IN SILICO INVESTIGATION OF SMALLANTHUS SONCHIFOLIUS COMPOUNDS AS DPP-4 INHIBITORS FOR ANTIDIABETIC MECHANISMS

Authors

  • NOVI YANTIH Department of Pharmaceutical Science, Faculty of Pharmacy, Pancasila University, South Jakarta, Jakarta, Indonesia
  • ZUHELMI AZIZ Department of Pharmaceutical Science, Faculty of Pharmacy, Pancasila University, South Jakarta, Jakarta, Indonesia
  • ESTI MUMPUNI Department of Pharmaceutical Science, Faculty of Pharmacy, Pancasila University, South Jakarta, Jakarta, Indonesia https://orcid.org/0000-0002-9208-8040
  • NURUL WIDAYANTI Department of Pharmaceutical Science, Faculty of Pharmacy, Pancasila University, South Jakarta, Jakarta, Indonesia
  • ANDRI PRASETIYO Department of Pharmaceutical Science, Faculty of Pharmacy, Pancasila University, South Jakarta, Jakarta, Indonesia https://orcid.org/0000-0002-9936-6058

DOI:

https://doi.org/10.22159/ijap.2025v17i2.52741

Keywords:

Smallanthus sonchifolius, In-silico, DPP-4 inhibitor

Abstract

Objective: Smallanthus sonchifolius has been scientifically demonstrated to possess antidiabetic activity through the inhibition of DPP-4 in in vitro studies. However, there is still a lack of comprehensive research identifying the specific bioactive compounds responsible for this effect. This research specifically aims to explore the potential of bioactive compounds from Smallanthussonchifoliusas DPP-4 inhibitors, a known target for antidiabetic treatment, using in silico techniques.

Methods: The methodologies employed in this study includedmolecular docking, ADMET prediction, and molecular dynamics simulation. The docking process was conducted on 20 test compounds against native ligands within the receptor designated by code 3G0B, as well as against comparative compounds.

Results: Molecular docking analysis revealed four compounds—3,4-dicaffeoylquinic acid, Nystose, 1,3-O-dicaffeoylquinic acid, and 3,5-caffeoylquinic acid-that exhibited lower rerank scores than the positive control, alogliptin. Further investigation through molecular dynamics simulations demonstrated that the Nystose-ligand complex displayed stable binding dynamics similar to alogliptin, maintaining consistent interactions throughout the simulation. Key amino acid residues, including Glu205, Glu206, Ser209, Tyr547, Tyr662, and Ser630, were involved in critical hydrogen bonding, contributing to the stability of the Nystose complex. However, despite its promising binding profile, Nystose is predicted to have limited intestinal absorption due to the high number of polar substituents, which may impact its bioavailability.

Conclusion: Nystose is predicted to act as a DPP-4 inhibitor for diabetes treatment based on findings from molecular docking and molecular dynamics simulations.

References

International Diabetes Federation International Diabetes Federation. IDF diabetes atlas. 10th ed. Boyko EJ, Magliano DJ, Karuranga S, Piemonte L, Riley P, Saeedi P. editors; 2021.

Salvo F, Moore N, Arnaud M, Robinson P, Raschi E, DE Ponti F. Addition of dipeptidyl peptidase-4 inhibitors to sulphonylureas and risk of hypoglycaemia: systematic review and meta-analysis. BMJ. 2016;353:2231. doi: 10.1136/bmj.i2231, PMID 27142267.

D Andrea E, Wexler DJ, Kim SC, Paik JM, Alt E, Patorno E. Comparing the effectiveness and safety of SGLT2 inhibitors vs DPP-4 inhibitors in patients with type 2 diabetes and varying baseline HbA1c levels. JAMA Intern Med. 2023;183(3):242-54. doi: 10.1001/jamainternmed.2022.6664, PMID 36745425.

Natale P, Palmer SC, Tunnicliffe DJ, Toyama T, Strippoli GF. Thiazolidinediones for people with chronic kidney disease and diabetes. Cochrane Database Syst Rev. 2023 Sep 7;2023(9):CD015907.

Chandra V, Yadav P, Raghuvanshi V, Pandey P. Diabetes and ethnomedicine a comprehensive review of scientific literature on traditional medical practices. J Pharm Res. 2023;8(2).

Riyanti S, Suganda AG, Sukandar EY. Dipeptidyl peptidase IV inhibitory activity of some Indonesian medicinal plants. Asian J Pharm Clin Res. 2016;9(2):375-7.

Baroni S, Suzuki Kemmelmeier F, Caparroz Assef SM, Cuman RK, Bersani Amado CA. Effect of crude extracts of leaves of smallanthus sonchifolius (yacon) on glycemia in diabetic rats. Rev Bras Cienc Farm. 2008;44(3):521-30. doi: 10.1590/S1516-93322008000300024.

Hachkova H, Nagalievska M, Soliljak Z, Kanyuka O, Kucharska AZ, Sokol Letowska A. Medicinal plants Galega officinalis l. and yacon leaves as potential sources of antidiabetic drugs. Antioxidants (Basel). 2021;10(9):1362. doi: 10.3390/antiox10091362, PMID 34572994.

Brogi S, Ramalho TC, Kuca K, Medina Franco JL, Valko M. Editorial: in silico methods for drug design and discovery. Front Chem. 2020 Aug 7;8:612. doi: 10.3389/fchem.2020.00612, PMID 32850641.

Prasetiyo A, Mumpuni E, Luthfiana D, Herowati R, Putra GS. In silico discovery of potential sodium glucose cotransporter-2 (SGLT-2) inhibitors from Smallanthus sonchifolius (Poepp.) H. Rob. Via molecular docking and molecular dynamics simulation approach. Journal of Pharmacy & Pharmacognosy Research 2025;13(3):716-28. doi: 10.56499/jppres24.2104_13.3.716.

Komura H, Watanabe R, Mizuguchi K. The trends and future prospective of in silico models from the viewpoint of ADME evaluation in drug discovery. Pharmaceutics. 2023;15(11):2619. doi: 10.3390/pharmaceutics15112619, PMID 38004597.

Bitencourt Ferreira G, DE Azevedo WF. Molegro virtual docker for docking. Methods Mol Biol. 2019;2053:149-67. doi: 10.1007/978-1-4939-9752-7_10, PMID 31452104.

Torres PH, Sodero AC, Jofily P, Silva JR FP. Key topics in molecular docking for drug design. Int J Mol Sci. 2019;20(18):4574. doi: 10.3390/ijms20184574, PMID 31540192.

Prasetiyo A, Kumala S, Mumpuni E, Tjandrawinata RR. Validation of structural based virtual screening protocols with the PDB Code 3G0B and prediction of the activity of Tinospora crispa compounds as inhibitors of dipeptidyl peptidase IV. Res Results Pharmacol. 2022;8(1):95-102. doi: 10.3897/rrpharmacology.8.76237.

Edache EI, Uzairu A, Shallangwa GA, Mamza PA. Virtual screening pharmacokinetics and molecular dynamics simulations studies to identify potent approved drugs for chlamydia trachomatis treatment. Futur J Pharm Sci. 2021;7(1). doi: 10.1186/s43094-021-00367-4.

Farkhani A, Sauriasari R, Yanuar A. In silico approach for screening of the Indonesian medicinal plants database to discover potential dipeptidyl peptidase-4 inhibitors. Int J Appl Pharm. 2020;12(1):60-8.

Bitew M, Desalegn T, Demissie TB, Belayneh A, Endale M, Eswaramoorthy R. Pharmacokinetics and drug likeness of antidiabetic flavonoids: molecular docking and DFT study. Plos One. 2021 Dec;16(12):e0260853. doi: 10.1371/journal.pone.0260853, PMID 34890431.

WU D, Chen Q, Chen X, Han F, Chen Z, Wang Y. The blood brain barrier: structure regulation and drug delivery. Signal Transduct Target Ther. 2023;8(1):217. doi: 10.1038/s41392-023-01481-w, PMID 37231000.

Yogini CS, Kumar CS, Anuradha CM, Chitturi CH. Computational assessment of Undaria pinnatifida and Moringa oleifera compounds as anti-obesity agents. Int J App Pharm. 2024;16(5):309-26. doi: 10.22159/ijap.2024v16i5.50867.

Maeda K, Das D, Kobayakawa T, Tamamura H, Takeuchi H. Discovery and development of anti-HIV therapeutic agents: progress towards improved HIV medication. Curr Top Med Chem. 2019;19(18):1621-49. doi: 10.2174/1568026619666190712204603, PMID 31424371.

Prasetiyo A, Mumpuni E, Luthfiana D, Herowati R, Putra GS. In silico discovery of potential sodium glucose cotransporter-2 (SGLT-2) inhibitors from smallanthus sonchifolius (Poepp.) H. Rob. Via molecular docking and molecular dynamics simulation approach. Journal of Pharmacy & Pharmacognosy Research 2025;13(3):716-28.

Imai M, Yamane T, Kozuka M, Takenaka S, Sakamoto T, Ishida T. Caffeoylquinic acids from aronia juice inhibit both dipeptidyl peptidase IV and α-glucosidase activities. LWT. 2020;129:109544. doi: 10.1016/j.lwt.2020.109544.

Alam S, Sarker MM, Sultana TN, Chowdhury MN, Rashid MA, Chaity NI. Antidiabetic phytochemicals from medicinal plants: prospective candidates for new drug discovery and development. Front Endocrinol (Lausanne). 2022 Dec;13:800714. doi: 10.3389/fendo.2022.800714, PMID 35282429.

Batool M, Ahmad B, Choi S. A structure based drug discovery paradigm. Int J Mol Sci. 2019;20(11):2783. doi: 10.3390/ijms20112783, PMID 31174387.

DU X, LI Y, Xia YL, AI SM, Liang J, Sang P. Insights into protein ligand interactions: mechanisms models and methods. Int J Mol Sci. 2016;17(2):144. doi: 10.3390/ijms17020144, PMID 26821017.

James JP, Srinivasa MG, Sindhu TJ, Jouhara BM, Revanasiddappa BC, C ZF. Invetigating multi target potential mucuna pruriens park dis insight from molecular docking MMGBSA pharmacophore modeling MD simulation and ADMET analysis. International Journal of Applied Pharmaceutics 2024;16(5):176-93. doi: 10.22159/ijap.2024v16i5.51474.

Odhar HA, Hashim AF, Ahjel SW, Humadi SS. Molecular docking and dynamics simulation analysis of the human FXIIa with compounds from the Mcule database. Bioinformation. 2023;19(2):160-6. doi: 10.6026/97320630019160, PMID 37814681.

Istyastono EP, Octa Riswanto FD. Molecular dynamics simulations of the caffeic acid interactions to dipeptidyl peptidase IV. Int J App Pharm. 2022;14(4):274-8. doi: 10.22159/ijap.2022v14i4.44631.

Published

07-03-2025

How to Cite

YANTIH, N., AZIZ, Z., MUMPUNI, E., WIDAYANTI, N., & PRASETIYO, A. (2025). IN SILICO INVESTIGATION OF SMALLANTHUS SONCHIFOLIUS COMPOUNDS AS DPP-4 INHIBITORS FOR ANTIDIABETIC MECHANISMS. International Journal of Applied Pharmaceutics, 17(2), 393–401. https://doi.org/10.22159/ijap.2025v17i2.52741

Issue

Section

Original Article(s)

Similar Articles

<< < 4 5 6 7 8 > >> 

You may also start an advanced similarity search for this article.