ADVANCEMENTS IN LIPID-BASED NANOTHERANOSTICS FOR MANAGING ATHEROSCLERO-SIS: A REVIEW

Authors

  • MANIGANDAN DHORAI Department of Pharmaceutics, JSS College of Pharmacy, JSS AHER, Ooty, Nilgiris, Tamil Nadu, India
  • IMRANKHAN NIZAM Department of Pharmaceutics, JSS College of Pharmacy, JSS AHER, Ooty, Nilgiris, Tamil Nadu, India https://orcid.org/0000-0003-0483-7927
  • KALAISLEVI ASAITHAMBI Divison of Biotechnology, School of Life Sciences (Ooty Campus), JSS Academy of Higher Education and Research, Mysuru, Karataka, India
  • GOWTHAMARJAN KUPPUSAMY Department of Pharmaceutics, JSS College of Pharmacy, JSS AHER, Ooty, Nilgiris, Tamil Nadu, India

DOI:

https://doi.org/10.22159/ijap.2025v17i6.51321

Keywords:

Atherosclerosis, Lipid-based nanotheranostics, Targeted therapy, Cardiovascular diseases, Nanomedicine, Diagnostic imaging

Abstract

Atherosclerosis, a complicated and chronic inflammatory disorder, is the main cause of various cardiovascular issues, including coronary heart assaults and strokes. Acute myocardial infarction and stroke can be partially prevented with current clinical measures, such as statin medications, but the risk is still very high. The concept of combinatorial therapy using both diagnosis and therapeutics through a single platform is known as theranostics. As evident from pre-clinical and clinical studies, nano-based theranostics are widely used in cancer detection and treatment. Solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs), and nanoliposomes are examples of synthetic/natural lipid-based delivery systems that have drawn much interest as nano-scaled drug delivery system due to their potential benefits, which include easy large-scale production, relatively low toxicity, and composition accessibility. Traditionally, for the study and evaluate the effects of therapy on atherosclerosis, x-ray angiography was used.

Nevertheless, measuring the amount of stenosis brought on by plaques remains the main objective of clinical studies for atherosclerosis. Several high-risk plaque features, such as a thin fibrous cap, a big necrotic core, macrophage infiltration, neovascularization, and intraplaque bleeding, can now be investigated using cutting-edge imaging methods. This review summarises nanotheranostic for diagnosing and treating atherosclerosis and the different strategies for targeting atherosclerotic plaque.

References

1. Martel J. How heart disease is diagnosed. Healthline; 2021 Oct 21. Available from: https://www.healthline.com/health/how-heart-disea. [Last accessed 06 May 2024].

2. Patel RP, Moellering D, Murphy Ullrich J, Jo H, Beckman JS, Darley Usmar VM. Cell signaling by reactive nitrogen and oxygen species in atherosclerosis. Free Radic Biol Med. 2000;28(12):1780-94. doi: 10.1016/s0891-5849(00)00235-5, PMID 10946220.

3. Chinetti Gbaguidi G, Colin S, Staels B. Macrophage subsets in atherosclerosis. Nat Rev Cardiol. 2015;12(1):10-7. doi: 10.1038/nrcardio.2014.173, PMID 25367649.

4. Ross R. Atherosclerosis an inflammatory disease. N Engl J Med. 1999;340(2):115-26. doi: 10.1056/NEJM199901143400207, PMID 9887164.

5. Owen DR, Lindsay AC, Choudhury RP, Fayad ZA. Imaging of atherosclerosis. Annu Rev Med. 2011;62:25-40. doi: 10.1146/annurev-med-041709-133809, PMID 21226610.

6. Muthu MS, Leong DT, Mei L, Feng SS. Nanotheranostics applica-tion and further development of nanomedicine strategies for advanced theranostics. Theranostics. 2014;4(6):660-77. doi: 10.7150/thno.8698, PMID 24723986.

7. Zhao J, Mi Y, Feng SS. siRNA-based nanomedicine. Nanomedi-cine (Lond). 2013;8(6):859-62. doi: 10.2217/nnm.13.73, PMID 23730692.

8. Lammers T, Aime S, Hennink WE, Storm G, Kiessling F. Ther-anostic nanomedicine. Acc Chem Res. 2011;44(10):1029-38. doi: 10.1021/ar200019c, PMID 21545096.

9. Muthu MS, Leong DT, Mei L, Feng SS. Nanotheranostics applica-tion and further development of nanomedicine strategies for advanced theranostics. Theranostics. 2014;4(6):660-77. doi: 10.7150/thno.8698, PMID 24723986.

10. Wu Y, Vazquez Prada KX, Liu Y, Whittaker AK, Zhang R, Ta HT. Recent advances in the development of theranostic nanoparti-cles for cardiovascular diseases. Nanotheranostics. 2021;5(4):499-514. doi: 10.7150/ntno.62730, PMID 34367883.

11. Majzoub RN, Ewert KK, Safinya CR. Cationic liposome nucleic acid nanoparticle assemblies with applications in gene delivery and gene silencing. Philos Trans A Math Phys Eng Sci. 2016;374(2072):20150129. doi: 10.1098/rsta.2015.0129, PMID 27298431.

12. Safinya CR, Ewert KK, Majzoub RN, Leal C. Cationic liposome nucleic acid complexes for gene delivery and gene silencing. New J Chem. 2014;38(11):5164-72. doi: 10.1039/C4NJ01314J, PMID 25587216.

13. Zhang YY, Chen JM. Existing problems and strategies in lipo-some mediated nucleic acid delivery. Yao Xue Xue Bao. 2011;46(3):261-8. PMID 21626778.

14. Joner M, Morimoto K, Kasukawa H, Steigerwald K, Merl S, Nakazawa G. Site-specific targeting of nanoparticle prednisolone reduces in stent restenosis in a rabbit model of established atheroma. Arterioscler Thromb Vasc Biol. 2008;28(11):1960-6. doi: 10.1161/ATVBAHA.108.170662, PMID 18688017.

15. Calin M, Stan D, Schlesinger M, Simion V, Deleanu M, Constantinescu CA. VCAM-1 directed target sensitive liposomes carrying CCR2 antagonists bind to activated endothelium and reduce adhesion and transmigration of monocytes. Eur J Pharm Biopharm. 2015;89:18-29. doi: 10.1016/j.ejpb.2014.11.016, PMID 25438248.

16. Homem De Bittencourt Jr PI, Lagranha DJ, Maslinkiewicz A, Senna SM, Tavares AM, Baldissera LP. Lipocardium: endothe-lium directed cyclopentenone prostaglandin-based liposome formulation that completely reverses atherosclerotic lesions. Atherosclerosis. 2007;193(2):245-58. doi: 10.1016/j.atherosclerosis.2006.08.049, PMID 16996518.

17. Hosseini H, Li Y, Kanellakis P, Tay C, Cao A, Tipping P. Phos-phatidylserine liposomes mimic apoptotic cells to attenuate atherosclerosis by expanding polyreactive IgM producing B1a lymphocytes. Cardiovasc Res. 2015;106(3):443-52. doi: 10.1093/cvr/cvv037, PMID 25681396.

18. Van Der Valk FM, Van Wijk DF, Lobatto ME, Verberne HJ, Storm G, Willems MC. Prednisolone-containing liposomes accumulate in human atherosclerotic macrophages upon intravenous ad-ministration. Nanomedicine. 2015;11(5):1039-46. doi: 10.1016/j.nano.2015.02.021, PMID 25791806.

19. Homem De Bittencourt PI, Lagranha DJ, Maslinkiewicz A, Senna SM, Tavares AM, Baldissera LP. Lipocardium: endothelium di-rected cyclopentenone prostaglandin based liposome formula-tion that completely reverses atherosclerotic lesions. Athero-sclerosis. 2007;193(2):245-58. doi: 10.1016/j.atherosclerosis.2006.08.049, PMID 16996518.

20. Eskandani M, Nazemiyeh H. Self-reporter shikonin act loaded solid lipid nanoparticle: formulation physicochemical characterization and geno/cytotoxicity evaluation. Eur J Pharm Sci. 2014;59:49-57. doi: 10.1016/j.ejps.2014.04.009, PMID 24768857.

21. Ezzati Nazhad Dolatabadi J, Omidi Y. Solid lipid based nanocar-riers as efficient targeted drug and gene delivery systems. Trac Trends in Analytical Chemistry. 2016;77:100-8. doi: 10.1016/j.trac.2015.12.016.

22. Kulandaivelu K, Mandal AK. Positive regulation of biochemical parameters by tea polyphenol encapsulated solid lipid nanoparticles at in vitro and in vivo conditions. IET Nanobio-technol. 2016;10(6):419-24. doi: 10.1049/iet-nbt.2015.0113, PMID 27906144.

23. Paliwal R, Paliwal SR, Agrawal GP, Vyas SP. Biomimetic solid lipid nanoparticles for oral bioavailability enhancement of low molecular weight heparin and its lipid conjugates: in vitro and in vivo evaluation. Mol Pharm. 2011;8(4):1314-21. doi: 10.1021/mp200109m, PMID 21598996.

24. Gao Y, Gu W, Chen L, Xu Z, Li Y. The role of daidzein-loaded sterically stabilized solid lipid nanoparticles in therapy for cardio-cerebrovascular diseases. Biomaterials. 2008;29(30):4129-36. doi: 10.1016/j.biomaterials.2008.07.008, PMID 18667234.

25. Hormann K, Zimmer A. Drug delivery and drug targeting with parenteral lipid nanoemulsions a review. J Control Release. 2016;223:85-98. doi: 10.1016/j.jconrel.2015.12.016, PMID 26699427.

26. Souto EB, Nayak AP, Murthy RS. Lipid nanoemulsions for anti-cancer drug therapy. Pharmazie. 2011;66(7):473-8. PMID 21812320.

27. Tavares ER, Freitas FR, Diament J, Maranhao RC. Reduction of atherosclerotic lesions in rabbits treated with etoposide associated with cholesterol-rich nanoemulsions. Int J Nanomedicine. 2011;6:2297-304. doi: 10.2147/IJN.S24048, PMID 22072867.

28. Bulgarelli A, Leite Jr AC, Dias AA, Maranhao RC. Anti-atherogenic effects of methotrexate carried by a lipid nanoe-mulsion that binds to LDL receptors in cholesterol-fed rabbits. Cardiovasc Drugs Ther. 2013;27(6):531-9. doi: 10.1007/s10557-013-6488-3, PMID 24065615.

29. Leite AC, Solano TV, Tavares ER, Maranhao RC. Use of combined chemotherapy with etoposide and methotrexate both associated to lipid nanoemulsions for atherosclerosis treatment in cholesterol fed rabbits. Cardiovasc Drugs Ther. 2015;29(1):15-22. doi: 10.1007/s10557-014-6566-1, PMID 25672520.

30. Beloqui A, Solinis MA, Rodriguez Gascon A, Almeida AJ, Preat V. Nanostructured lipid carriers: promising drug delivery systems for future clinics. Nanomedicine. 2016;12(1):143-61. doi: 10.1016/j.nano.2015.09.004, PMID 26410277.

31. Zhang WL, Gu X, Bai H, Yang RH, Dong CD, Liu JP. Nanostruc-tured lipid carriers constituted from high-density lipoprotein components for delivery of a lipophilic cardiovascular drug. Int J Pharm. 2010;391(1-2):313-21. doi: 10.1016/j.ijpharm.2010.03.011, PMID 20214958.

32. Zhang W, He H, Liu J, Wang J, Zhang S, Zhang S. Pharmacokinet-ics and atherosclerotic lesions targeting effects of tanshinone IIA discoidal and spherical biomimetic high density lipopro-teins. Biomaterials. 2013;34(1):306-19. doi: 10.1016/j.biomaterials.2012.09.058, PMID 23069716.

33. Banik BL, Fattahi P, Brown JL. Polymeric nanoparticles: the future of nanomedicine. Wiley Interdiscip Rev Nanomed Nano-biotechnol. 2016;8(2):271-99. doi: 10.1002/wnan.1364, PMID 26314803.

34. Lim EK, Chung BH, Chung SJ. Recent advances in pH-sensitive polymeric nanoparticles for smart drug delivery in cancer therapy. Curr Drug Targets. 2018;19(4):300-17. doi: 10.2174/1389450117666160602202339, PMID 27262486.

35. Kapoor DN, Bhatia A, Kaur R, Sharma R, Kaur G, Dhawan S. PLGA: a unique polymer for drug delivery. The Deliv. 2015;6(1):41-58. doi: 10.4155/tde.14.91, PMID 25565440.

36. Feng SS, Zeng W, Teng Lim Y, Zhao L, Yin Win K, Oakley R. Vi-tamin E TPGS-emulsified poly(lactic-co-glycolic acid) nanoparticles for cardiovascular restenosis treatment. Nanomedicine (Lond). 2007;2(3):333-44. doi: 10.2217/17435889.2.3.333, PMID 17716178.

37. Golub JS, Kim YT, Duvall CL, Bellamkonda RV, Gupta D, Lin AS. Sustained VEGF delivery via PLGA nanoparticles promotes vascular growth. Am J Physiol Heart Circ Physiol. 2010;298(6):H1959-65. doi: 10.1152/ajpheart.00199.2009, PMID 20228260.

38. Sanchez Gaytan BL, Fay F, Lobatto ME, Tang J, Ouimet M, Kim Y. HDL-mimetic PLGA nanoparticle to target atherosclerosis plaque macrophages. Bioconjug Chem. 2015;26(3):443-51. doi: 10.1021/bc500517k, PMID 25650634.

39. Masotti A, Ortaggi G. Chitosan micro and nanospheres: fabrica-tion and applications for drug and DNA delivery. Mini Rev Med Chem. 2009;9(4):463-9. doi: 10.2174/138955709787847976, PMID 19356124.

40. Yu Y, Luo T, Liu S, Song G, Han J, Wang Y. Chitosan oligosaccha-rides attenuate atherosclerosis and decrease non-HDL in ApoE−/− mice. J Atheroscler Thromb. 2015;22(9):926-41. doi: 10.5551/jat.22939, PMID 25843117.

41. Yuan X, Yang X, Cai D, Mao D, Wu J, Zong L. Intranasal immuni-zation with chitosan/pCETP nanoparticles inhibits atheroscle-rosis in a rabbit model of atherosclerosis. Vaccine. 2008;26(29-30):3727-34. doi: 10.1016/j.vaccine.2008.04.065, PMID 18524427.

42. Trache D, Hussin MH, Haafiz MK, Thakur VK. Recent progress in cellulose nanocrystals: sources and production. Nanoscale. 2017;9(5):1763-86. doi: 10.1039/c6nr09494e, PMID 28116390.

43. Wang S, Lu A, Zhang L. Recent advances in regenerated cellu-lose materials. Prog Polym Sci. 2016;53:169-206. doi: 10.1016/j.progpolymsci.2015.07.003.

44. Li L, Luo X, Leung PH, Law HK. Controlled release of borneol from nano-fibrous poly(L-lactic acid)/ cellulose acetate bu-tyrate membrane. Text Res J. 2016;86(11):1202-9. doi: 10.1177/0040517515603812.

45. Yasmin R, Shah M, Khan SA, Ali R. Gelatin nanoparticles: a po-tential candidate for medical applications. Nanotechnol Rev. 2017;6(2):191-207. doi: 10.1515/ntrev-2016-0009.

46. Zhang QY, Wang ZY, Wen F, Ren L, Li J, Teoh SH. Gelatin siloxane nanoparticles to deliver nitric oxide for vascular cell regula-tion: synthesis cytocompatibility and cellular responses. J Bio-med Mater Res A. 2015;103(3):929-38. doi: 10.1002/jbm.a.35239, PMID 24853642.

47. Vogt C, Xing Q, He W, Li B, Frost MC, Zhao F. Fabrication and characterization of a nitric oxide releasing nanofibrous gelatin matrix. Biomacromolecules. 2013;14(8):2521-30. doi: 10.1021/bm301984w, PMID 23844781.

48. Ruvinov E, Cohen S. Alginate biomaterial for the treatment of myocardial infarction: progress translational strategies and clinical outlook: from ocean algae to patient bedside. Adv Drug Deliv Rev. 2016;96:54-76. doi: 10.1016/j.addr.2015.04.021, PMID 25962984.

49. Ruvinov E, Leor J, Cohen S. The promotion of myocardial repair by the sequential delivery of IGF-1 and HGF from an injectable alginate biomaterial in a model of acute myocardial infarction. Biomaterials. 2011;32(2):565-78. doi: 10.1016/j.biomaterials.2010.08.097, PMID 20889201.

50. Manojkumar K, Sivaramakrishna A, Vijayakrishna K. A short review on stable metal nanoparticles using ionic liquids sup-ported ionic liquids and poly(ionic liquids). J Nanopart Res. 2016;18(4):106. doi: 10.1007/s11051-016-3409-y.

51. Cao Milan R, Liz Marzan LM. Gold nanoparticle conjugates: recent advances toward clinical applications. Expert Opin Drug Deliv. 2014;11(5):741-52. doi: 10.1517/17425247.2014.891582, PMID 24559075.

52. Roma Rodrigues C, Heuer Jungemann A, Fernandes AR, Kanaras AG, Baptista PV. Peptide coated gold nanoparticles for modulation of angiogenesis in vivo. Int J Nanomedicine. 2016;11:2633-9. doi: 10.2147/IJN.S108661, PMID 27354794.

53. Abbasi E, Milani M, Fekri Aval S, Kouhi M, Akbarzadeh A, Tayefi Nasrabadi H. Silver nanoparticles: synthesis methods bio-applications and properties. Crit Rev Microbiol. 2016;42(2):173-80. doi: 10.3109/1040841X.2014.912200, PMID 24937409.

54. Al Dujaili AN, Al Shemeri MK. Effect of silver nanoparticles and rosuvastatin on endothelin and obestatin in rats induced by high fat diet. Res J Pharm Biol Chem Sci. 2016;7(3):1022-30.

55. Shi J, Sun X, Lin Y, Zou X, Li Z, Liao Y. Endothelial cell injury and dysfunction induced by silver nanoparticles through oxidative stress via IKK/NF-κB pathways. Biomaterials. 2014;35(24):6657-66. doi: 10.1016/j.biomaterials.2014.04.093, PMID 24818879.

56. El Sherbiny IM, Elbaz NM, Sedki M, Elgammal A, Yacoub MH. Magnetic nanoparticles based drug and gene delivery systems for the treatment of pulmonary diseases. Nanomedicine (Lond). 2017;12(4):387-402. doi: 10.2217/nnm-2016-0341, PMID 28078950.

57. Nemmar A, Beegam S, Yuvaraju P, Yasin J, Tariq S, Attoub S. Ultrasmall superparamagnetic iron oxide nanoparticles acutely promote thrombosis and cardiac oxidative stress and DNA damage in mice. Part Fibre Toxicol. 2016;13(1):22. doi: 10.1186/S12989-016-0132-X, PMID 27138375.

58. Xiong F, Wang H, Feng Y, Li Y, Hua X, Pang X. Cardioprotective activity of iron oxide nanoparticles. Sci Rep. 2015;5:8579. doi: 10.1038/srep08579, PMID 25716309.

59. Zheng W, Jiang B, Hao Y, Zhao Y, Zhang W, Jiang X. Screening reactive oxygen species scavenging properties of platinum nanoparticles on a microfluidic chip. Biofabrication. 2014;6(4):045004. doi: 10.1088/1758-5082/6/4/045004, PMID 25215884.

60. Kramer CM, Anderson JD. MRI of atherosclerosis: diagnosis and monitoring therapy. Expert Rev Cardiovasc Ther. 2007;5(1):69-80. doi: 10.1586/14779072.5.1.69, PMID 17187458.

61. Nandwana V, Ryoo SR, Kanthala S, McMahon KM, Rink JS, Li Y. High-density lipoprotein like magnetic nanostructures (HDL-MNS): theranostic agents for cardiovascular disease. Chem Mater. 2017;29(5):2276-82. doi: 10.1021/acs.chemmater.6b05357.

62. Oumzil K, Ramin MA, Lorenzato C, Hemadou A, Laroche J, Jaco-bin Valat MJ. Solid lipid nanoparticles for image guided therapy of atherosclerosis. Bioconjug Chem. 2016;27(3):569-75. doi: 10.1021/acs.bioconjchem.5b00590, PMID 26751997.

63. Wu Y, Yang Y, Zhao W, Xu ZP, Little PJ, Whittaker AK. Novel iron oxide cerium oxide core-shell nanoparticles as a potential theranostic material for ROS related inflammatory diseases. J Mater Chem B. 2018;6(30):4937-51. doi: 10.1039/c8tb00022k, PMID 32255067.

64. Wu Y, Zhang R, Tran HD, Kurniawan ND, Moonshi SS, Whittaker AK. Chitosan nano-cocktails containing both ceria and superparamagnetic iron oxide nanoparticles for reactive oxygen species related theranostics. ACS Appl Bio Mater. 2021;4(4):3604-18. doi: 10.1021/acsanm.1c00141.

65. Das S, Dowding JM, Klump KE, McGinnis JF, Self W, Seal S. Ce-rium oxide nanoparticles: applications and prospects in nanomedicine. Nanomedicine (Lond). 2013;8(9):1483-508. doi: 10.2217/nnm.13.133, PMID 23987111.

66. Jakupec MA, Unfried P, Keppler BK. Pharmacological properties of cerium compounds. Rev Physiol Biochem Pharmacol. 2005;153:101-11. doi: 10.1007/s10254-004-0024-6, PMID 15674649.

67. Ta HT, Dunstan DE, Dass CR. Anticancer activity and therapeu-tic applications of chitosan nanoparticles. In: Kim SK, Dass CR, editors. Chitin chitosan oligosaccharides and their derivatives: biological activities and applications. Boca Raton: CRC Press; 2010. p. 271-84. doi: 10.1201/EBK1439816035-c21.

68. Liu Y, Wu Y, Zhang R, Lam J, Ng JC, Xu ZP. Investigating the use of layered double hydroxide nanoparticles as carriers of metal oxides for theranostics of ROS-related diseases. ACS Appl Bio Mater. 2019;2(12):5930-40. doi: 10.1021/acsabm.9b00852, PMID 35021514.

69. Cao Z, Li B, Sun L, Li L, Xu ZP, Gu Z. 2D layered double hydroxide nanoparticles: recent progress toward preclinical/clinical nanomedicine. Small Methods. 2020;4(2):1900343. doi: 10.1002/smtd.201900343.

70. Moore KJ, Tabas I. Macrophages in the pathogenesis of athero-sclerosis. Cell. 2011;145(3):341-55. doi: 10.1016/j.cell.2011.04.005, PMID 21529710.

71. Lu KY, Lin PY, Chuang EY, Shih CM, Cheng TM, Lin TY. H2O2-depleting and O2-generating selenium nanoparticles for fluo-rescence imaging and photodynamic treatment of proinflam-matory activated macrophages. ACS Appl Mater Interfaces. 2017;9(6):5158-72. doi: 10.1021/acsami.6b15515, PMID 28120612.

72. Yi BG, Park OK, Jeong MS, Kwon SH, Jung JI, Lee S. In vitro photodynamic effects of scavenger receptor targeted photoactivatable nanoagents on activated macrophages. Int J Biol Macromol. 2017;97:181-9. doi: 10.1016/j.ijbiomac.2017.01.037, PMID 28082222.

73. Hou X, Lin H, Zhou X, Cheng Z, Li Y, Liu X. Novel dual ROS-sensitive and CD44 receptor targeting nanomicelles based on oligomeric hyaluronic acid for the efficient therapy of athero-sclerosis. Carbohydr Polym. 2020;232:115787. doi: 10.1016/j.carbpol.2019.115787, PMID 31952595.

74. Kosuge H, Sherlock SP, Kitagawa T, Dash R, Robinson JT, Dai H. Near infrared imaging and photothermal ablation of vascular inflammation using single walled carbon nanotubes. J Am Heart Assoc. 2012;1(6):e002568. doi: 10.1161/JAHA.112.002568, PMID 23316318.

75. Marrache S, Dhar S. Biodegradable synthetic high density lipo-protein nanoparticles for atherosclerosis. Proc Natl Acad Sci USA. 2013;110(23):9445-50. doi: 10.1073/pnas.1301929110, PMID 23671083.

76. Sun X, Li W, Zhang X, Qi M, Zhang Z, Zhang XE. In vivo targeting and imaging of atherosclerosis using multifunctional virus like particles of simian virus 40. Nano Lett. 2016;16(10):6164-71. doi: 10.1021/acs.nanolett.6b02386, PMID 27622963.

77. Qin JB, Peng ZY, Li B, Ye KC, Zhang YX, Yuan FK. Gold nanorods as a theranostic platform for in vitro and in vivo imaging and photothermal therapy of inflammatory macrophages. Nano-scale. 2015;7(33):13991-4001. doi: 10.1039/c5nr02521d, PMID 26228112.

78. Wu J, Niu S, Bremner DH, Nie W, Fu Z, Li D. A tumor microenvi-ronment-responsive biodegradable mesoporous nanosystem for anti-inflammation and cancer theranostics. Adv Healthc Mater. 2020;9(2):e1901307. doi: 10.1002/adhm.201901307, PMID 31814332.

79. McCarthy JR, Jaffer FA, Weissleder R. A macrophage targeted theranostic nanoparticle for biomedical applications. Small. 2006;2(8-9):983-7. doi: 10.1002/smll.200600139, PMID 17193154.

80. Bagalkot V, Badgeley MA, Kampfrath T, Deiuliis JA, Rajagopalan S, Maiseyeu A. Hybrid nanoparticles improve targeting to in-flammatory macrophages through phagocytic signals. J Control Release. 2015;217:243-55. doi: 10.1016/j.jconrel.2015.09.027, PMID 26386437.

81. Gao W, Sun Y, Cai M, Zhao Y, Cao W, Liu Z. Copper sulfide nanoparticles as a photothermal switch for TRPV1 signaling to attenuate atherosclerosis. Nat Commun. 2018;9(1):231. doi: 10.1038/s41467-017-02657-z.

82. Villa Roel N, Gu L, Fernandez Esmerats J, Kang DW, Kumar S, Jo H. Hypoxia inducible factor-1α inhibitor, PX-478, reduces atherosclerosis in vivo. Arterioscler Thromb Vasc Biol. 2020;40:A366.

83. Cybulsky MI, Gimbrone MA. Endothelial expression of a mono-nuclear leukocyte adhesion molecule during atherogenesis. Science. 1991;251(4995):788-91. doi: 10.1126/science.1990440, PMID 1990440.

84. Claesson Welsh L, Dejana E, McDonald DM. Permeability of the endothelial barrier: identifying and reconciling controversies. Trends Mol Med. 2021;27(4):314-31. doi: 10.1016/j.molmed.2020.11.006, PMID 33309601.

85. Kim H, Han J, Park JH. Cyclodextrin polymer improves athero-sclerosis therapy and reduces ototoxicity. J Control Release. 2020;319:77-86. doi: 10.1016/j.jconrel.2019.12.021, PMID 31843641.

86. Wang Y, Li L, Zhao W, Dou Y, An H, Tao H. Targeted therapy of atherosclerosis by a broad spectrum reactive oxygen species scavenging nanoparticle with intrinsic anti-inflammatory activity. ACS Nano. 2018;12(9):8943-60. doi: 10.1021/acsnano.8b02037, PMID 30114351.

87. Lobatto ME, Calcagno C, Millon A, Senders ML, Fay F, Robson PM. Atherosclerotic plaque targeting mechanism of long-circulating nanoparticles established by multimodal imaging. ACS Nano. 2015;9(2):1837-47. doi: 10.1021/nn506750r, PMID 25619964.

88. Iiyama K, Hajra L, Iiyama M, Li H, DiChiara M, Medoff BD. Pat-terns of vascular cell adhesion molecule-1 and intercellular ad-hesion molecule-1 expression in rabbit and mouse atheroscle-rotic lesions and at sites predisposed to lesion formation. Circ Res. 1999;85(2):199-207. doi: 10.1161/01.res.85.2.199, PMID 10417402.

89. Bruckman MA, Jiang K, Simpson EJ, Randolph LN, Luyt LG, Yu X. Dual-modal magnetic resonance and fluorescence imaging of atherosclerotic plaques in vivo using VCAM-1 targeted tobacco mosaic virus. Nano Lett. 2014;14(3):1551-8. doi: 10.1021/nl404816m, PMID 24499194.

90. Kao CW, Wu PT, Liao MY. Magnetic nanoparticles conjugated with peptides derived from monocyte chemoattractant pro-tein1 as a tool for targeting atherosclerosis. Pharm Res. 2016;33(6):1391-400.

91. Kamaly N, Fredman G, Fojas JJ, Subramanian M, Choi WI, Zepeda K. Targeted interleukin-10 nanotherapeutics developed with a microfluidic chip enhance resolution of inflammation in advanced atherosclerosis. ACS Nano. 2016;10(5):5280-92. doi: 10.1021/acsnano.6b01114, PMID 27100066.

92. Ma S, Tian XY, Zhang Y, Mu C, Shen H, Bismuth J. E-selectin tar-geting delivery of microRNAs by microparticles ameliorates endothelial inflammation and atherosclerosis. Sci Rep. 2016;6:22910. doi: 10.1038/srep22910, PMID 26956647.

93. Beldman TJ, Senders ML, Alaarg A, Perez Medina C, Tang J, Zhao Y. Hyaluronan nanoparticles selectively target plaque-associated macrophages and improve plaque stability in atherosclerosis. ACS Nano. 2017;11(6):5785-99. doi: 10.1021/acsnano.7b01385, PMID 28463501.

94. Stern R, Asari AA, Sugahara KN. Hyaluronan fragments: an information rich system. Eur J Cell Biol. 2006;85(8):699-715. doi: 10.1016/j.ejcb.2006.05.009, PMID 16822580.

95. O Brien KD, Allen MD, McDonald TO, Chait A, Harlan JM, Fishbein D. Vascular cell adhesion molecule-1 is expressed in human coronary atherosclerotic plaques. Implications for the mode of progression of advanced coronary atherosclerosis. J Clin Invest. 1993;92(2):945-51. doi: 10.1172/JCI116670, PMID 7688768.

96. Nahrendorf M, Jaffer FA, Kelly KA, Sosnovik DE, Aikawa E, Libby P. Noninvasive vascular cell adhesion molecule-1 imaging identifies inflammatory activation of cells in atherosclerosis. Circulation. 2006;114(14):1504-11. doi: 10.1161/CIRCULATIONAHA.106.646380, PMID 17000904.

97. Kheirolomoom A, Kim CW, Seo JW, Kumar S, Son DJ, Gagnon MK. Multifunctional nanoparticles facilitate molecular targeting and miRNA delivery to inhibit atherosclerosis in ApoE(-/-) mice. ACS Nano. 2015;9(9):8885-97. doi: 10.1021/acsnano.5b02611, PMID 26308181.

98. Boada C, Zinger A, Tsao C, Zhao P, Martinez JO, Hartman K. Rapamycin loaded biomimetic nanoparticles reverse vascular inflammation. Circ Res. 2020;126(1):25-37. doi: 10.1161/CIRCRESAHA.119.315185, PMID 31647755.

99. Wu G, Wei W, Zhang J, Nie W, Yuan L, Huang Y. A self-driven bioinspired nanovehicle by leukocyte membrane hitchhiking for early detection and treatment of atherosclerosis. Biomate-rials. 2020;250:119963. doi: 10.1016/j.biomaterials.2020.119963, PMID 32334199.

100. Song Y, Zhang N, Li Q, Chen J, Wang Q, Yang H. Biomimetic lipo-somes hybrid with platelet membranes for targeted therapy of atherosclerosis. Chem Eng J. 2021;408:127296. doi: 10.1016/j.cej.2020.127296.

101. Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C. VEGFR1-positive haematopoietic bone marrow pro-genitors initiate the pre-metastatic niche. Nature. 2005;438(7069):820-7. doi: 10.1038/nature04186, PMID 16341007.

102. Zimmer S, Grebe A, Bakke SS, Bode N, Halvorsen B, Ulas T. Cyclodextrin promotes atherosclerosis regression via macro-phage reprogramming. Sci Transl Med. 2016;8(333):333ra50. doi: 10.1126/scitranslmed.aad6100, PMID 27053774.

103. Chourpiliadis C, Aeddula NR. Physiology, glucocorticoids. Tresure island (FL): StatPearls Publishing; 2023.

104. Day RA, Sletten EM. Perfluorocarbon nanomaterials for photo-dynamic therapy. Curr Opin Colloid Interface Sci. 2021;54:101454. doi: 10.1016/j.cocis.2021.101454, PMID 34504391.

105. Han X, Xu K, Taratula O, Farsad K. Applications of nanoparticles in biomedical imaging. Nanoscale. 2019;11(3):799-819. doi: 10.1039/c8nr07769j, PMID 30603750.

106. Rethi L, Rethi L, Liu CH, Hyun TV, Chen CH, Chuang EY. Fortifi-cation of iron oxide as sustainable nanoparticles: an amalgama-tion with magnetic/photo responsive cancer therapies. Int J Nanomedicine. 2023;18:5607-23. doi: 10.2147/IJN.S404394, PMID 37814664.

Published

07-11-2025

How to Cite

DHORAI, M., NIZAM, I., ASAITHAMBI, K., & KUPPUSAMY, G. (2025). ADVANCEMENTS IN LIPID-BASED NANOTHERANOSTICS FOR MANAGING ATHEROSCLERO-SIS: A REVIEW. International Journal of Applied Pharmaceutics, 17(6), 38–48. https://doi.org/10.22159/ijap.2025v17i6.51321

Issue

Section

Review Article(s)

Similar Articles

<< < 4 5 6 7 8 > >> 

You may also start an advanced similarity search for this article.