NANOEMULSION OF CHAMPACA FLOWER (MAGNOLIA ALBA) OIL AS AN ANTIBACTERIAL CANDIDATE: OPTIMIZATION, CHARACTERIZATION, AND THERMODYNAMIC STABILITY TESTING

Authors

  • NI NYOMAN YUDIANTI MENDRA Department of Pharmaceutics, Faculty of Pharmacy, Universitas Mahasaraswati Denpasar, Bali, Indonesia https://orcid.org/0000-0002-7768-5680
  • I. GEDE MADE SURADNYANA Department of Pharmaceutics, Faculty of Pharmacy, Universitas Mahasaraswati Denpasar, Bali, Indonesia
  • I. GUSTI AGUNG AYU KUSUMA WARDANI Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Mahasaraswati Denpasar, Bali, Indonesia https://orcid.org/0000-0002-9664-0023
  • MARIA MALIDA VERNANDES SASADARA Department of Natural Pharmacy, Faculty of Pharmacy, Universitas Mahasaraswati Denpasar, Bali, Indonesia

DOI:

https://doi.org/10.22159/ijap.2025v17i2.53016

Keywords:

Antibacterial, Magnolia alba, Nanoemulsion, Simplex lattice design, Thermodynamic stability

Abstract

Objective: This study aims to investigate the antibacterial potential of Magnolia alba (M. alba) essential oil and to optimize the composition of the oil, surfactant mix, and distilled water in order to formulate a stable topical nanoemulsion of M. alba. The focus is on enhancing the thermodynamic stability and achieving a small particle size of the nanoemulsions.

Methods: The chemical composition of champaca oil was analyzed using Gas Chromatography-Mass Spectrometry (GC-MS), and its antibacterial activity against Staphylococcus aureus was evaluated through a dilution test, with ciprofloxacin serving as the positive control. The nanoemulsion was optimized using the Simplex Lattice Design (SLD) method in Design Expert 13.0, employing Virgin Coconut Oil (VCO) as the oil phase, Tween 80 as the surfactant, PEG 400 as the co-surfactant, and distilled water as the aqueous phase. We selected the optimal formula based on pH and transmittance values. The optimized nanoemulsion was further characterized for droplet size, zeta potential, and polydispersity index and was subjected to thermodynamic stability tests.

Results: M. alba oil contains cyclopentaneacetic acid, 3-oxo-2-pentyl-, methyl ester (15.83%), benzyl alcohol (6.89%), phenyl ethyl alcohol (5.72%), and linalool (4.31%), with a Minimum Inhibitory Concentration (MIC) of 2%. The optimized nanoemulsion formulation, comprising of 4% oil phase, 27% surfactant mix (Smix), and 69% aqueous phase, was clear and stable, with a pH of 5.33, a transmittance of 98.69%, a droplet size of 30.55 nm, a zeta potential of 1.21 mV, and a polydispersity index of 0.026.

Conclusion: M. alba oil exhibits promising antibacterial properties against Staphylococcus aureus. The optimized nanoemulsion formulation achieves thermodynamic stability and small droplet size, making it a potential candidate for topical antibacterial applications. Further investigations are required to assess long-term stability.

References

Cheng KK, Nadri MH, Othman NZ, Rashid SN, Lim YC, Leong HY. Phytochemistry bioactivities and traditional uses of michelia alba. Molecules. 2022;27(11):3450. doi: 10.3390/molecules27113450, PMID 35684387.

Munira S. Crude extracts of magnolia alba flowers using n-hexane and methanol solvents and their anti-acne potential. JMPAS. 2021;10(6):3789-93. doi: 10.22270/jmpas.V10I6.1607.

Nayaka NM, Swari NL, Widnyani DA, Sukmayanti NK, Yuda PE, Wardani I. Antidepressant like activity and physicochemical analysis of essential oils from Michelia alba and Plumeria alba flowers. JST (Jurnal Sains dan Teknol. 2022;11(2):397-402. doi: 10.23887/jstundiksha.v11i2.45291.

Khairan K, Septiya S, Murniana. Antibacterial activity of Magnolia alba flower extracts on staphylococcus epidermidis and staphylococcus aureus. IOP Conf Ser: Earth Environ Sci. 2021;711(1). doi: 10.1088/1755-1315/711/1/012017.

Mulyani S, Kusumawardani A, Pangesti AA. The antibacterial activity of liquid soap supplemented with extracts combination of Cyperus rotundus L. and flowers of Plumeria acuminata Michelia alba or Cananga odorata against staphylococcus aureus and escherichia coli bacteria. JKPK (Jurnal Kim dan Pendidik Kim). 2022;7(1):125-37. doi: 10.20961/jkpk.v7i1.61033.

HA CT, Thai TH, Diep LN, Thanh TX, Thuy DT, Tra NT. Chemical composition and antimicrobial activity of the essential oils from stems and leaves of Michelia alba D.C. growing in vietnam. Acad J Biol. 2018;40(3):96-105. doi: 10.15625/2615-9023/v40n3.13151.

Nasution R, Azwar AI, Helwati H, Marianne. Antibacterial activities of perfume: combination flower magnolia alba cananga odorata and mimusops elengi l. fixed with pogostemon cablin oil. IDJPCR. 2019;2(1):19-23. doi: 10.32734/idjpcr.v2i1.814.

Sumaiyah LBM, M Leisyah B. The effect of antioxidant of grapeseed oil as skin anti-aging in nanoemulsion and emulsion preparations. Rasayan J Chem. 2019;12(3):1185-94. doi: 10.31788/RJC.2019.1235337.

Maharani T, Sutharini MR, Megayanti K, Putri KT, Mayagita GA, Wijayanti NP. Evaluation and characterization of anti-acne nanoemulsion of ethyl acetate extract from mangosteen pericarp (Garcinia mangostana L.) with virgin coconut oil (VCO) and oilve oil (Oleum olivae). Int Conf Math Nat Sci; 2017. p. 18-22.

Pratiwi L, Fudholi A, Martien R, Pramono S. Self nano emulsifying drug delivery system (Snedds) for topical delivery of mangosteen peels (Garcinia mangostana l.): formulation design and in vitro studies. J Young Pharm. 2017;9(3):341-6. doi: 10.5530/jyp.2017.9.68.

Wulandari E, Alverina A, Martien R. Snedds (self nanoemulsifying drug delivery system) formulation of -carotene in olive oil (Olea europaea). Int J Adv Res. 2016;4(11):1031-43. doi: 10.21474/IJAR01/2179.

Juniatik M, Hidayati K, Wulandari FP, Pangestuti N, Munawaroh N, Martien R. Formulation of nanoemulsion mouthwash combination of lemongrass oil (Cympogon citratus) and kaffir lime oil (Citrus hystrix) against candida albicans ATCC 10231. Tradit Med J. 2017;22(1):7-15.

CLSI. Performance standards for antimicrobial susceptibility testing. 30th ed Wayne P, editor. CLSI supplement M100. Clinical and Laboratory Standards Institute; 2020.

Patel M, Ashraf MS, Siddiqui AJ, Ashraf SA, Sachidanandan M, Snoussi M. Profiling and role of bioactive molecules from puntius sophore (freshwater/brackish fish) skin mucus with its potent antibacterial antiadhesion and antibiofilm activities. Biomolecules. 2020;10(6):920. doi: 10.3390/biom10060920, PMID 32560562.

EUCAST. The European committee on antimicrobial susceptibility testing: breakpoint tables for interpretation of MICs and zone diameters. Version 14.0. EUCAST; 2024. Available from: http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_5.0_Breakpoint_Table_01.pdf. [Last accessed on 04 Feb 2025].

Bellio P, Fagnani L, Nazzicone L, Celenza G. New and simplified method for drug combination studies by checkerboard assay. Methods X. 2021;8:101543. doi: 10.1016/j.mex.2021.101543, PMID 34754811.

Costa JA, Lucas EF, Queiros YG, Mansur CR. Evaluation of nanoemulsions in the cleaning of polymeric resins. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2012 Dec 5;415:112-8. doi: 10.1016/j.colsurfa.2012.10.011.

Gupta PK, Pandit JK, Kumar A, Swaroop P, Gupta S. Pharmaceutical nanotechnology novel nanoemulsion high energy emulsification preparation evaluation and application. Pharm Res. 2010;3(3):117-38.

Pratiwi L. Novel antimicrobial activities of self nanoemulsifying drug delivery system ethyl acetate fraction from Garcinia mangostana L. peels against staphylococcus epidermidis: design optimization and in vitro studies. J Appl Pharm Sci. 2021;11(3):162-71. doi: 10.7324/JAPS.2021.110313.

Sinko PJ. Martins physical pharmacy and pharmaceutical sciences. 6th ed. Lippincott Williams & Wilkins; 2011. p. 355-84.

Rachmawati H, Budiputra DK, Mauludin R. Curcumin nanoemulsion for transdermal application: formulation and evaluation. Drug Dev Ind Pharm. 2015;41(4):560-6. doi: 10.3109/03639045.2014.884127, PMID 24502271.

Kemenkes RI. Farmakope indonesia edisi VI. Direktorat Jenderal Farm Dan Alat Kesehat. 6th ed; 2020.

Swamy MK, Akhtar MS, Sinniah UR. Antimicrobial properties of plant essential oils against human pathogens and their mode of action: an updated review. Evid Based Complement Alternat Med. 2016;2016:3012462. doi: 10.1155/2016/3012462, PMID 28090211.

Xia EQ, Song Y, AI XX, Guo YJ, XU XR, LI HB. A new high performance liquid chromatographic method for the determination and distribution of linalool in Michelia alba. Molecules. 2010;15(7):4890-7. doi: 10.3390/molecules15074890, PMID 20657397.

Zengin H, Baysal AH. Antibacterial and antioxidant activity of essential oil terpenes against pathogenic and spoilage forming bacteria and cell structure activity relationships evaluated by sem microscopy. Molecules. 2014;19(11):17773-98. doi: 10.3390/molecules191117773, PMID 25372394.

Aelenei P, Rimbu CM, Guguianu E, Dimitriu G, Aprotosoaie AC, Brebu M. Coriander essential oil and linalool interactions with antibiotics against gram positive and gram negative bacteria. Lett Appl Microbiol. 2019;68(2):156-64. doi: 10.1111/lam.13100, PMID 30471142.

Stroppel L, Schultz Fademrecht T, Cebulla M, Blech M, Marhofer RJ, Selzer PM. Antimicrobial preservatives for protein and peptide formulations: an overview. Pharmaceutics. 2023;15(2):563. doi: 10.3390/pharmaceutics15020563, PMID 36839885.

Teixeira B, Marques A, Ramos C, Neng NR, Nogueira JM, Saraiva JA. Chemical composition and antibacterial and antioxidant properties of commercial essential oils. Ind Crops Prod. 2013;43(1):587-95. doi: 10.1016/j.indcrop.2012.07.069.

Ghosh D, Chaudhary N, Uma Kumari KU, Singh J, Tripathi P, Meena A. Diversity of essential oil secretory cells and oil composition in flowers and buds of magnolia sirindhorniae and its biological activities. Chem Biodivers. 2021;18(1):e2000750. doi: 10.1002/cbdv.202000750, PMID 33242370.

Da Silva BD, Do Rosario DK, Neto LT, Lelis CA, Conte Junior CA. Antioxidant antibacterial and antibiofilm activity of nanoemulsion based natural compound delivery systems compared with non nanoemulsified versions. Foods. 2023;12(9):1901. doi: 10.3390/foods12091901, PMID 37174440.

Rowe RC, Sheskey PJ, Quinn ME. Pharmaceutical excipients. Remingt Sci Pract Pharm. 2020;21:633-43.

Bodke V, Kumbhar P, Belwalkar S, Mali AS, Waghmare K. Design and development of nanoemulsion of smilax china for anti-psoriasis activity. Int J Pharm Pharm Sci. 2024;16(5):54-66. doi: 10.22159/ijpps.2024v16i5.50327.

Algahtani MS, Ahmad MZ, Ahmad J. Investigation of factors influencing formation of nanoemulsion by spontaneous emulsification: impact on droplet size polydispersity index and stability. Bioengineering (Basel). 2022;9(8):384. doi: 10.3390/bioengineering9080384, PMID 36004909.

Zhao Y, Wang C, Chow AH, Ren K, Gong T, Zhang Z. Self nanoemulsifying drug delivery system (Snedds) for oral delivery of zedoary essential oil: formulation and bioavailability studies. Int J Pharm. 2010;383(1-2):170-7. doi: 10.1016/j.ijpharm.2009.08.035, PMID 19732813.

Miksusanti M, Elsa Fitria Apriani EF, Bama Bihurinin AH. Optimization of tween 80 and peg-400 concentration in indonesian virgin coconut oil nanoemulsion as antibacterial against staphylococcus aureus. Sains Malays. 2023;52(4):1259-72. doi: 10.17576/jsm-2023-5204-17.

Hasani F, Pezeshki A, Hamishehkar H. Effect of surfactant and oil type on size droplets of betacarotene bearing nanoemulsions. Int J Curr Microbiol Appl Sci. 2015;4(9):146-55.

Koroleva M, Nagovitsina T, Yurtov E. Nanoemulsions stabilized by non ionic surfactants: stability and degradation mechanisms. Phys Chem Chem Phys. 2018;20(15):10369-77. doi: 10.1039/c7cp07626f, PMID 29611566.

Patil U, Benjakul S, Prodpran T, Senphan T, Cheetangdee N. Characteristics and quality of virgin coconut oil as influenced by maturity stages. Carpathian J Food Sci Technol. 2016;8(4):103-15.

Danimayostu AA, Martien R, Lukitaningsih E, Danarti R. Formulation of topical self nanoemulsifying drug delivery systems (SNEDDS) of vitamin D3. J Ilmu Kesehat. 2022;11(2):255-63.

Laila L, Candra A, Permata YM, Prasetyo BE. The influence of Catharanthus roseus (l.) g. Don. ethanol extract in clove oil nanoemulsion: physical characterization antioxidant and antibacterial activities. Int J App Pharm. 2023;15(3):254-60. doi: 10.22159/ijap.2023v15i3.47138.

Piemi MP, Korner D, Benita S, Marty JP. Positively and negatively charged submicron emulsions for enhanced topical delivery of antifungal drugs. J Control Release. 1999;58(2):177-87. doi: 10.1016/s0168-3659(98)00156-4, PMID 10053190.

Bilgili E, LI M, Afolabi A. Is the combination of cellulosic polymers and anionic surfactants a good strategy for ensuring physical stability of BCS Class II drug nanosuspensions? Pharm Dev Technol. 2016;21(4):499-510. doi: 10.3109/10837450.2015.1022788, PMID 25774989.

Fatouros DG, Bergenstahl B, Mullertz A. Morphological observations on a lipid based drug delivery system during in vitro digestion. Eur J Pharm Sci. 2007;31(2):85-94. doi: 10.1016/j.ejps.2007.02.009, PMID 17418543.

Cortes H, Hernandez Parra H, Bernal Chavez SA, Del Prado Audelo ML, Caballero Floran IH, Borbolla Jimenez FV. Non ionic surfactants for stabilization of polymeric nanoparticles for biomedical uses. Materials (Basel). 2021;14(12):3197. doi: 10.3390/ma14123197, PMID 34200640.

Mota Ferreira L, Gehrcke M, Ferrari Cervi V, Eliete Rodrigues Bitencourt P, Ferreira Da Silveira E, Hofstatter Azambuja J. Pomegranate seed oil nanoemulsions with selective antiglioma activity: optimization and evaluation of cytotoxicity genotoxicity and oxidative effects on mononuclear cells. Pharm Biol. 2016;54(12):2968-77. doi: 10.1080/13880209.2016.1199039, PMID 27357525.

Adi AC, Christanto C, Rachmawati H, Adlia A. Vitamin E-based folic acid nanoemulsion: formulation and physical evaluation for oral administration. Pharm Nanotechnol. 2019;7(4):304-13. doi: 10.2174/2211738507666190717154040, PMID 31595848.

Gautam S, Singh AK. Self nanoemulsifying drug delivery system a noval approach for improving bioavailability. J Drug Deliv Ther. 2014;4(6):33-8.

Published

07-03-2025

How to Cite

MENDRA, N. N. Y., SURADNYANA, I. G. M., WARDANI, I. G. A. A. K., & SASADARA, M. M. V. (2025). NANOEMULSION OF CHAMPACA FLOWER (MAGNOLIA ALBA) OIL AS AN ANTIBACTERIAL CANDIDATE: OPTIMIZATION, CHARACTERIZATION, AND THERMODYNAMIC STABILITY TESTING. International Journal of Applied Pharmaceutics, 17(2), 115–125. https://doi.org/10.22159/ijap.2025v17i2.53016

Issue

Section

Original Article(s)

Similar Articles

<< < 4 5 6 7 8 > >> 

You may also start an advanced similarity search for this article.