SLOW-RELEASE DRUG DELIVERY SYSTEM FOR MESOPOROUS SILICA NANOPARTICLES LOADED WITH CELASTROL TO CONTROL ADENOCARCINOMA GASTRIC CELLS

Authors

  • MOHAMMAD TAGHI MORADI Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
  • DHIYA ALTEMEMY Department of Pharmaceutics, College of Pharmacy, Al-Zahraa University for Women, Karbala, Iraq https://orcid.org/0000-0003-0311-9827
  • LEILA HASHEMI Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
  • POORIA MOHAMMADI ARVEJEH Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
  • MAJID ASADI-SAMANI Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran https://orcid.org/0000-0001-5623-8729
  • FARIBA HOUSHMAND Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran. Departments of Physiology and Pharmacology, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
  • PEGAH KHOSRAVIAN Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran

DOI:

https://doi.org/10.22159/ijap.2025v17i5.53510

Keywords:

Adenocarcinoma gastric cells, Celastrol, Mesoporous silica nanoparticles, Slow-release drug delivery system

Abstract

Objective: The load of low-soluble drugs, such as celastrol (Celas) in mesoporous silica nanoparticles (MSNs), increases the solubility and physicochemical stability of the drug. This study investigated the performance of MSNs loaded with Celas to counteract adenocarcinoma gastric (AGS) cells.

Methods: MSNs with amine surface modification (MSN-NH2) were prepared using the sol-gel method. MSN-NH2 were loaded with Celas and surface coated with Eudragit® RS 100 (Eud). The methods evaluated final prepared Celas@MSN-NH2/Eud as scanning electron microscope (SEM), Energy-dispersive X-ray spectroscopy (EDAX), thermal gravimetric analysis (TGA), Brunauer–Emmett–Teller (BET), Fourier-transform infrared spectroscopy (FTIR) and dynamic light scattering (DLS). Final nanoparticles were investigated for loading and release of Celas by spectrophotometric method. In vitro, the antiproliferative activity of free Celas and nanoparticles in AGS cell lines was evaluated using an MTT assay. The apoptosis rate of AGS cells was assessed according to the instructions of the FITC Annexin-V apoptosis detection kit and by flow cytometry.

Results: SEM results showed particles with an approximate size of 50 nm, and XRD results proved the crystal structure of MSNs. BET and Barrett–Joyner–Halenda (BJH) plots showed the surface area above 980 m2/g and the pore size of these particles at 2.8 nm, respectively. The FTIR results demonstrated the chemical structure of nanoparticles. The loading capacity of Celas@MSN-NH2/Eud with Celas was 2.6%, and the release of Celas from the nanoparticles increased under the influence of acidic pH. Anti-proliferative activity on AGS cells was increased in growth inhibitory effect by Celas@MSN-NH2/Eud than free Celas. The IC50 and confidence intervals (CI) 95% of the Celas was 0.3756 (CI 95%:0.3207-0.44 μM), higher than that of Celas@MSN-NH2/Eud, which was 0.1456 (CI95: 0.1277-0.1668 μM) against AGS cells. Examination of cellular apoptosis also showed ‎heightened primary apoptosis in Celas-loaded nanoparticles compared to the same Celas concentration.

Conclusion: According to the obtained results, it can be said that Celas@MSN-NH2/Eud exhibited good anticancer activity against AGS cells. We conclude that using MSNs with Eud coating is suitable for Celas drug delivery to gastric cancer cells.

References

1. Ames BN. Prevention of mutation cancer and other age associated diseases by optimizing micronutrient intake. J Nucleic Acids. 2010;2010(1):725071. doi: 10.4061/2010/725071, PMID 20936173.

2. Wu CW, Chi CW, Lin WC. Gastric cancer: prognostic and diagnostic advances. Expert Rev Mol Med. 2002;4(6):1-12. doi: 10.1017/S1462399402004337, PMID 14987390.

3. Jiang Y, Li T, Liang X, Hu Y, Huang L, Liao Z. Association of adjuvant chemotherapy with survival in patients with stage II or III gastric cancer. JAMA Surg. 2017;152(7):e171087. doi: 10.1001/jamasurg.2017.1087, PMID 28538950.

4. Park S, Ha S, Kwon HW, Kim WH, Kim TY, Oh DY. Prospective evaluation of changes in tumor size and tumor metabolism in patients with advanced gastric cancer undergoing chemotherapy: association and clinical implication. J Nucl Med. 2017;58(6):899-904. doi: 10.2967/jnumed.116.182675, PMID 28572288.

5. Zhou F, Yu XL, Liang P, Cheng Z, Han ZY, Yu J. Microwave ablation is effective against liver metastases from gastric adenocarcinoma. Int J Hyperthermia. 2017;33(7):830-5. doi: 10.1080/02656736.2017.1306120, PMID 28540787.

6. Hajizadeh N, Pourhoseingholi MA, Baghestani AR, Abadi A, Zali MR. Bayesian adjustment of gastric cancer mortality rate in the presence of misclassification. World J Gastrointest Oncol. 2017;9(4):160-5. doi: 10.4251/wjgo.v9.i4.160, PMID 28451063.

7. Rahamooz Haghighi SR, Asadi MH, Akrami H, Baghizadeh A. Anti-carcinogenic and anti-angiogenic properties of the extracts of Acorus calamus on gastric cancer cells. Avicenna J Phytomed. 2017;7(2):145-56. PMID 28348970.

8. Florea AM, Busselberg D. Cisplatin as an anti-tumor drug: cellular mechanisms of activity drug resistance and induced side effects. Cancers. 2011;3(1):1351-71. doi: 10.3390/cancers3011351, PMID 24212665.

9. Taylor RC, Cullen SP, Martin SJ. Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol. 2008;9(3):231-41. doi: 10.1038/nrm2312, PMID 18073771.

10. Liby KT, Yore MM, Sporn MB. Triterpenoids and rexinoids as multifunctional agents for the prevention and treatment of cancer. Nat Rev Cancer. 2007;7(5):357-69. doi: 10.1038/nrc2129, PMID 17446857.

11. Martinez Perez C, Ward C, Cook G, Mullen P, McPhail D, Harrison DJ. Novel flavonoids as anti-cancer agents: mechanisms of action and promise for their potential application in breast cancer. Biochem Soc Trans. 2014;42(4):1017-23. doi: 10.1042/BST20140073, PMID 25109996.

12. Gholamian Dehkordi N, Elahian F, Khosravian P, Mirzaei SA. Intelligent TAT‐coupled anti‐HER2 immunoliposomes knock downed MDR1 to produce chemosensitize phenotype of multidrug resistant carcinoma. J Cell Physiol. 2019;234(11):20769-78. doi: 10.1002/jcp.28683, PMID 31001890.

13. Yang MH, Kim J, Khan IA, Walker LA, Khan SI. Nonsteroidal anti-inflammatory drug-activated gene-1 (NAG-1) modulators from natural products as anti-cancer agents. Life Sci. 2014;100(2):75-84. doi: 10.1016/j.lfs.2014.01.075, PMID 24530873.

14. Forbes Hernandez TY, Giampieri F, Gasparrini M, Mazzoni L, Quiles JL, Alvarez Suarez JM. The effects of bioactive compounds from plant foods on mitochondrial function: a focus on apoptotic mechanisms. Food Chem Toxicol. 2014 Jun;68:154-82. doi: 10.1016/j.fct.2014.03.017, PMID 24680691.

15. Kalimuthu S, Se Kwon K. Cell survival and apoptosis signaling as therapeutic target for cancer: marine bioactive compounds. Int J Mol Sci. 2013;14(2):2334-54. doi: 10.3390/ijms14022334, PMID 23348928.

16. Mangal M, Sagar P, Singh H, Raghava GP, Agarwal SM. NPACT: naturally occurring plant-based anti-cancer compound activity target database. Nucleic Acids Res. 2013 Jan 1;41(D1):D1124-9. doi: 10.1093/nar/gks1047, PMID 23203877.

17. Cragg GM, Newman DJ. Natural products: a continuing source of novel drug leads. Biochim Biophys Acta. 2013;1830(6):3670-95. doi: 10.1016/j.bbagen.2013.02.008, PMID 23428572.

18. Khosravian P, Heidari Soureshjani S, Yang Q. Effects of medicinal plants on radiolabeling and biodistribution of diagnostic radiopharmaceuticals: a systematic review. Plant Sci Today. 2019;6(2):123-31.

19. Lee JH, Koo TH, Yoon H, Jung HS, Jin HZ, Lee K. Inhibition of NF-κB activation through targeting IκB kinase by celastrol a quinone methide triterpenoid. Biochem Pharmacol. 2006;72(10):1311-21. doi: 10.1016/j.bcp.2006.08.014, PMID 16984800.

20. Sassa H, Kogure K, Takaishi Y, Terada H. Structural basis of potent antiperoxidation activity of the triterpene celastrol in mitochondria: effect of negative membrane surface charge on lipid peroxidation. Free Radic Biol Med. 1994;17(3):201-7. doi: 10.1016/0891-5849(94)90075-2, PMID 7982625.

21. He Q, Gao Y, Zhang L, Zhang Z, Gao F, Ji X. A pH-responsive mesoporous silica nanoparticles based multi-drug delivery system for overcoming multi-drug resistance. Biomaterials. 2011;32(30):7711-20. doi: 10.1016/j.biomaterials.2011.06.066, PMID 21816467.

22. Kusterbeck AW, Charles PT, Melde BJ, Trammell SA, Adams AA, Deschamps JR, editors. Biosensor UUV payload for underwater detection. Ocean Sensing and Monitoring; 2010. p. 767805. doi: 10.1117/12.850317.

23. Bremmell KE, Prestidge CA. Enhancing oral bioavailability of poorly soluble drugs with mesoporous silica based systems: opportunities and challenges. Drug Dev Ind Pharm. 2019;45(3):349-58. doi: 10.1080/03639045.2018.1542709, PMID 30411991.

24. Slowing II, Vivero Escoto JL, Wu CW, Lin VS. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev. 2008;60(11):1278-88. doi: 10.1016/j.addr.2008.03.012, PMID 18514969.

25. Heurtault B, Saulnier P, Pech B, Proust JE, Benoit JP. Physicochemical stability of colloidal lipid particles. Biomaterials. 2003;24(23):4283-300. doi: 10.1016/s0142-9612(03)00331-4, PMID 12853260.

26. Cho K, Wang X, Nie S, Chen ZG, Shin DM. Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res. 2008;14(5):1310-6. doi: 10.1158/1078-0432.CCR-07-1441, PMID 18316549.

27. Mohammadi ZG, Badiei AR, Khaniania Y, Hadadpour M. One-pot synthesis of polyhydroquinolines catalyzed by sulfonic acid functionalized SBA-15 as a new nanoporous acid catalyst under solvent-free conditions. Iranian Journal of Chemistry & Chemical Engineering International English Edition. 2010 Jun;29(2):1-10. doi: 10.30492/IJCCE.2010.6687.

28. Badiei A, Jahangir HI, Ziarani G. Incorporation of ibuprofen into SBA-15; drug loading and release properties. Dyn Biochem Process Biotechnol Mol Biol. 2009;3:48-50.

29. Wang D, Huang J, Wang X, Yu Y, Zhang H, Chen Y. The eradication of breast cancer cells and stem cells by 8-hydroxyquinoline loaded hyaluronan modified mesoporous silica nanoparticle-supported lipid bilayers containing docetaxel. Biomaterials. 2013;34(31):7662-73. doi: 10.1016/j.biomaterials.2013.06.042, PMID 23859657.

30. Ceballos A, Cirri M, Maestrelli F, Corti G, Mura P. Influence of formulation and process variables on in vitro release of theophylline from directly compressed Eudragit matrix tablets. Farmaco. 2005;60(11-12):913-8. doi: 10.1016/j.farmac.2005.07.002, PMID 16129436.

31. Huyghebaert N, Vermeire A, Remon JP. In vitro evaluation of coating polymers for enteric coating and human ileal targeting. Int J Pharm. 2005;298(1):26-37. doi: 10.1016/j.ijpharm.2005.03.032, PMID 15894443.

32. Haznedar S, Dortunc B. Preparation and in vitro evaluation of eudragit microspheres containing acetazolamide. Int J Pharm. 2004;269(1):131-40. doi: 10.1016/j.ijpharm.2003.09.015, PMID 14698584.

33. Kaboli MA, Hashim AA, Altememy D, Chaleshtori JS, Rezaee M, Hosseini SA. Silk fibroin-coated mesoporous silica nanoparticles enhance 6-thioguanine delivery and cytotoxicity in breast cancer cells. Int J Appl Pharm. 2025;17(1):275-83. doi: 10.22159/ijap.2025v17i1.52882.

34. Khosravian P, Shafiee Ardestani M, Khoobi M, Ostad SN, Dorkoosh FA, Akbari Javar H. Mesoporous silica nanoparticles functionalized with folic acid/methionine for active targeted delivery of docetaxel. Onco Targets Ther. 2016 Dec 1;9:7315-30. doi: 10.2147/OTT.S113815, PMID 27980423.

35. Khosravian P, Khoobi M, Ardestani MS, Daryasari MP, Hassanzadeh M, Ghasemi Dehkordi P. Enhancement antimicrobial activity of clarithromycin by amine functionalized mesoporous silica nanoparticles as drug delivery system. Lett Drug Des Discov. 2018;15(7):787-95. doi: 10.2174/1570180815666180117155818.

36. Altememy D, Jafari M, Naeini K, Alsamarrai S, Khosravian P. In vitro evaluation of metronidazole-loaded mesoporous silica nanoparticles against trichomonas vaginalis. Int J Pharm Res; 2020. doi: 10.31838/ijpr/2020.SP1.400.

37. Altememy D, Khoobi M, Javar HA, Alsamarrai S, Khosravian P. Synthesis and characterization of silk fibroin-coated mesoporous silica nanoparticles for tioguanine targeting to leukemia. Int J Pharm Res. 2021:12(2)1181. doi: 10.31838/ijpr/2020.SP2.145.

38. Moradi MT, Karimi A, Alidadi S. In vitro antiproliferative and apoptosis-inducing activities of crude ethyl alcohol extract of Quercus brantii L. Acorn and subsequent fractions. Chin J Nat Med. 2016;14(3):196-202. doi: 10.1016/S1875-5364(16)30016-4, PMID 27025366.

39. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65(1-2):55-63. doi: 10.1016/0022-1759(83)90303-4, PMID 6606682.

40. Pinna GF, Fiorucci M, Reimund JM, Taquet N, Arondel Y, Muller CD. Celastrol inhibits pro-inflammatory cytokine secretion in crohn’s disease biopsies. Biochem Biophys Res Commun. 2004;322(3):778-86. doi: 10.1016/j.bbrc.2004.07.186, PMID 15336532.

41. Kannaiyan R, Shanmugam MK, Sethi G. Molecular targets of celastrol derived from thunder of god vine: potential role in the treatment of inflammatory disorders and cancer. Cancer Lett. 2011;303(1):9-20. doi: 10.1016/j.canlet.2010.10.025, PMID 21168266.

42. Nagase M, Oto J, Sugiyama S, Yube K, Takaishi Y, Sakato N. Apoptosis induction in HL-60 cells and inhibition of topoisomerase II by triterpene celastrol. Biosci Biotechnol Biochem. 2003;67(9):1883-7. doi: 10.1271/bbb.67.1883, PMID 14519971.

43. Ni H, Zhao W, Kong X, Li H, Ouyang J. NF-kappa B modulation is involved in celastrol-induced human multiple myeloma cell apoptosis. PLOS One. 2014;9(4):e95846. doi: 10.1371/journal.pone.0095846, PMID 24755677.

44. Chiang KC, Tsui KH, Chung LC, Yeh CN, Chen WT, Chang PL. Celastrol blocks interleukin-6 gene expression via downregulation of NF-κB in prostate carcinoma cells. PLOS One. 2014;9(3):e93151. doi: 10.1371/journal.pone.0093151, PMID 24664372.

45. Fribley AM, Miller JR, Brownell AL, Garshott DM, Zeng Q, Reist TE. Celastrol induces unfolded protein response-dependent cell death in head and neck cancer. Exp Cell Res. 2015;330(2):412-22. doi: 10.1016/j.yexcr.2014.08.014, PMID 25139619.

46. Yoon MJ, Lee AR, Jeong SA, Kim YS, Kim JY, Kwon YJ. Release of Ca2+ from the endoplasmic reticulum and its subsequent influx into mitochondria trigger celastrol-induced paraptosis in cancer cells. Oncotarget. 2014;5(16):6816-31. doi: 10.18632/oncotarget.2256, PMID 25149175.

47. Yang H, Chen D, Cui QC, Yuan X, Dou QP. Celastrol a triterpene extracted from the Chinese thunder of god vine is a potent proteasome inhibitor and suppresses human prostate cancer growth in nude mice. Cancer Res. 2006;66(9):4758-65. doi: 10.1158/0008-5472.CAN-05-4529, PMID 16651429.

48. He D, Xu Q, Yan M, Zhang P, Zhou X, Zhang Z. The NF-kappa B inhibitor celastrol could enhance the anti-cancer effect of gambogic acid on oral squamous cell carcinoma. BMC Cancer. 2009 Sep 25;9:343. doi: 10.1186/1471-2407-9-343, PMID 19778460.

49. Zhu H, Ding WJ, Wu R, Weng QJ, Lou JS, Jin RJ. Synergistic anti-cancer activity by the combination of TRAIL/APO-2L and celastrol. Cancer Investig. 2010;28(1):23-32. doi: 10.3109/07357900903095664, PMID 19916747.

50. Xu SW, Law BY, Mok SW, Leung EL, Fan XX, Coghi PS. Autophagic degradation of epidermal growth factor receptor in gefitinib resistant lung cancer by celastrol. Int J Oncol. 2016;49(4):1576-88. doi: 10.3892/ijo.2016.3644, PMID 27498688.

51. Dai Y, DeSano JT, Meng Y, Ji Q, Ljungman M, Lawrence TS. Celastrol potentiates radiotherapy by impairment of DNA damage processing in human prostate cancer. Int J Radiat Oncol Biol Phys. 2009;74(4):1217-25. doi: 10.1016/j.ijrobp.2009.03.057, PMID 19545787.

52. Ge P, Ji X, Ding Y, Wang X, Fu S, Meng F. Celastrol causes apoptosis and cell cycle arrest in rat glioma cells. Neurol Res. 2010;32(1):94-100. doi: 10.1179/016164109X12518779082273, PMID 19909582.

53. Niemela E, Desai D, Nkizinkiko Y, Eriksson JE, Rosenholm JM. Sugar-decorated mesoporous silica nanoparticles as delivery vehicles for the poorly soluble drug celastrol enables targeted induction of apoptosis in cancer cells. Eur J Pharm Biopharm. 2015 Oct;96:11-21. doi: 10.1016/j.ejpb.2015.07.009, PMID 26184689.

54. Choi JY, Gupta B, Ramasamy T, Jeong JH, Jin SG, Choi HG. Pegylated polyaminoacid-capped mesoporous silica nanoparticles for mitochondria-targeted delivery of celastrol in solid tumors. Colloids Surf B Biointerfaces. 2018 May 1;165:56-66. doi: 10.1016/j.colsurfb.2018.02.015, PMID 29453086.

Published

07-09-2025

How to Cite

MORADI, M. T., ALTEMEMY, D., HASHEMI, L., ARVEJEH, P. M., ASADI-SAMANI, M., HOUSHMAND, F., & KHOSRAVIAN, P. (2025). SLOW-RELEASE DRUG DELIVERY SYSTEM FOR MESOPOROUS SILICA NANOPARTICLES LOADED WITH CELASTROL TO CONTROL ADENOCARCINOMA GASTRIC CELLS. International Journal of Applied Pharmaceutics, 17(5), 352–360. https://doi.org/10.22159/ijap.2025v17i5.53510

Issue

Section

Original Article(s)

Similar Articles

<< < 123 124 125 126 127 > >> 

You may also start an advanced similarity search for this article.