THERAPEUTIC POTENTIAL AND APPLICATIONS OF BIOGLASS: A REVIEW

Authors

  • VADNALA SRAVANI Malla Reddy Institute of Pharmaceutical Sciences, Malla Reddy Viswavidyapeeth, Hyderabad, Telangana, 500100, India https://orcid.org/0009-0000-6325-7493
  • M. VIDYAVATHI Institute of Pharmaceutical Technology, Sri Padmavati Mahila Visvavidyalayam, Tirupati, (A.P.) https://orcid.org/0000-0001-6089-3080

DOI:

https://doi.org/10.22159/ijap.2025v17i5.53435

Keywords:

Bioglass, Wound healing, Bone repair, Biomaterials, Tissue engineering, Hydroxycarbonate apatite

Abstract

Bioglass has emerged as a revolutionary biomaterial because of its bioactivity, biocompatibility, and capacity to form a bond with both hard and soft tissues. Originally, Dr. Larry Hench in the late 1960s developed. Bioglass, which has proven especially effective in bone regeneration, dental restoration, and wound healing, positioning it as a versatile material for various medical applications. Unlike traditional bioinert materials, bioglass fosters a beneficial biological response when in contact with physiological environments, forming a hydroxyl carbonate apatite [HCA] layer on its surface that mimics natural bone mineral. This bioactivity, combined with its customizable composition, has enabled the development of various bioglass types tailored for specific applications. In this review, fundamental properties that contribute to bioglass effectiveness and primary healthcare applications of bioglass, focusing on its role in bone grafts, dental fillers, and coatings for implants discussed. Furthermore, this review explore its promising applications in wound healing, where bioglass dressings offer accelerated tissue repair and reduced infection risks. The main objective of this review is to provide a thorough insight into bioglass, with a focus on its present-day uses in the medical field.

References

1. Hoppe A, Boccaccini AR. Bioactive glasses as carriers of therapeutic ions and the biological implications. In: Boccaccini AR, Brauer DS, Hupa L, editors. Bioactive glasses: fundamentals technology and applications. Cambridge: Royal Society of Chemistry; 2016. p. 362-92. doi: 10.1039/9781782622017-00362.

2. Ali S, Farooq I, Iqbal K. A review of the effect of various ions on the properties and the clinical applications of novel bioactive glasses in medicine and dentistry. Saudi Dent J. 2014 Jan 1;26(1):1-5. doi: 10.1016/j.sdentj.2013.12.001, PMID 24526822.

3. Zhao X, Courtney JM, Qian H, editors. Bioactive materials in medicine: design and applications. Elsevier; 2011 May 25.

4. Cannio M, Bellucci D, Roether JA, Boccaccini DN, Cannillo V. Bioactive glass applications: a literature review of human clinical trials. Materials (Basel). 2021 Sep 20;14(18):5440. doi: 10.3390/ma14185440, PMID 34576662.

5. Hench LL. Bioactive materials: the potential for tissue regeneration. J Biomed Mater Res. 1998;41(4):511-8. doi: 10.1002/(sici)1097-4636(19980915)41:4<511::aid-jbm1>3.0.co;2-f, PMID 9697022.

6. Hench LL, Polak JM. Third-generation biomedical materials. Science. 2002;295(5557):1014-7. doi: 10.1126/science.1067404, PMID 11834817.

7. Jones JR. Reprint of: review of bioactive glass: from hench to hybrids. Acta Biomater. 2015;23Suppl:S53-82. doi: 10.1016/j.actbio.2015.07.019, PMID 26235346.

8. Hench LL. Biomaterials: a forecast for the future. Biomaterials. 1998 Aug 1;19(16):1419-23. doi: 10.1016/s0142-9612(98)00133-1, PMID 9794512.

9. Hench LL, Splinter RJ, Allen WC, Greenlee TK. Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res. 1971 Nov;5(6):117-41. doi: 10.1002/jbm.820050611.

10. Baino F, Fiorilli S, Vitale Brovarone C. Bioactive glass-based materials with hierarchical porosity for medical applications: review of recent advances. Acta Biomater. 2016 Sep 15;42:18-32. doi: 10.1016/j.actbio.2016.06.033, PMID 27370907.

11. Islam MT, Felfel RM, Abou Neel EA, Grant DM, Ahmed I, Hossain KM. Bioactive calcium phosphate-based glasses and ceramics and their biomedical applications: a review. J Tissue Eng. 2017 Jul 18;8:2041731417719170. doi: 10.1177/2041731417719170, PMID 28794848.

12. Hoppe A, Güldal NS, Boccaccini AR. A review of the biological response to ionic dissolution products from bioactive glasses and glass ceramics. Biomaterials. 2011 Apr 1;32(11):2757-74. doi: 10.1016/j.biomaterials.2011.01.004, PMID 21292319.

13. Kaur G, Pandey OP, Singh K, Homa D, Scott B, Pickrell G. A review of bioactive glasses: their structure, properties, fabrication and apatite formation. J Biomed Mater Res A. 2014 Jan;102(1):254-74. doi: 10.1002/jbm.a.34690, PMID 23468256.

14. Baino F, Novajra G, Miguez Pacheco V, Boccaccini AR, Vitale Brovarone C. Bioactive glasses: special applications outside the skeletal system. J Non Crystal Solids. 2016 Jan 15;432:15-30. doi: 10.1016/j.jnoncrysol.2015.02.015.

15. Jones JR. Review of bioactive glass: from Hench to hybrids. Acta Biomater. 2013 Jan 1;9(1):4457-86. doi: 10.1016/j.actbio.2012.08.023, PMID 22922331.

16. Rust KR, Singleton GT, Wilson J, Antonelli PJ. Bioglass middle ear prosthesis: long-term results. Am J Otol. 1996;17(3):371-4. PMID 8817012.

17. Vitale Brovarone C, Novajra G, Lousteau J, Milanese D, Raimondo S, Fornaro M. Phosphate glass fibres and their role in neuronal polariza-tion and axonal growth direction. Acta Biomater. 2012 Mar;8(3):1125-36. doi: 10.1016/j.actbio.2011.11.018.

18. Baino F, Vitale Brovarone C. Three-dimensional glass-derived scaffolds for bone tissue engineering: current trends and forecasts for the future. J Biomed Mater Res A. 2011;97(4):514-35. doi: 10.1002/jbm.a.33072, PMID 21465645.

19. Chen QZ, Thompson ID, Boccaccini AR. 45S5 Bioglass derived glass ceramic scaffolds for bone tissue engineering. Biomaterials. 2006 Apr 1;27(11):2414-25. doi: 10.1016/j.biomaterials.2005.11.025, PMID 16336997.

20. Jones JR, Ehrenfried LM, Hench LL. Optimising bioactive glass scaffolds for bone tissue engineering. Biomaterials. 2006;27(7):964-73. doi: 10.1016/j.biomaterials.2005.07.017, PMID 16102812.

21. Gupta S, Majumdar S, Krishnamurthy S. Bioactive glass: a multifunctional delivery system. J Control Release. 2021 Jul 10;335:481-97. doi: 10.1016/j.jconrel.2021.05.043, PMID 34087250.

22. Day RM, Boccaccini AR, Shurey S, Roether JA, Forbes A, Hench LL. Assessment of polyglycolic acid mesh and bioactive glass for soft tissue engineering scaffolds. Biomaterials. 2004;25(27):5857-66. doi: 10.1016/j.biomaterials.2004.01.043, PMID 15172498.

23. Wang M. Developing bioactive composite materials for tissue replacement. Biomaterials. 2003;24(13):2133-51. doi: 10.1016/s0142-9612(03)00037-1, PMID 12699650.

24. Huang J. Design and development of ceramics and glasses. In: Biology and engineering of stem cell niches. Elsevier; 2017 Jan 1. p. 315-29. doi: 10.1016/B978-0-12-802734-9.00020-2.

25. Pawar V, Shinde V. Bioglass and hybrid bioactive material: a review on the fabrication, therapeutic potential and applications in wound healing. Hybrid Adv. 2024 Apr 26;6:100196. doi: 10.1016/j.hybadv.2024.100196.

26. Brauer DS, Moncke D. Introduction to the structure of silicate phosphate and borate glasses. In: Boccaccini AR, Brauer DS, Hupa L, editors. Bioactive glasses: fundamentals technology and applications. Cambridge: Royal Society of Chemistry; 2016. p. 61-88. doi: 10.1039/9781782622017-00061.

27. Fabbri P, Cannillo V, Sola A, Dorigato A, Chiellini F. Highly porous polycaprolactone-45S5 Bioglass® scaffolds for bone tissue engineering. Compos Sci Technol. 2010 Nov 15;70(13):1869-78. doi: 10.1016/j.compscitech.2010.05.029.

28. Osipov AA, Osipova LM. Boson peak and superstructural groups in Na2O-B2O3 glasses. Adv Condens Matter Phys. 2018 Jan 1;2018:1-8. doi: 10.1155/2018/6746023.

29. Brown RF, Rahaman MN, Dwilewicz AB, Huang W, Day DE, Li Y. Effect of borate glass composition on its conversion to hydroxyapatite and on the proliferation of MC3T3-E1 cells. J Biomed Mater Res A. 2009;88(2):392-400. doi: 10.1002/jbm.a.31679, PMID 18306284.

30. Fu Q, Rahaman MN, Bal BS, Bonewald LF, Kuroki K, Brown RF. Silicate borosilicate and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. II. In vitro and in vivo biological evaluation. J Biomed Mater Res A. 2010;95(1):172-9. doi: 10.1002/jbm.a.32823, PMID 20540099.

31. Zhao S, Li L, Wang H, Zhang Y, Cheng X, Zhou N. Wound dressings composed of copper-doped borate bioactive glass microfibers stimulate angiogenesis and heal full-thickness skin defects in a rodent model. Biomaterials. 2015 Jun 1;53:379-91. doi: 10.1016/j.biomaterials.2015.02.112, PMID 25890736.

32. Balasubramanian P, Hupa L, Jokic B, Detsch R, Grunewald A, Boccaccini AR. Angiogenic potential of boron-containing bioactive glasses: in vitro study. J Mater Sci. 2017 Aug;52(15):8785-92. doi: 10.1007/s10853-016-0563-7.

33. Naseri S, Lepry WC, Nazhat SN. Bioactive glasses in wound healing: hope or hype? J Mater Chem B. 2017;5(31):6167-74. doi: 10.1039/c7tb01221g, PMID 32264432.

34. Rahaman MN, Day DE, Bal BS, Fu Q, Jung SB, Bonewald LF. Bioactive glass in tissue engineering. Acta Biomater. 2011 Jun 1;7(6):2355-73. doi: 10.1016/j.actbio.2011.03.016, PMID 21421084.

35. Ding H, Zhao CJ, Cui X, Gu YF, Jia WT, Rahaman MN. A novel injectable borate bioactive glass cement as an antibiotic delivery vehicle for treating osteomyelitis. PLOS One. 2014 Jan 10;9(1):e85472. doi: 10.1371/journal.pone.0085472, PMID 24427311.

36. Brow RK. Review: the structure of simple phosphate glasses. J Non-Crystal Solids. 2000 Mar 1;263-264:1-28. doi: 10.1016/S0022-3093(99)00620-1.

37. Fernandes HR, Gaddam A, Rebelo A, Brazete D, Stan GE, Ferreira JM. Bioactive glasses and glass ceramics for healthcare applications in bone regeneration and tissue engineering. Materials (Basel). 2018 Dec 12;11(12):2530. doi: 10.3390/ma11122530, PMID 30545136.

38. Knowles JC. Phosphate-based glasses for biomedical applications. J Mater Chem. 2003;13(10):2395-401. doi: 10.1039/b307119g.

39. Abou Neel EA, Pickup DM, Valappil SP, Newport RJ, Knowles JC. Bioactive functional materials: a perspective on phosphate based glasses. J Mater Chem. 2009;19(6):690-701. doi: 10.1039/B810675D.

40. Bahniuk MS, Pirayesh H, Singh HD, Nychka JA, Unsworth LD. Bioactive glass 45S5 powders: effect of synthesis route and resultant surface chemistry and crystallinity on protein adsorption from human plasma. Biointerphases. 2012 Dec 1;7(1-4):41. doi: 10.1007/s13758-012-0041-y, PMID 22669582.

41. Pirayesh H, Nychka JA. Sol-gel synthesis of bioactive glass ceramic 45S5 and its in vitro dissolution and mineralization behavior. J Am Ceram Soc. 2013 May;96(5):1643-50. doi: 10.1111/jace.12190.

42. Strobel LA, Hild N, Mohn D, Stark WJ, Hoppe A, Gbureck U. Novel strontium-doped bioactive glass nanoparticles enhance proliferation and osteogenic differentiation of human bone marrow stromal cells. J Nanopart Res. 2013;15(7):9. doi: 10.1007/s11051-013-1780-5.

43. Bengisu M. Borate glasses for scientific and industrial applications: a review. J Mater Sci. 2016;51(5):2199-242. doi: 10.1007/s10853-015-9537-4.

44. O Donnell MD. Melt-derived bioactive glass. In: Jones JR, Clare AG, editors. Bio‐glasses: an introduction. Chichester: John Wiley & Sons; 2012 Aug 1. p. 13-27. doi: 10.1002/9781118346457.ch2.

45. Fiume E, Migneco C, Verne E, Baino F. Comparison between bioactive sol-gel and melt-derived glasses/glass ceramics based on the multicomponent SiO2−P2O5−CaO−MgO−Na2O−K2O system. Materials (Basel). 2020 Jan 23;13(3):540. doi: 10.3390/ma13030540, PMID 31979302.

46. Graham T. XXXV-on the properties of silicic acid and other analogous colloidal substances. J Chem Soc. 1864;17(318):318-27. doi: 10.1039/JS8641700318.

47. Foroutan F, Kyffin BA, Abrahams I, Corrias A, Gupta P, Velliou E. Mesoporous phosphate-based glasses prepared via sol-gel. ACS Biomater Sci Eng. 2020;6(3):1428-37. doi: 10.1021/acsbiomaterials.9b01896, PMID 33455383.

48. Lepry WC, Nazhat SN. Highly bioactive sol-gel-derived borate glasses. Chem Mater. 2015;27(13):4821-31. doi: 10.1021/acs.chemmater.5b01697.

49. Shoushtari MS, Hoey D, Biak DR, Abdullah N, Kamarudin S, Zainuddin HS. Sol-gel-templated bioactive glass scaffold: a review. Res Biomed Eng. 2024 Mar;40(1):281-96. doi: 10.1007/s42600-024-00342-x.

50. Krishnan V, Lakshmi T. Bioglass: a novel biocompatible innovation. J Adv Pharm Technol Res. 2013 Apr 1;4(2):78-83. doi: 10.4103/2231-4040.111523, PMID 23833747.

51. Hupa L. Melt-derived bioactive glasses. In: Bioactive glasses. Elsevier; 2011 Jan 1. p. 3-28. doi: 10.1533/9780857093318.1.3.

52. Ferrando A, Part J, Baeza J. Treatment of cavitary bone defects in chronic osteomyelitis: biogactive glass s53p4 vs. calcium sulphate antibiotic beads. J Bone Jt Infect. 2017 Oct 9;2(4):194-201. doi: 10.7150/jbji.20404, PMID 29119078.

53. Gergely I, Zazgyva A, Man A, Zuh SG, Pop TS. The in vitro antibacterial effect of S53P4 bioactive glass and gentamicin impregnated polymethylmethacrylate beads. Acta Microbiol Immunol Hung. 2014 Jun 1;61(2):145-60. doi: 10.1556/AMicr.61.2014.2.5, PMID 24939683.

54. Chandrasekar RS, Lavu V, Kumar K, Rao SR. Evaluation of antimicrobial properties of bioactive glass used in regenerative periodontal therapy. J Indian Soc Periodontol. 2015 Sep 1;19(5):516-9. doi: 10.4103/0972-124X.167166, PMID 26644717.

55. Al Jobory AI, Al Hashimi R. Antibacterial activity of bioactive glass 45S5 and chitosan incorporated as fillers into gutta percha. J Res Med Dent Sci. 2021;9(3):108-17.

56. Hammami I, Gavinho SR, Jakka SK, Valente MA, Graca MP, Padua AS. Antibacterial biomaterial based on bioglass modified with copper for implants coating. J Funct Biomater. 2023 Jul 13;14(7):369. doi: 10.3390/jfb14070369, PMID 37504864.

57. Sergi R, Bellucci D, Salvatori R, Anesi A, Cannillo V. A novel bioactive glass containing therapeutic ions with enhanced biocompatibility. Materials (Basel). 2020 Oct 15;13(20):4600. doi: 10.3390/ma13204600, PMID 33076580.

58. Graillon N, Degardin N, Foletti JM, Seiler M, Alessandrini M, Gallucci A. Bioactive glass 45S5 ceramic for alveolar cleft reconstruction about 58 cases. J Craniomaxillofac Surg. 2018 Oct 1;46(10):1772-6. doi: 10.1016/j.jcms.2018.07.016, PMID 30082167.

59. Bi L, Rahaman MN, Day DE, Brown Z, Samujh C, Liu X. Effect of bioactive borate glass microstructure on bone regeneration, angiogenesis and hydroxyapatite conversion in a rat calvarial defect model. Acta Biomater. 2013 Aug 1;9(8):8015-26. doi: 10.1016/j.actbio.2013.04.043, PMID 23643606.

60. Miola M, Vitale Brovarone C, Mattu C, Verne E. Antibiotic loading on bioactive glasses and glass ceramics: an approach to surface modification. J Biomater Appl. 2013 Aug;28(2):308-19. doi: 10.1177/0885328212447665, PMID 22684515.

61. Oonishi HL, Hench LL, Wilson J, Sugihara F, Tsuji E, Kushitani S. Comparative bone growth behavior in granules of bioceramic materials of various sizes. J Biomed Mater Res. 1999 Jan;44(1):31-43. doi: 10.1002/(sici)1097-4636(199901)44:1<31::aid-jbm4>3.0.co;2-9, PMID 10397902.

62. Hench LL. Bioactive materials for gene control. New Mater Technol Healthc. 2011. p. 25-48. doi: 10.1142/9781848165595_0003.

63. Jones JR, Brauer DS, Hupa L, Greenspan DC. Bioglass and bioactive glasses and their impact on healthcare. Int J Appl Glass Sci. 2016 Dec;7(4):423-34. doi: 10.1111/ijag.12252.

64. Schepers EJ, Ducheyne P. Bioactive glass particles of narrow size range for the treatment of oral bone defects: a 1-24 mo experiment with several materials and particle sizes and size ranges. J Oral Rehabil. 1997 Mar;24(3):171-81. doi: 10.1111/j.1365-2842.1997, PMID 9131472.

65. Andersson H, Liu G, Karlsson KH, Niemi L, Miettinen J, Juhanoja J. In vivo behaviour of glasses in the SiO2-Na2O-CaO-P2O5-Al2O3-B2O3 system. J Mater Sci: Mater Med. 1990;1(4):219-27. doi: 10.1007/BF00701080.

66. Lindfors NC, Koski I, Heikkila JT, Mattila K, Aho AJ. A prospective randomized 14 y follow-up study of bioactive glass and autogenous bone as bone graft substitutes in benign bone tumors. J Biomed Mater Res B Appl Biomater. 2010 Jul;94(1):157-64. doi: 10.1002/jbm.b.31636, PMID 20524190.

67. Peltola M, Aitasalo K, Suonpaa J, Varpula M, Yli-Urpo A. Bioactive glass S53P4 in frontal sinus obliteration: a long-term clinical experience. Head Neck. 2006 Sep;28(9):834-41. doi: 10.1002/hed.20436, PMID 16823870.

68. Lindfors NC, Koski I, Heikkila JT, Mattila K, Aho AJ. A prospective randomized 14-y follow up study of bioactive glass and autogenous bone as bone graft substitutes in benign bone tumors. J Biomed Mater Res B Appl Biomater. 2010 Jul;94(1):157-64. doi: 10.1002/jbm.b.31636, PMID 20524190.

69. Lindfors NC, Heikkila JT, Koski I, Mattila K, Aho AJ. Bioactive glass and autogenous bone as bone graft substitutes in benign bone tumors. J Biomed Mater Res B Appl Biomater. 2009 Jul;90(1):131-6. doi: 10.1002/jbm.b.31263, PMID 18988277.

70. Frantzen J, Rantakokko J, Aro HT, Heinanen J, Kajander S, Gullichsen E. Instrumented spondylodesis in degenerative spondylolisthesis with bioactive glass and autologous bone: a prospective 11-y follow-up. J Spinal Disord Tech. 2011 Oct 1;24(7):455-61. doi: 10.1097/BSD.0b013e31822a20c6, PMID 21909036.

71. Skallevold HE, Rokaya D, Khurshid Z, Zafar MS. Bioactive glass applications in dentistry. Int J Mol Sci. 2019 Nov 27;20(23):5960. doi: 10.3390/ijms20235960, PMID 31783484.

72. Gjorgievska E, Nicholson JW. Prevention of enamel demineralization after tooth bleaching by bioactive glass incorporated into toothpaste. Aust Dent J. 2011 Jun;56(2):193-200. doi: 10.1111/j.1834-7819.2011.01323.x, PMID 21623812.

73. Burwell AK, Litkowski LJ, Greenspan DC. Calcium sodium phosphosilicate (NovaMin): remineralization potential. Adv Dent Res. 2009 Aug;21(1):35-9. doi: 10.1177/0895937409335621, PMID 19710080.

74. Brauer DS, Karpukhina N, O Donnell MD, Law RV, Hill RG. Fluoride-containing bioactive glasses: effect of glass design and structure on degradation pH and apatite formation in simulated body fluid. Acta Biomater. 2010 Aug 1;6(8):3275-82. doi: 10.1016/j.actbio.2010.01.043, PMID 20132911.

75. Felipe ME, Andrade PF, Novaes Jr AB, Grisi MF, Souza SL, Taba Jr M. Potential of bioactive glass particles of different size ranges to affect bone formation in interproximal periodontal defects in dogs. J Periodontol. 2009 May;80(5):808-15. doi: 10.1902/jop.2009.080583, PMID 19405835.

76. Lovelace TB, Mellonig JT, Meffert RM, Jones AA, Nummikoski PV, Cochran DL. Clinical evaluation of bioactive glass in the treatment of periodontal osseous defects in humans. J Periodontol. 1998 Sep;69(9):1027-35. doi: 10.1902/jop.1998.69.9.1027, PMID 9776031.

77. Profeta AC, Prucher GM. Bioactive glass in periodontal surgery and implant dentistry. Dent Mater J. 2015 Oct 2;34(5):559-71. doi: 10.4012/dmj.2014-233, PMID 26438980.

78. Civantos A, Martinez Campos E, Ramos V, Elvira C, Gallardo A, Abarrategi A. Titanium coatings and surface modifications: toward clinically useful bioactive implants. ACS Biomater Sci Eng. 2017;3(7):1245-61. doi: 10.1021/acsbiomaterials.6b00604, PMID 33440513.

79. Gange P. The evolution of bonding in orthodontics. Am J Orthod Dentofacial Orthop. 2015;147(4)Suppl:S56-63. doi: 10.1016/j.ajodo.2015.01.011, PMID 25836345.

80. Milly H, Festy F, Watson TF, Thompson I, Banerjee A. Enamel white spot lesions can remineralise using bio-active glass and polyacrylic acid-modified bio-active glass powders. J Dent. 2014;42(2):158-66. doi: 10.1016/j.jdent.2013.11.012, PMID 24287257.

81. Taha AA, Hill RG, Fleming PS, Patel MP. Development of a novel bioactive glass for air-abrasion to selectively remove orthodontic adhesives. Clin Oral Investig. 2018;22(4):1839-49. doi: 10.1007/s00784-017-2279-8, PMID 29185145.

82. Gholami S, Labbaf S, Houreh AB, Ting HK, Jones JR, Esfahani MH. Long term effects of bioactive glass particulates on dental pulp stem cells in vitro. Biomed Glasses. 2017;3(1):96-103. doi: 10.1515/bglass-2017-0009.

83. Long Y, Liu S, Zhu L, Liang Q, Chen X, Dong Y. Evaluation of pulp response to novel bioactive glass pulp capping materials. J Endod. 2017;43(10):1647-50. doi: 10.1016/j.joen.2017.03.011, PMID 28864220.

84. Belladonna FG, Calasans Maia MD, Novellino Alves AT, De Brito Resende RF, Souza EM, Silva EJ. Biocompatibility of a self-adhesive gutta-percha-based material in subcutaneous tissue of mice. J Endod. 2014;40(11):1869-73. doi: 10.1016/j.joen.2014.07.013, PMID 25190606.

85. Peltola MJ, Aitasalo KM, Suonpaa JT, Yli-Urpo A, Laippala PJ, Forsback AP. Frontal sinus and skull bone defect obliteration with three synthetic bioactive materials. A comparative study. J Biomed Mater Res B Appl Biomater. 2003;66(1):364-72. doi: 10.1002/jbm.b.10023, PMID 12808596.

86. Fetner AE, Hartigan MS, Low SB. Periodontal repair using PerioGlas in nonhuman primates: clinical and histologic observations. Compendium. 1994;15(7):935-8. PMID 7728821.

87. Elshahat A. Correction of craniofacial skeleton contour defects using bioactive glass particles. Egypt J Plast Reconstr Surg. 2006;30(2):113-9.

88. Orchardson R, Gillam DG. The efficacy of potassium salts as agents for treating dentin hypersensitivity. J Orofac Pain. 2000;14(1):9-19. PMID 11203743.

89. Gillam DG. Clinical trial designs for testing of products for dentine hypersensitivity a review. J West Soc Periodontol Periodontal Abstr. 1997;45(2):37-46. PMID 9477867.

90. Montazerian M, Zanotto ED. A guided walk through Larry Hench’s monumental discoveries. J Mater Sci. 2017;52(15):8695-732. doi: 10.1007/s10853-017-0804-4.

91. Yu H, Peng J, Xu Y, Chang J, Li H. Bioglass activated skin tissue engineering constructs for wound healing. ACS Appl Mater Interfaces. 2016 Jan 13;8(1):703-15. doi: 10.1021/acsami.5b09853, PMID 26684719.

92. Kargozar S, Hamzehlou S, Baino F. Can bioactive glasses be useful to accelerate the healing of epithelial tissues? Mater Sci Eng C Mater Biol Appl. 2019 Apr 1;97:1009-20. doi: 10.1016/j.msec.2019.01.028, PMID 30678892.

93. Chen QZ, Harding SE, Ali NN, Lyon AR, Boccaccini AR. Biomaterials in cardiac tissue engineering: ten years of research survey. Mater Sci Eng R Rep. 2008 Feb 29;59(1-6):1-37. doi: 10.1016/j.mser.2007.08.001.

94. Kargozar S, Hamzehlou S, Baino F. Potential of bioactive glasses for cardiac and pulmonary tissue engineering. Materials (Basel). 2017 Dec 15;10(12):1429. doi: 10.3390/ma10121429, PMID 29244726.

95. Tan A, Romanska HM, Lenza R, Jones JR, Hench LL, Polak JM. The effect of 58S bioactive sol-gel derived foams on the growth of murine lung epithelial cells. Key Eng Mater. 2003;240-242:719-24. doi: 10.4028/www.scientific.net/KEM.240-242.719.

96. Gilchrist T, Glasby MA, Healy DM, Kelly G, Lenihan DV, McDowall KL. In vitro nerve repair in vivo. The reconstruction of peripheral nerves by entubulation with biodegradeable glass tubes a preliminary report. Br J Plast Surg. 1998 Jan 1;51(3):231-7. doi: 10.1054/bjps.1997.0243, PMID 9664883.

97. Varghese R, RV, Shinde. Therapeutic potential of novel phyto-medicine from natural origin for accelerated wound healing. Int J Pharmacogn. 2021;8(1):14-24. doi: 10.13040/IJPSR.0975-8232.

98. Mehrabi T, Mesgar AS, Mohammadi Z. Bioactive glasses: a promising therapeutic ion release strategy for enhancing wound healing. ACS Biomater Sci Eng. 2020;6(10):5399-430. doi: 10.1021/acsbiomaterials.0c00528, PMID 33320556.

99. Rao TR, Chvs P, MY, CH P. Hydrogels the three-dimensional networks: a review. Int J Curr Pharm Sci. 2021;13(1):12-7. doi: 10.22159/ijcpr.2021v13i1.40823.

100. Xu H, LV F, Zhang Y, Yi Z, Ke Q, Wu C. Hierarchically micro-patterned nanofibrous scaffolds with a nanosized bio-glass surface for accelerating wound healing. Nanoscale. 2015 Nov 5;7(44):18446-52. doi: 10.1039/C5NR04802H, PMID 26503372.

101. Li H, He J, Yu H, Green CR, Chang J. Bioglass promotes wound healing by affecting gap junction connexin 43 mediated endothelial cell behavior. Biomaterials. 2016 Apr 1;84:64-75. doi: 10.1016/j.biomaterials.2016.01.033, PMID 26821121.

102. Banijamali S, Heydari M, Mozafari M. Cellular response to bioactive glasses and glass ceramics. In: InHandbook of biomaterials biocompatibility. Elsevier; 2020 Jan 1. p. 395-421. doi: 10.1016/B978-0-08-102967-1.00019-0.

103. Chen S, Huan Z, Zhang L, Chang J. The clinical application of a silicate-based wound dressing (DermFactor®) for wound healing after anal surgery: a randomized study. Int J Surg. 2018 Apr 1;52:229-32. doi: 10.1016/j.ijsu.2018.02.036, PMID 29481992.

Published

07-09-2025

How to Cite

SRAVANI, V., & VIDYAVATHI, M. (2025). THERAPEUTIC POTENTIAL AND APPLICATIONS OF BIOGLASS: A REVIEW. International Journal of Applied Pharmaceutics, 17(5), 21–29. https://doi.org/10.22159/ijap.2025v17i5.53435

Issue

Section

Review Article(s)