NETWORK PHARMACOLOGY BASED COMPUTATIONAL STUDY TO INVESTIGATE THE POTENTIAL MECHANISM OF SYZYGIUM CARYOPHYLLATUM AGAINST COLON CANCER

Authors

  • RAMADEVI PEMMEREDDY Department of Pharmacognosy, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India https://orcid.org/0000-0003-3667-1781
  • AJAY MILI Department of Pharmacognosy, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India https://orcid.org/0000-0002-0718-6114
  • BHARATH HAROHALLI BYREGOWDA Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India https://orcid.org/0000-0002-1362-2090
  • JYOTHI GIRIDHAR Department of Pharmaceutical chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India https://orcid.org/0009-0000-7274-711X
  • SREEDHARA RANGANATH PAI K Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India https://orcid.org/0000-0002-2017-9533
  • ANNA MATHEW Department of Pharmacognosy, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
  • VASUDEV PAI Department of Pharmacognosy, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India https://orcid.org/0000-0002-5147-6389
  • CHANDRASHEKAR K. S Department of Pharmacognosy, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India https://orcid.org/0000-0003-3667-1781

DOI:

https://doi.org/10.22159/ijap.2025v17i1.52490

Keywords:

Syzygium caryophyllatum, GC-MS analysis, SRB assay, Network pharmacology, Molecular docking

Abstract

Objective: Syzygium caryophyllatum, a traditional medicinal plant from the Myrtaceae family, is rich in potential phytoconstituents. Based on its ethnobotanical uses and documented pharmacological activities, present work was conducted to evaluate the probable mechanism of action of S. caryophyllatum to manage colon cancer by integrating network pharmacology and computational studies.

Methods: The plant extract was prepared by Soxhlet extraction method and in vitro screening was performed using Sulforhodamine (SRB) Assay on HT 29 cancer cell lines. We have used super-PRED database, Cytoscape network analyser tool, string database and CytoHubba for performing network analysis for the extract compounds reported in GC-MS analysis. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and DAVID databases were used for gene set enrichment analysis. We have used Schrödinger suite Version 11.4's to perform computational studies.

Results: The extract has demonstrated significant in vitro cytotoxic activity (IC50 value is 49.01 µg/ml) and the GC-MS analysis identified seventy-six distinct compounds. The Gene Ontology (GO) and KEGG demonstrated that the shared targets were strongly associated with key processes involved in colon cancer. The current study has identified Estrogen Receptor Alpha (ESR1), Heat Shock Protein 90 Alpha Family Class A Member 1 (HSP90AA1), Mitogen-activated protein kinase 3 (MAP3K), Epidermal Growth Factor Receptor (EGFR) and Signal transducer and activator of transcription 3 (STAT3) proteins as essential targets and 5,7-Dihydroxy-2-undecyl-4H-chromen-4-one, 7a,12-Dihydroindolo[2,3-a] quinolizine, 5-hydroxy-7-methoxy-2-methyl-8-(3-methylbutyl) chromen-4-one as key compounds. Docking studies of the compounds with core proteins completely supplemented their binding affinity and suggested strong interactions at the binding site.

Conclusion: These outcomes highlight the multi-target, multi-compound, and multi-pathway approaches of S. caryophyllatum against colon cancer.

References

World Health Organization. World health statistics 2023: monitoring health for the SDGS sustainable development goals. Available from: https://www.who.int/publications/i/item/9789240074323. [Last accessed on 10 Dec 2023].

Kumar A, Gautam V, Sandhu A, Rawat K, Sharma A, Saha L. Current and emerging therapeutic approaches for colorectal cancer: a comprehensive review. World J Gastrointest Surg. 2023 Apr 4;15(4):495-519. doi: 10.4240/wjgs.v15.i4.495, PMID 37206081.

Negarandeh R, Salehifar E, Saghafi F, Jalali H, Janbabaei G, Abdhaghighi MJ. Evaluation of adverse effects of chemotherapy regimens of 5-fluoropyrimidines derivatives and their association with DPYD polymorphisms in colorectal cancer patients. BMC Cancer. 2020 Dec;20(1):560. doi: 10.1186/s12885-020-06904-3, PMID 32546132.

Wang M, Liu X, Chen T, Cheng X, Xiao H, Meng X. Inhibition and potential treatment of colorectal cancer by natural compounds via various signaling pathways. Front Oncol. 2022 Sep 8;12:956793. doi: 10.3389/fonc.2022.956793, PMID 36158694.

Atanasov AG, Zotchev SB, Dirsch VM, International Natural Product Sciences Taskforce, Supuran CT. Natural products in drug discovery: advances and opportunities. Nat Rev Drug Discov. 2021 Mar;20(3):200-16. doi: 10.1038/s41573-020-00114-z, PMID 33510482.

Dias DA, Urban S, Roessner U. A historical overview of natural products in drug discovery. Metabolites. 2012 Apr 16;2(2):303-36. doi: 10.3390/metabo2020303, PMID 24957513.

Shaikh AM, Shrivastava B, Apte KG, Navale SD. Medicinal plants as potential source of anticancer agents: a review. J Pharmacogn Phytochem. 2016;5(2):291-5.

Ediriweera ER, Ratnasooriya WD. A review on herbs used in treatment of diabetes mellitus by Sri Lankan ayurvedic and traditional physicians. Ayu. 2009 Oct 1;30(4):373-91.

Shilpa KJ, Krishnakumar G. Nutritional fermentation and pharmacological studies of Syzygium caryophyllatum (L.) Alston and Syzygium zeylanicum (L.) DC fruits. Cogent Food Agric. 2015 Dec 31;1(1):1018694. doi: 10.1080/23311932.2015.1018694.

NS, P SS. Screening of phytochemical and pharmacological activities of Syzygium caryophyllatum (L.) Alston. Clin Phytosci. 2018 Dec 1;4(1). doi: 10.1186/s40816-017-0059-2.

Rabeque CS, Padmavathy S. Hypoglycaemic effect of Syzygium caryophyllatum (L.) Alston on alloxan-induced diabetic albino mice. Asian J Pharm Clin Res. 2013;6(4):203-5.

Raj R, Chandrashekar KS, Pai V. In vitro anticancer activity of Syzygium caryophyllatum L. on hela cell lines using MTT assay. Lat Am J Pharmacol. 2018 Jan 1;37(5):1046-8.

Patwardhan B, Chandran U. Network ethnopharmacology approaches for formulation discovery. Indian J Tradit Knowl. 2015;14:574-80.

Zhao L, Zhang H, LI N, Chen J, XU H, Wang Y. Network pharmacology a promising approach to reveal the pharmacology mechanism of Chinese medicine formula. J Ethnopharmacol. 2023 Jun 12;309:116306. doi: 10.1016/j.jep.2023.116306, PMID 36858276.

Orellana EA, Kasinski AL. Sulforhodamine B (SRB) assay in cell culture to investigate cell proliferation. Bio Protoc. 2016 Nov 5;6(21):e1984. doi: 10.21769/BioProtoc.1984, PMID 28573164.

Houghton P, Fang R, Techatanawat I, Steventon G, Hylands PJ, Lee CC. The sulphorhodamine (SRB) assay and other approaches to testing plant extracts and derived compounds for activities related to reputed anticancer activity. Methods. 2007 Aug 1;42(4):377-87. doi: 10.1016/j.ymeth.2007.01.003, PMID 17560325.

Omoboyede V, Onile OS, Oyeyemi BF, Aruleba RT, Fadahunsi AI, Oke GA. Unravelling the anti-inflammatory mechanism of Allium cepa: an integration of network pharmacology and molecular docking approaches. Mol Divers. 2024 Apr;28(2):727-47. doi: 10.1007/s11030-023-10614-w, PMID 36867320.

YU JW, Yuan HW, Bao LD, SI LG. Interaction between piperine and genes associated with sciatica and its mechanism based on molecular docking technology and network pharmacology. Mol Divers. 2021 Feb;25(1):233-48. doi: 10.1007/s11030-020-10055-9, PMID 32130644.

Mutiah R, Rachmawati E, Zahiro SR, Milliana A. Elucidating the active compound profile and mechanisms of Dendrophthoe pentandra on colorectal cancer: LCMS/MS identification and network pharmacology analysis. J Appl Pharm Sci. 2024 Feb 5;14(2):222-31. doi: 10.7324/JAPS.2024.152900.

Sachdeo R, Khanwelkar C, Shete A. In silico exploration of berberine as a potential wound healing agent via network pharmacology molecular docking and molecular dynamics simulation. Int J App Pharm. 2024;16(2):188-94. doi: 10.22159/ijap.2024v16i2.49922.

Tan S, Yulandi A, Tjandrawinata RR. Network pharmacology study of Phyllanthus niruri: potential target proteins and their hepatoprotective activities. J Appl Pharm Sci. 2023 Dec 5;13(12):232-42. doi: 10.7324/JAPS.2023.146937.

Gadewar MA, Lal BH. Molecular docking and screening of drugs for 6lu7 protease inhibitor as a potential target for COVID-19. Int J App Pharm. 2022;14(1):100-5. doi: 10.22159/ijap.2022v14i1.43132.

Nurhasanah NE, Fadilah FA, Bahtiar AN. Prediction of active compounds of Muntingia calabura as potential treatment for chronic obstructive pulmonary diseases by network pharmacology integrated with molecular docking. Int J App Pharm. 2023 Jan 1;15(1):274-9. doi: 10.22159/ijap.2023v15i1.46281.

Mili A, Birangal S, Nandakumar K, Lobo R. A computational study to identify sesamol derivatives as NRF2 activator for protection against drug-induced liver injury (DILI). Mol Divers. 2024 Jun;28(3):1709-31. doi: 10.1007/s11030-023-10686-8, PMID 37392347.

Mehta SI, Pathak SR. In silico drug design and molecular docking studies of novel coumarin derivatives as anticancer agents. Asian J Pharm Clin Res. 2017;10(4):335-40. doi: 10.22159/ajpcr.2017.v10i4.16826.

Sahayarayan JJ, Rajan KS, Vidhyavathi R, Nachiappan M, Prabhu D, Alfarraj S. In silico protein-ligand docking studies against the estrogen protein of breast cancer using pharmacophore-based virtual screening approaches. Saudi J Biol Sci. 2021 Jan 1;28(1):400-7. doi: 10.1016/j.sjbs.2020.10.023, PMID 33424323.

Suresh AJ, Devi R, Noorulla KM, Surya PR. Insights into thioridazine for its antitubercular activity from molecular docking studies. Int J Pharm Pharm Sci. 2015;7(3):344-6.

Bhat NB, Das S, Sridevi BV, H RC, Nayaka S, SN. Molecular docking and dynamics supported investigation of antiviral activity of lichen metabolites of roccella montagnei: an in silico and in vitro study. J Biomol Struct Dyn. 2023 Dec 29;41(21):11484-97. doi: 10.1080/07391102.2023.2180666, PMID 36803674.

Vanajothi R, Hemamalini V, Jeyakanthan J, Premkumar K. Ligand based pharmacophore mapping and virtual screening for identification of potential discoidin domain receptor 1 inhibitors. J Biomol Struct Dyn. 2020 Jun 12;38(9):2800-8. doi: 10.1080/07391102.2019.1640132, PMID 31269869.

Kumar S, Sharma PP, Shankar U, Kumar D, Joshi SK, Pena L. Discovery of new hydroxyethylamine analogs against 3CLpro protein target of SARS-CoV-2: molecular docking molecular dynamics simulation and structure-activity relationship studies. J Chem Inf Model. 2020 Jun 2;60(12):5754-70. doi: 10.1021/acs.jcim.0c00326, PMID 32551639.

Mahgoub MA, Alnaem A, Fadlelmola M, Abo Idris M, Makki AA, Abdelgadir AA. Discovery of novel potential inhibitors of TMPRSS2 and Mpro of SARS‐CoV‐2 using E-pharmacophore and docking-based virtual screening combined with molecular dynamic and quantum mechanics. J Biomol Struct Dyn. 2023 Sep 22;41(14):6775-88. doi: 10.1080/07391102.2022.2112080, PMID 35997154.

Gao Y, Nan Z. Mechanistic insights into the use of rhubarb in diabetic kidney disease treatment using network pharmacology. Medicine. 2022 Jan 7;101(1):e28465. doi: 10.1097/MD.0000000000028465, PMID 35029893.

Pang X, FU W, Wang J, Kang D, XU L, Zhao Y. Identification of estrogen receptor α antagonists from natural products via in vitro and in silico approaches. Oxid Med Cell Longev. 2018;2018(1):6040149. doi: 10.1155/2018/6040149, PMID 29861831.

Brasca MG, Mantegani S, Amboldi N, Bindi S, Caronni D, Casale E. Discovery of NMS-E973 as novel selective and potent inhibitor of heat shock protein 90 (Hsp90). Bioorg Med Chem. 2013 Nov 15;21(22):7047-63. doi: 10.1016/j.bmc.2013.09.018, PMID 24100158.

Kinoshita T, Yoshida I, Nakae S, Okita K, Gouda M, Matsubara M. Crystal structure of human mono phosphorylated ERK1 at Tyr204. Biochem Biophys Res Commun. 2008 Dec 26;377(4):1123-7. doi: 10.1016/j.bbrc.2008.10.127, PMID 18983981.

Heppner DE, Gunther M, Wittlinger F, Laufer SA, Eck MJ. Structural basis for EGFR mutant inhibition by trisubstituted imidazole inhibitors. J Med Chem. 2020 Apr 3;63(8):4293-305. doi: 10.1021/acs.jmedchem.0c00200, PMID 32243152.

Heppner DE, Wittlinger F, Beyett TS, Shaurova T, Urul DA, Buckley B. Structural basis for inhibition of mutant EGFR with lazertinib (YH25448). ACS Med Chem Lett. 2022 Nov 10;13(12):1856-63. doi: 10.1021/acsmedchemlett.2c00213, PMID 36518696.

Bai L, Zhou H, XU R, Zhao Y, Chinnaswamy K, Mc Eachern D. A potent and selective small molecule degrader of STAT3 achieves complete tumor regression in vivo. Cancer Cell. 2019 Nov 11;36(5):498-511.e17. doi: 10.1016/j.ccell.2019.10.002, PMID 31715132.

Patel R, Kumar A, Lokhande KB, Swamy KV, Sharma NK. Molecular docking and simulation studies predict lactyl-CoA as the substrate for P300-directed lactylation; 2020.

Zhang Y, Yuan T, LI Y, WU N, Dai X. Network pharmacology analysis of the mechanisms of compound herba sarcandrae (Fufang Zhongjiefeng) aerosol in chronic pharyngitis treatment. Drug Des Devel Ther. 2021 Jun 28;15:2783-803. doi: 10.2147/DDDT.S304708, PMID 34234411.

Adrian MF, Lubis MF, Syahputra RA, Astyka R, Sumaiyah S, Yudha Harahap MA. The potential effect of aporphine alkaloids from Nelumbo nucifera gaertn. As anti-breast cancer based on network pharmacology and molecular docking. Int J App Pharm. 2024;16(1):280-7. doi: 10.22159/ijap.2024v16i1.49171.

Sachdeo R, khanwelkar C, Shete A. In silico exploration of berberine as a potential wound healing agent via network pharmacology molecular docking and molecular dynamics simulation. Int J App Pharm. 2024;16(2):188-94. doi: 10.22159/ijap.2024v16i2.49922.

LI L, Yang L, Yang L, HE C, HE Y, Chen L. Network pharmacology: a bright guiding light on the way to explore the personalized precise medication of traditional Chinese medicine. Chin Med. 2023 Nov 8;18(1):146. doi: 10.1186/s13020-023-00853-2, PMID 37941061.

Sakle NS, More SA, Mokale SN. A network pharmacology-based approach to explore potential targets of Caesalpinia pulcherima: an updated prototype in drug discovery. Sci Rep. 2020 Oct 14;10(1):17217. doi: 10.1038/s41598-020-74251-1, PMID 33057155.

Fan W, Gao X, Ding C, LV Y, Shen T, MA G. Estrogen receptors participate in carcinogenesis signaling pathways by directly regulating NOD-like receptors. Biochem Biophys Res Commun. 2019 Apr 2;511(2):468-75. doi: 10.1016/j.bbrc.2019.02.085, PMID 30797557.

Das PK, Saha J, Pillai S, Lam AK, Gopalan V, Islam F. Implications of estrogen and its receptors in colorectal carcinoma. Cancer Med. 2023 Feb;12(4):4367-79. doi: 10.1002/cam4.5242, PMID 36207986.

Urosevic J, Nebreda AR, Gomis RR. MAPK signaling control of colon cancer metastasis. Cell Cycle. 2014 Sep 2;13(17):2641-2. doi: 10.4161/15384101.2014.946374, PMID 25486343.

Slattery ML, Lundgreen A, Wolff RK. MAP kinase genes and colon and rectal cancer. Carcinogenesis. 2012 Dec 1;33(12):2398-408. doi: 10.1093/carcin/bgs305, PMID 23027623.

Baba Y, Nosho K, Shima K, Meyerhardt JA, Chan AT, Engelman JA. Prognostic significance of AMP-activated protein kinase expression and modifying effect of MAPK3/1 in colorectal cancer. Br J Cancer. 2010 Sep;103(7):1025-33. doi: 10.1038/sj.bjc.6605846, PMID 20808308.

Szczuka I, Wierzbicki J, Serek P, Szczesniak Siega BM, Krzystek Korpacka M. Heat shock proteins HSPA1 and HSP90AA1 are upregulated in colorectal polyps and can be targeted in cancer cells by anti-inflammatory oxicams with arylpiperazine pharmacophore and benzoyl moiety substitutions at thiazine ring. Biomolecules. 2021 Oct 27;11(11):1588. doi: 10.3390/biom11111588, PMID 34827586.

Lacey T, Lacey H. Linking hsp90’s role as an evolutionary capacitator to the development of cancer. Cancer Treat Res Commun. 2021 Jan 1;28:100400. doi: 10.1016/j.ctarc.2021.100400, PMID 34023771.

Mitra S, Dash R, Munni YA, Selsi NJ, Akter N, Uddin MN. Natural products targeting Hsp90 for a concurrent strategy in glioblastoma and neurodegeneration. Metabolites. 2022 Nov 21;12(11):1153. doi: 10.3390/metabo12111153, PMID 36422293.

Gargalionis AN, Papavassiliou KA, Papavassiliou AG. Targeting STAT3 signaling pathway in colorectal cancer. Biomedicines. 2021 Aug 15;9(8):1016. doi: 10.3390/biomedicines9081016, PMID 34440220.

Wei N, LI J, Fang C, Chang J, Xirou V, Syrigos NK. Targeting colon cancer with the novel STAT3 inhibitor bruceantinol. Oncogene. 2019 Mar 7;38(10):1676-87. doi: 10.1038/s41388-018-0547-y, PMID 30348989.

Lin HC, HO AS, Huang HH, Yang BL, Shih BB, Lin HC. STAT3 mediated gene expression in colorectal cancer cells derived cancer stem-like tumorspheres. Adv in Digestive Medicine. 2021 Dec;8(4):224-33. doi: 10.1002/aid2.13223.

Wan ML, Wang Y, Zeng Z, Deng B, Zhu BS, Cao T. Colorectal cancer (CRC) as a multifactorial disease and its causal correlations with multiple signaling pathways. Biosci Rep. 2020 Mar;40(3). doi: 10.1042/BSR20200265, PMID 32149326.

Duan YD, Jiang YY, Guo FX, Chen LX, XU LL, Zhang W. The antitumor activity of naturally occurring chromones: a review. Fitoterapia. 2019;135:114-29. doi: 10.1016/j.fitote.2019.04.012, PMID 31029639.

Maicheen C, Phosrithong N, Ungwitayatorn J. Docking study on anticancer activity of chromone derivatives. Med Chem Res. 2013 Jan;22(1):45-56. doi: 10.1007/s00044-012-0009-y.

Published

07-01-2025

How to Cite

PEMMEREDDY, R., MILI, A., BYREGOWDA, B. H., GIRIDHAR, J., K, S. R. P., MATHEW, A., … K. S, C. (2025). NETWORK PHARMACOLOGY BASED COMPUTATIONAL STUDY TO INVESTIGATE THE POTENTIAL MECHANISM OF SYZYGIUM CARYOPHYLLATUM AGAINST COLON CANCER. International Journal of Applied Pharmaceutics, 17(1), 161–173. https://doi.org/10.22159/ijap.2025v17i1.52490

Issue

Section

Original Article(s)

Similar Articles

<< < 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.