DEVELOPMENT OF REDUCED GRAPHENE OXIDE (RGO) NANOSHEETS FOR ULTRASENSITIVE DETECTION OF A NOVEL CORONA VIRUS SARS-COV-2

Authors

  • DEEPAK V. SAWANT Department of Microbiology, Dr. D. Y. Patil Medical College Hospital and Research Institute Kolhapur-416006, Maharashtra, India
  • PRANAV K. KATKAR Department of Physics, Sejong University, Gwangjin-gu, Seoul-05006, Republic of Korea
  • ARUNKUMAR PARTHASARATHY Department of Microbiology, Dr. D. Y. Patil Medical College Hospital and Research Institute Kolhapur-416006, Maharashtra, India
  • R. K. SHARMA Department of Microbiology, Dr. D. Y. Patil Medical College Hospital and Research Institute Kolhapur-416006, Maharashtra, India
  • SHIVAJI KASHTE Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur-416006, Maharashtra, India
  • C. D. LOKHANDE Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur-416006, Maharashtra, India

DOI:

https://doi.org/10.22159/ijap.2025v17i5.53365

Keywords:

Reduced graphene oxide, Ribonucleic acid, SARS-Cov-2, COVID-19 detection, Nano-sheets

Abstract

Objective: The extraction of ribonucleic acid (RNA) is essential for SARS-CoV-2 RT-PCR detection. Although commercial RNA extraction kits are available, they suffer from limitations such as low RNA yield, difficulty in amplification during RT-PCR, and high costs. This study investigates the evolution of rGO Nano sheets as a novel material for efficient RNA extraction from clinical specimens. The rGO Nano sheets offer a promising alternative for the purification of excellent RNA, which is crucial for accurate and high-sensitivity identification of SARS-CoV-2. By leveraging a unique property of rGO, the research demonstrates enhanced RNA recovery, improving the overall sensitivity and reliability of detection method for SARS-CoV-2.

Methods: The rGO Nano sheets were synthesized by reducing graphene oxide (GO) using a simple hydrothermal process. The rGO analysis and its interaction with RNA were characterized using X-ray diffraction, Raman spectroscopy, field emission scanning electron microscopy (FE-SEM), and Brunauer-Emmett-Teller (BET) analysis. RNA was extracted from clinical specimens using rGO Nano sheets via adsorption and elution and compared with extraction performed using a commercial RNA kit. RNA extraction efficiency and validation were assessed by UV-visible spectrometry and RT-PCR.

Results: The rGO Nano sheets exhibited a multi-layered carbon nanostructure with an average 7.15 nm 3D porous structure, a large surface area of 225 m²/g, and interconnected carbon Nano sheets. The RNA extracted using rGO Nano sheets was validated by UV-visible spectrometry and RT-PCR, showing successful detection of viral genes (ORF1ab and N gene) with a sensitivity of 10 copies. Ten to twenty copies of SARS-CoV-2 pseudo-virus particles showed a strong linear association. The P-value is greater than 0.05, indicating acceptance of the null hypothesis. The commercial kit and the rGO Nano sheet-based RNA extraction methods are not significantly different from one another. There is a significant increase in RNA yield (1.959 ng/µl) and improved sensitivity in RT-PCR, further validating the advantage of using rGO for RNA extraction.

Conclusion: The developed rGO Nano sheet-based RNA extraction method demonstrates high sensitivity and efficiency, offering a promising alternative to commercial kits for the detection of SARS-CoV-2.

References

1. Kashte S, Gulbake A, El Amin SF, Gupta A. COVID-19 vaccines: rapid development implications challenges and future prospects. Hum Cell. 2021;34(3):711-33. doi: 10.1007/s13577-021-00512-4, PMID 33677814.

2. Gupta A, Shivaji K, Kadam S, Gupta M, Rodriguez HC, Potty AG. Immunomodulatory extracellular vesicles: an alternative to cell therapy for COVID-19. Expert Opin Biol Ther. 2021;21(12):1551-60. doi: 10.1080/14712598.2021.1921141, PMID 33886388.

3. WHO. Coronavirus (COVID-19) Dashboard. World Health Organization. Available from: https://covid19.who.int. [Last accessed on 27 Sep 2022].

4. Klein S, Muller TG, Khalid D, Sonntag Buck V, Heuser AM, Glass B. SARS-CoV-2 RNA extraction using magnetic beads for rapid large scale testing by RT-qPCR and RT-LAMP. Viruses. 2020 Aug 1;12(8):863. doi: 10.3390/v12080863, PMID 32784757.

5. Zhao Z, Cui H, Song W, Ru X, Zhou W, Yu X. A simple magnetic nanoparticles-based viral RNA extraction method for efficient detection of SARS-CoV-2. doi: 10.1101/2020.02.22.961268.

6. Parihar A, Puranik N, Parihar DS, Ranjan P, Khan R. Currently available biosensor-based approaches for severe acute respiratory syndrome corona virus 2 detection. Adv Biosens Virus Detect Smart Diagn Combat SARS-CoV. 2022 Jan 1;2:373-90. doi: 10.1016/B978-0-12-824494-4.00016-3.

7. Singh V, Batoo KM, Singh M. Fabrication of chitosan-coated mixed spinel ferrite integrated with graphene oxide (GO) for magnetic extraction of viral RNA for potential detection of SARS-CoV-2. Appl Phys A Mater Sci Process. 2021 Dec 1;127(12):960. doi: 10.1007/s00339-021-05067-7, PMID 34866806.

8. Somvanshi BS, B Kharat P, S Saraf T, B Somwanshi S, B Shejul S, M Jadhav K. Multifunctional nano-magnetic particles assisted viral RNA-extraction protocol for potential detection of COVID-19. Mater Res Innov. 2020;25(3):1-6. doi: 10.1080/14328917.2020.1769350.

9. Zambry NS, Obande GA, Khalid MF, Bustami Y, Hamzah HH, Awang MS. Utilizing electrochemical based sensing approaches for the detection of sars-cov-2 in clinical samples: a review. Biosensors. 2022;12(7):473. doi: 10.3390/bios12070473, PMID 35884276.

10. Mohamed MJ, Bhat DK. Novel ZnWO4/RGO nanocomposite as high performance photocatalyst. AIMS Mater Sci. 2017;4(1):158-71. doi: 10.3934/matersci.2017.1.158.

11. Ahmed B, Ojha AK, Hirsch F, Fischer I, Patrice D, Materny A. Tailoring of enhanced interfacial polarization in WO3 nanorods grown over reduced graphene oxide synthesized by a one step hydrothermal method. RSC Adv. 2017;7(23):13985-96. doi: 10.1039/C7RA00730B.

12. Bharath G, Anwer S, Mangalaraja RV, Alhseinat E, Banat F, Ponpandian N. Sunlight-induced photochemical synthesis of Au nanodots on α-Fe2O3@Reduced graphene oxide nanocomposite and their enhanced heterogeneous catalytic properties. Sci Rep. 2018 Dec 1;8(1):5718. doi: 10.1038/s41598-018-24066-y.

13. Iskandar F, Abdillah OB, Stavila E, Aimon AH. The influence of copper addition on the electrical conductivity and charge transfer resistance of reduced graphene oxide (rGO). New J Chem. 2018;42(19):16362-71. doi: 10.1039/x0xx00000x.

14. Dresselhaus MS, Jorio A, Hofmann M, Dresselhaus G, Saito R. Perspectives on carbon nanotubes and graphene raman spectroscopy. Nano Lett. 2010;10(3):751-8. doi: 10.1021/nl904286r, PMID 20085345.

15. Xu Y, Sheng K, Li C, Shi G. Self-assembled graphene hydrogel via a one step hydrothermal process. ACS Nano. 2010 Jul 27;4(7):4324-30. doi: 10.1021/nn101187z, PMID 20590149.

16. Parra Guardado AL, Sweeney CL, Hayes EK, Trueman BF, Huang Y, Jamieson RC. Development of a rapid pre-concentration protocol and a magnetic bead-based RNA extraction method for SARS-CoV-2 detection in raw municipal wastewater. Environ Sci (Camb). 2022 Jan 1;8(1):47-61. doi: 10.1039/D1EW00539A.

17. Kerachian MA, Amel Jamehdar SA, Azghandi M, Keyvanlou N, Mozaffari Jovin S, Javadmanesh A. Developing novel liquid biopsy by selective capture of viral RNA on magnetic beads to detect COVID-19. Iran J Basic Med Sci. 2022 Jun 1;25(6):762-6. doi: 10.22038/IJBMS.2022.65260.14379, PMID 35949306.

18. Hernandez S, Cardozo F, Myers DR, Rojas A, Waggoner JJ. Simple and economical RNA extraction and storage packets for viral detection from serum 1 or plasma; 2022. doi: 10.1101/2022.01.28.22270041.

19. Ngamsom B, Iles A, Kamita M, Kimani R, Rodriguez Mateos P, Mungai M. An integrated lab-on-a-chip device for RNA extraction amplification and CRISPR-Cas12a-assisted detection for COVID-19 screening in resource-limited settings. medRxiv. 2022. doi: 10.1101/2022.01.06.22268835.

20. Possebon FS, Ullmann LS, Malossi CD, Miodutzki GT, Da Silva EC, Machado EF. A fast and cheap in-house magnetic bead RNA extraction method for COVID-19 diagnosis. J Virol Methods. 2022 Feb 1;300:114414. doi: 10.1016/j.jviromet.2021.114414, PMID 34896456.

21. Phan T, Stephenson R, Cai T, Andacic N, McKew G. A comparison of SARS-CoV-2 RNA extraction with the quickgene-810 nucleic acid isolation system compared to the EZ1 advanced DSP virus kit. Access Microbiol. 2022 May 27;4(5):acmi000353. doi: 10.1099/acmi.0.000353, PMID 36003356.

22. Shen J, Hartmann EM. DNA extraction protocol for low biomass environmental samples: adapted from the lucigen masterpure complete DNA and RNA Purification Kit manual; 2021. doi: 10.21203/rs.3.pex-1658/v1.

23. Chaudhary S, Patel D, Vyas K, Chaudhary P, Singhania P, Patel J. SARS-CoV-2 direct real time PCR without RNA extraction: appropriate method or not? European Journal of Medical and Health Sciences. 2022 Jan 27;4(1):41-7. doi: 10.24018/ejmed.2022.4.1.1164.

24. Ali TH, Mandal AM, Heidelberg T, Hussen RS. Sugar-based cationic magnetic core shell silica nanoparticles for nucleic acid extraction. RSC Adv. 2022 May 5;12(22):13566-79. doi: 10.1039/d2ra01139e, PMID 35530382.

25. Poon LL, Chan KH, Wong OK, Yam WC, Yuen KY, Guan Y. Early diagnosis of SARS coronavirus infection by real-time RT-PCR. J Clin Virol. 2003;28(3):233-8. doi: 10.1016/j.jcv.2003.08.004, PMID 14522060.

26. Zhang Y, Odiwuor N, Xiong J, Sun L, Nyaruaba RO, Wei H. Rapid molecular detection of SARS-CoV-2 (COVID-19) virus RNA using colorimetric LAMP. medRxiv. 2020. doi: 10.1101/2020.02.26.20028373.

27. Wozniak A, Cerda A, Ibarra Henriquez C, Sebastian V, Armijo G, Lamig L. A simple RNA preparation method for SARS-CoV-2 detection by RT-qPCR. Sci Rep. 2020 Dec 1;10(1):16608. doi: 10.1038/s41598-020-73616-w, PMID 33024174.

28. Ambrosi C, Prezioso C, Checconi P, Scribano D, Sarshar M, Capannari M. SARS-CoV-2: comparative analysis of different RNA extraction methods. J Virol Methods. 2021 Jan 1;287:114008. doi: 10.1016/j.jviromet.2020.114008, PMID 33160015.

29. Won J, Lee S, Park M, Kim TY, Park MG, Choi BY. Development of a laboratory-safe and low cost detection protocol for SARS-CoV-2 of the coronavirus disease 2019 (COVID-19). Exp Neurobiol. 2020;29(2):107-19. doi: 10.5607/en20009, PMID 32156101.

30. Grant PR, Turner MA, Yen Shin G, Nastouli E, Levett LJ. Extraction-free COVID-19 (SARS-CoV-2) diagnosis by RT-PCR to increase capacity for national testing programmes during a pandemic. BioRxiv. 2020 Apr 9. doi: 10.1101/2020.04.06.028316.

31. Whitney ON, Kennedy LC, Fan VB, Hinkle A, Kantor R, Greenwald H. Sewage salt silica and SARS-CoV-2 (4S): an economical kit free method for direct capture of SARS-CoV-2 RNA from wastewater. Environ Sci Technol. 2021 Apr 20;55(8):4880-8. doi: 10.1021/acs.est.0c08129, PMID 33759506.

32. Wee SK, Sivalingam SP, Yap EP. Rapid direct nucleic acid amplification test without RNA extraction for SARS-COV-2 using a portable PCR thermocycler. Genes (Basel). 2020 Jun 1;11(6):664. doi: 10.3390/genes11060664, PMID 32570810.

33. Barza R, Patel P, Sabatini L, Singh K. Use of a simplified sample processing step without RNA extraction for direct SARS-CoV-2 RT-PCR detection. J Clin Virol. 2020 Nov 1;132:104587. doi: 10.1016/j.jcv.2020.104587, PMID 32898817.

34. Perez Cataluna A, Cuevas Ferrando E, Randazzo W, FalcoI, Allende A, Sanchez G. Comparing analytical methods to detect SARS-CoV-2 in wastewater. Sci Total Environ. 2021 Mar 1;758:143870. doi: 10.1016/j.scitotenv.2020.143870, PMID 33338788.

35. Mahmoud SA, Ganesan S, Ibrahim E, Thakre B, Teddy JG, Raheja P. Evaluation of RNA extraction-free method for detection of SARS-CoV-2 in salivary samples for mass screening for COVID-19. BioMed Res Int. 2021;2021:5568350. doi: 10.1155/2021/5568350, PMID 34327228.

36. Rahimpour E, Lotfipour F, Jouyban A. A minireview on nanoparticle-based sensors for the detection of coronaviruses. Bioanalysis. 2021 Dec 1;13(24):1837-50. doi: 10.4155/bio-2021-0006, PMID 34463130.

37. Tang C, He Z, Liu H, Xu Y, Huang H, Yang G. Application of magnetic nanoparticles in nucleic acid detection. J Nanobiotechnology. 2020;18(1):62. doi: 10.1186/s12951-020-00613-6, PMID 32316985.

38. Rodriguez Diaz C, Lafuente Gomez N, Coutinho C, Pardo D, Alarcon Iniesta H, Lopez Valls M. Development of colorimetric sensors based on gold nanoparticles for SARS-CoV-2 RdRp, E and S genes detection. Talanta. 2022 Jun 1;243:123393. doi: 10.1016/j.talanta.2022.123393, PMID 35325745.

39. Owida HA, Al Nabulsi JI, Turab NM, Louzi N. Nanotechnology role development for COVID-19 pandemic management. J Nanotechnol. 2022;1:2-12. doi: 10.1155/2022/1872933open_in_new.

40. Dighe K, Moitra P, Alafeef M, Gunaseelan N, Pan D. A rapid RNA extraction free lateral flow assay for molecular point of care detection of SARS-CoV-2 augmented by chemical probes. Biosens Bioelectron. 2022 Mar 15;200:113900. doi: 10.1016/j.bios.2021.113900, PMID 34959185.

41. Jeong S, Gonzaez Grandio E, Navarro N, Pinals RL, Ledesma F, Yang D. Extraction of viral nucleic acids with carbon nanotubes increases SARS-CoV-2 quantitative reverse transcription polymerase chain reaction detection sensitivity. ACS Nano. 2021;15(6):10309-17. doi: 10.1021/acsnano.1c02494, PMID 34105936.

42. Pinals RL, Ledesma F, Yang D, Navarro N, Jeong S, Pak JE. Rapid SARS-CoV-2 spike protein detection by carbon nanotube based near infrared nanosensors. Nano Lett. 2021 Mar 10;21(5):2272-80. doi: 10.1021/acs.nanolett.1c00118, PMID 33635655.

43. Layqah LA, Eissa S. An electrochemical immunosensor for the corona virus associated with the middle-east respiratory syndrome using an array of gold nanoparticle modified carbon electrodes. Mikrochim Acta. 2019 Apr 1;186(4):224. doi: 10.1007/s00604-019-3345-5, PMID 30847572.

44. Klein S, Muller TG, Khalid D, Sonntag Buck V, Heuser AM, Glass B. SARS-CoV-2 RNA extraction using magnetic beads for rapid large scale testing by RT-qPCR and RT-LAMP. Viruses. 2020;12(8):863. doi: 10.3390/v12080863, PMID 32784757.

45. Kaboli MA, Hashim AA, Dhiya Altememy, Javad Saffari Chaleshtori, Mehdi Rezaee, Sayedeh Azimeh Hosseini, Pegah Khosravian. Silk fibroin-coated mesoporous silica nanoparticles enhance 6-thioguanine delivery and cytotoxicity in breast cancer cells. Int J Appl Pharm. 2025;17(1):275-83. doi: 10.22159/ijap.2025v17i1.52882.

46. Sharma T, Sharma A. An emerging era in drug delivery system for treatment of malaria: wave from conventional to advanced technology. Int J Appl Pharm. 2025;17(1):48-58. doi: 10.22159/ijap.2025v17i1.52285.

47. Eguilaz M, Villalonga R, Rivas G. Electrochemical biointerfaces based on carbon nanotubes mesoporous silica hybrid material: bioelectrocatalysis of hemoglobin and biosensing applications. Biosensors and Bioelectronic. 2018 Jul 15;111:144-51. doi: 10.1016/j.bios.2018.04.004.

48. Barik G, Sarkar I, Biswas D, Sahoo SK. Dueal target reverse transcription polymerase chain reaction for SARS-COV-2 for enhancing accuracy with E gene and ORF 1B gene: a cross sectional study. Asian J Pharm Clin Res. 2024;17(12):211-21. doi: 10.22159/ajpcr.2024v17i12.53318.

49. Suvarna NH, Mathew JE, Raj V, Harees S, kumar L, Verma R. Integrative Qsar analysis of oxadiazole derivatives resolving molecular determinants for anti-tubercular activity and rational drug design. Int J Pharm. 2024;16(5):157-65. doi: 10.22159/ijap.2024v16i5.51468.

Published

07-09-2025

How to Cite

SAWANT, D. V., KATKAR, P. K., PARTHASARATHY, A., SHARMA, R. K., KASHTE, . S., & LOKHANDE, C. D. (2025). DEVELOPMENT OF REDUCED GRAPHENE OXIDE (RGO) NANOSHEETS FOR ULTRASENSITIVE DETECTION OF A NOVEL CORONA VIRUS SARS-COV-2. International Journal of Applied Pharmaceutics, 17(5), 263–270. https://doi.org/10.22159/ijap.2025v17i5.53365

Issue

Section

Original Article(s)

Similar Articles

<< < 116 117 118 119 120 > >> 

You may also start an advanced similarity search for this article.