpai AK, Bajpai J, Saini R, Gupta R. Responsive polymers in biology and technology. Polym Rev. 2011;51(1):53-97. doi: 10.1080/15583724.2010.537798
38. Li Y, Luo J, Xie G, Zhu D, Zhao C, Zhang X, et al. Recent progress on regulating the LCST of PNIPAM-based thermochromic materials. ACS Appl Polym Mater. 2025;7(1):1-11. doi: 10.1021/acsapm.4c03406
39. Seuring J, Agarwal S. Polymers with upper critical solution temperature in aqueous solution. Macromol Rapid Commun. 2012;33(22):1898- 920. doi: 10.1002/marc.201200433, PMID 22961764
40. Chen J, Peng Q, Peng X, Zhang H, Zeng H. Probing and manipulating noncovalent interactions in functional polymeric systems. Chem Rev. 2022;122(18):14594-678. doi: 10.1021/acs.chemrev.2c00215, PMID 36054924
41. Yuan Y, Raheja K, Milbrandt NB, Beilharz S, Tene S, Oshabaheebwa S, et al. Thermoresponsive polymers with LCST transition: Synthesis, characterization, and their impact on biomedical frontiers. RSC Appl Polym. 2023;1(2):158-89. doi: 10.1039/D3LP00114H
42. Throat S, Bhattacharya S. Macromolecular poly(N-Isopropylacrylamide) (PNIPAM) in cancer treatment and beyond. Adv Polym Technol. 2024;2024(1):1444990. doi: 10.1155/2024/1444990
43. Roth PJ, Davis TP, Lowe AB. Comparison between the LCST and UCST transitions of double thermoresponsive diblock copolymers: Insights into the behavior of POEGMA in alcohols. Macromolecules. 2012;45(7):3221-30. doi: 10.1021/MA300374Y
44. Karimi M, Sahandi Zangabad P, Ghasemi A, Amiri M, Bahrami M, Malekzad H, et al. Temperature-responsive smart nanocarriers for delivery of therapeutic agents: Applications and recent advances. ACS Appl Mater Interfaces. 2016;8(33):21107-33. doi: 10.1021/ acsami.6b00371, PMID 27349465
45. Ratner BD, Bryant SJ. Biomaterials: Where we have been and where we are going. Annu Rev Biomed Eng. 2004;6:41-75. doi: 10.1146/ annurev.bioeng.6.040803.140027, PMID 15255762
46. Kim H, Zan G, Seo Y, Lee S, Park C. Stimuli-responsive liquid metal hybrids for human-interactive electronics. Adv Funct Mater. 2024;34(31):2308703. doi: 10.1002/adfm.202308703
47. Zhu L, Tian L, Jiang S, Han L, Liang Y, Li Q, et al. Advances in photothermal regulation strategies: From efficient solar heating to daytime passive cooling. Chem Soc Rev. 2023;52(21):7389-460. doi: 10.1039/D3CS00500C, PMID 37743823
48. Shi K, Nokhodchi A, Ghafourian T. Magnetic microscale polymeric nanocomposites in drug delivery: Advances and challenges. Drug Discov Today. 2025;30(1):104276. doi: 10.1016/j.drudis.2024.104276, PMID 39736462
49. Liu JF, Jang B, Issadore D, Tsourkas A. Use of magnetic fields and nanoparticles to trigger drug release and improve tumor targeting. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2019;11(6):e1571. doi: 10.1002/wnan.1571, PMID 31241251
50. Ulbrich K, Holá K, Šubr V, Bakandritsos A, Tuček J, Zbořil R. Targeted drug delivery with polymers and magnetic nanoparticles: Covalent and noncovalent approaches, release control, and clinical studies. Chem Rev. 2016;116(9):5338-431. doi: 10.1021/acs.chemrev.5b00589, PMID 27109701
51. Sun C, Lee JS, Zhang M. Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev. 2008;60(11):1252-65. doi: 10.1016/j.addr.2008.03.018, PMID 18558452
52. Shi Y, Guenneau F, Wang X, Hélary C, Coradin T. MnO2-gated nanoplatforms with targeted controlled drug release and contrast-enhanced MRI properties: From 2D cell culture to 3D biomimetic hydrogels. Nanotheranostics. 2018;2(4):403-16. doi: 10.7150/ ntno.28046, PMID 30324085
53. Ziegler R, Ilyas S, Mathur S, Goya GF, Fuentes-García JA. Remote- Controlled Activation of the Release Through Drug-Loaded Magnetic Electrospun Fibers. United States: Cornell University; 2024.
54. Sanson C, Diou O, Thevenot J, Ibarboure E, Soum A, Brûlet A, et al. Doxorubicin loaded magnetic polymersomes: Theranostic nanocarriers for MR imaging and magneto-chemotherapy. ACS Nano. 2011;5:1122-40.
55. Cai X, Jiang Y, Lin M, Zhang J, Guo H, Yang F, et al. Ultrasound-responsive materials for drug/gene delivery. Front Pharmacol. 2020;10:1650. doi: 10.3389/fphar.2019.01650, PMID 32082157
56. Wei P, Cornel EJ, Du J. Ultrasound-responsive polymer-based drug delivery systems. Drug Deliv Transl Res. 2021;11(4):1323-39. doi: 10.1007/s13346-021-00963-0, PMID 33761101
57. Ge J, Neofytou E, Cahill TJ, Beygui RE, Zare RN. Drug release from electric-field-responsive nanoparticles. ACS Nano. 2012;6(1):227-33. doi: 10.1021/nn203430m, PMID 22111891
58. Alkahtani ME, Elbadawi M, Chapman CA, Green RA, Gaisford S, Orlu M, et al. Electroactive polymers for on-demand drug release. Adv Healthc Mater. 2024;13(3):e2301759. doi: 10.1002/adhm.202301759, PMID 37861058
59. Bansal M, Dravid A, Aqrawe Z, Montgomery J, Wu Z, Svirskis D. Conducting polymer hydrogels for electrically responsive drug delivery. J Control Release. 2020;328:192-209. doi: 10.1016/j. jconrel.2020.08.051, PMID 32877745
60. Chu S, Shi X, Tian Y, Gao F. pH-responsive polymer nanomaterials for tumor therapy. Front Oncol. 2022;12:855019. doi: 10.3389/ fonc.2022.855019, PMID 35392227
61. Singh J, Nayak P. pH-responsive polymers for drug delivery: Trends and opportunities. J Polym Sci. 2023;61(22):2828-50. doi: 10.1002/ pol.20230403
62. Abed HF, Abuwatfa WH, Husseini GA. Redox-responsive drug delivery systems: A chemical perspective. Nanomaterials (Basel). 2022;12(18):3183. doi: 10.3390/nano12183183, PMID 36144971
63. Huo M, Yuan J, Tao L, Wei Y. Redox-responsive polymers for drug delivery: From molecular design to applications. Polym Chem. 2014;5(5):1519-28. doi: 10.1039/C3PY01192E
64. Gaddimath S, Payamalle S, Channabasavana Hundi Puttaningaiah KP, Hur J. Recent advances in pH and redox responsive polymer nanocomposites for cancer therapy. J Compos Sci. 2024;8(1):28. doi: 10.3390/jcs8010028
65. Sobczak M. Enzyme-responsive hydrogels as potential drug delivery systems-state of knowledge and future prospects. Int J Mol Sci. 2022;23(8):4421. doi: 10.3390/ijms23084421, PMID 35457239
66. Minehan RL, Del Borgo MP. Controlled release of therapeutics from enzyme-responsive biomaterials. Front Biomater Sci. 2022;1:9169985. doi: 10.3389/fbiom.2022.916985
67. Li M, Zhao G, Su WK, Shuai Q. Enzyme-responsive nanoparticles for anti-tumor drug delivery. Front Chem. 2020;8:647. doi: 10.3389/ fchem.2020.00647, PMID 32850662
68. Rudko M, Urbaniak T, Musiał W. Recent developments in ion-sensitive systems for pharmaceutical applications. Polymers (Basel). 2021;13(10):1641. doi: 10.3390/polym13101641, PMID 34070206
69. Lin S, Theato P. CO2-responsive polymers. Macromol Rapid Commun. 2013;34(14):1118-33. doi: 10.1002/marc.201300288, PMID 23723041
70. Bayle EA, Ilhami FB, Chen JK, Cheng CC. Potential of a CO2- responsive supramolecular drug-carrier system as a safer and more effective treatment for cancer. Mater Today Bio. 2024;29:101319. doi: 10.1016/j.mtbio.2024.101319, PMID 39554842
71. Bhattacharya S, Prajapati BG, Singh S. A critical review on the dissemination of PH and stimuli-responsive polymeric nanoparticular systems to improve drug delivery in cancer therapy. Crit Rev Oncol Hematol. 2023;185:103961. doi: 10.1016/j.critrevonc.2023.103961, PMID 36921781
72. Fattah-alhosseini A, Chaharmahali R, Alizad S, Kaseem M, Dikici B. A review of smart polymeric materials: Recent developments and prospects for medicine applications. Hybrid Adv. 2024;5:100178. doi: 10.1016/j.hybadv.2024.100178
73. Liu L, Yao W, Rao Y, Lu X, Gao J. pH-responsive carriers for oral drug delivery: Challenges and opportunities of current platforms. Drug Deliv. 2017;24(1):569-81. doi: 10.1080/10717544.2017.1279238, PMID 28195032
74. Xie L, Liu R, Chen X, He M, Zhang Y, Chen S. Micelles based on lysine, histidine, or arginine: designing structures for enhanced drug delivery. Front Bioeng Biotechnol. 2021;9:744657. doi: 10.3389/ fbioe.2021.744657, PMID 34646819
75. Vegad U, Patel M, Khunt D, Zupančič O, Chauhan S, Paudel A. pH stimuli-responsive hydrogels from non-cellulosic Biopolymers for drug delivery. Front Bioeng Biotechnol. 2023;11:1270364. doi: 10.3389/ fbioe.2023.1270364, PMID 37781530
76. Tan RY, Lee CS, Pichika MR, Cheng SF, Lam KY. PH responsive polyurethane for the advancement of biomedical and drug delivery. Polymers (Basel). 2022;14(9):1672. doi: 10.3390/polym14091672, PMID 35566843
77. Meng X, Shen Y, Zhao H, Lu X, Wang Z, Zhao Y. Redox-manipulating nanocarriers for anticancer drug delivery: A systematic review. J Nanobiotechnology. 2024;22(1):587. doi: 10.1186/s12951-024- 02859-w, PMID 39342211
78. Gao D, Lo PC. Polymeric micelles encapsulating pH-responsive doxorubicin prodrug and glutathione-activated zinc(II) phthalocyanine for combined chemotherapy and photodynamic therapy. J Control Release. 2018;282:46-61. doi: 10.1016/j.jconrel.2018.04.030, PMID 29673646
79. Xu H, Suzuki N, Takahashi A, Ohishi T, Goseki R, Xie XM, et al. Structural reorganization and crack-healing properties of hydrogels based on dynamic diselenide linkages. Sci Technol Adv Mater. 2020;21(1):450- 60. doi: 10.1080/14686996.2020.1783967, PMID 32939170
80. Ejderyan N, Oz Y, Sanyal R, Sanyal A. Redox-responsive cleavable polymeric brush coated magnetic nanoparticles: Fabrication and post-polymerization modification for cellular targeting. Biomacromolecules. 2025;26(3):1555-70. doi: 10.1021/acs.biomac.4c01368, PMID 39905722
81. Hu C, Lu W, Mata A, Nishinari K, Fang Y. Ions-induced gelation of alginate: Mechanisms and applications. Int J Biol Macromol. 2021;177:578-88. doi: 10.1016/j.ijbiomac.2021.02.086, PMID 33617905
82. Dai S, Liu X, Liu Y, Xu Y, Zhang J, Wu Y, et al. Emerging Iontronic neural devices for neuromorphic sensory computing. Adv Mater. 2023;35(39):e2300329. doi: 10.1002/adma.202300329, PMID 36891745
83. Alvarez-Lorenzo C, Blanco-Fernandez B, Puga AM, Concheiro A. Crosslinked ionic polysaccharides for stimuli-sensitive drug delivery. Adv Drug Deliv Rev. 2013;65(9):1148-71. doi: 10.1016/j. addr.2013.04.016, PMID 23639519
84. Wang Y, Yan J, Wen N, Xiong H, Cai S, He Q, et al. Metal-organic frameworks for stimuli-responsive drug delivery. Biomaterials. 2020;230:119619. doi: 10.1016/j.biomaterials.2019.119619, PMID 31757529
85. Boase NR, Gillies ER, Goh R, Kieltyka RE, Matson JB, Meng F, et al. Stimuli-responsive polymers at the interface with biology. Biomacromolecules. 2025;26(3):1387-90. doi: 10.1021/acs. biomac.5c00107, PMID 39932293
86. Mutalabisin MF, Chatterjee B, Jaffri JM. pH responsive polymers in drug delivery. Res J Pharm Technol. 2018;11(11):5115-22. doi: 10.5958/0974-360X.2018.00934.4
87. Banach Ł, Williams GT, Fossey JS. Insulin delivery using dynamic covalent boronic acid/ester-controlled release. Adv Ther. 2021;4(11):2100118. doi: 10.1002/adtp.202100118
88. Khalil AK, Teow YH, Takriff MS, Ahmad AL, Atieh MA. Recent developments in stimuli-responsive polymer for emerging applications: A review. Results Eng. 2025;25:103900. doi: 10.1016/j. rineng.2024.103900
89. Barreiro DL, Minten IJ, Thies JC, Sagt CM. Structure-property relationships of elastin-like polypeptides: A review of experimental and computational studies. ACS Biomater Sci Eng. 2023;9:3796-809.
90. Boase NR, Gillies ER, Goh R, Kieltyka RE, Matson JB, Meng F, et al. Stimuli-responsive polymers at the interface with biology. Biomacromolecules. 2024;25(9):5417-36. doi: 10.1021/acs. biomac.4c00690, PMID 39197109
91. Idumah CI, Odera RS, Ezeani EO, Low JH, Tanjung FA, Damiri F, et al. Construction, characterization, properties and multifunctional applications of stimuli-responsive shape memory polymeric nanoarchitectures: A review. Polym-Plast Technol Mater. 2023;62(10):1247-72. doi: 10.1080/25740881.2023.2204936
92. Khizar S, Zine N, Errachid A, Elaissari A. Introduction to stimuli-responsive materials and their biomedical applications. ACS Symposium. 2023;1436:1-30. doi: 10.1021/bk-2023-1436.ch001
93. Zhong Y, Xiao H, Seidi F, Jin Y. Natural polymer-based antimicrobial hydrogels without synthetic antibiotics as wound dressings. Biomacromolecules. 2020;21(8):2983-3006. doi: 10.1021/acs. biomac.0c00760, PMID 32672446
94. Ramakrishnan T, Kumar SS, Chelladurai SJ, Gnanasekaran S, Sivananthan S, Geetha NK et al. Recent developments in stimuli responsive smart materials and applications: An overview. J Nanomater. 2022;2022(1):4031059. doi: 10.1155/2022/4031059
95. Thakur A, Kumar A. Chemical and physical properties of nano-hybrid smart coatings. ACS Symp S. 2024;1469:59-94. doi: 10.1021/bk-2024- 1469.ch004
96. Vafaeenezhad H, Eslami-Farsani R. Self-healing and self-lubricating nano-hybrid smart coatings. ACS Symp S. 2024;1469:303-52. doi: 10.1021/bk-2024-1469.ch014
97. Panda S, Hajra S, Rajaitha PM, Kim HJ. Stimuli-responsive polymer-based bioinspired soft robots. Micro Nano Syst Lett. 2023;11(1):2. doi: 10.1186/s40486-023-00167-w
98. Zheng Y, Biswal AK, Guo Y, Thakolkaran P, Kokane Y, Varshney V, et al. Toward sustainable polymer design: A molecular dynamics-informed machine learning approach for vitrimers 2025. Royal Soc Chem. 2025;4:2559-69.
99. Basak S, Bandyopadhyay A. Toward making polymer chemistry autonomous. ACS Appl Eng Mater. 2024;2(5):1190-208. doi: 10.1021/ acsaenm.4c00214
Published
How to Cite
Issue
Section
Copyright (c) 2025 Zoya Sheikh, Mahin khan, Arfana sheikh, Mujibllah Sheikh, Anjum Hasnain

This work is licensed under a Creative Commons Attribution 4.0 International License.
The publication is licensed under CC By and is open access. Copyright is with author and allowed to retain publishing rights without restrictions.