PLASMA CONCENTRATION OF CURCUMIN AND SELENIUM FOLLOWING ADMINISTRATION OF SLOW-RELEASE CURCUMIN-LOADED SELENIUM NANOPARTICLES

Authors

  • JAHANGIR KABOUTARI Department of Basic Sciences, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
  • FATEMEH SABAGHI Department of Basic Sciences, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
  • DHIYA ALTEMEMY Department of Pharmaceutics, College of Pharmacy, Al-Zahraa University for Women, Karbala, Iraq https://orcid.org/0000-0003-0311-9827
  • HOSEIN ALI ARAB Department of Pharmacology, Faculty of Veterinary Medicine, Tehran University, Tehran, Iran
  • MOOSE JAVDAI Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
  • PEGAH KHOSRAVIYAN Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran

DOI:

https://doi.org/10.22159/ijap.2025v17i5.53543

Keywords:

Curcumin, Selenium nanoparticles, Slow release, Plasma concentration

Abstract

Objective: Suitable plasma concentration at the site of action is a crucial therapeutic goal, so slow-release pharmaceutical dosage forms have been very effective. This study planned to investigate the plasma concentrations of curcumin (Cur) and selenium nanoparticles (SeNPs) following the administration of a slow-release system of SeNPs loaded with Cur (SeNPs@Cur).

Methods: 75 adult male rats were randomly divided into five groups. The control group received no treatment. In other groups, a single dose of 5 ml of 10% ethanol (solvent group), 0.25 mg/kg SeNPs, 50 mg/kg Cur, and 0.25 mg/kg SeNPs loaded with 50 mg/kg Cur (SeNPs@Cur) were administered intraperitoneally. Blood samples were taken on days 1, 3, and 5, and blood concentrations of SeNPs and Cur were measured by inductively coupled plasma atomic emission spectroscopy (ICP-AES) and High-performance liquid chromatography (HPLC), respectively.

Results: The concentration of Cur in the Cur group was less than five µg on day 1 and gradually decreased over 5 d to zero. The blood concentration of Cur was approximately 15 µg on day 1 in the SeNPs@Cur group, then decreased until the 3rd day, and finally remained at a constant level of 5 µg on the 5th d. Selenium concentration decreased in the SeNPs group, from 160 µg on day 1 to 100 µg on day 5. Selenium concentration in the SeNPs@Cur group was 180 µg on the first day, then decreased to 110 µg on the fifth day. SeNPs@Cur maintained a plasma curcumin level of 5 µg on day 5 compared to undetectable levels in the Cur group.

Conclusion: This study showed that the intraperitoneal administration of SeNPs@Cur, compared to the administration of free Cur, initially causes a high serum concentration and a loading dose, which continues with the slow release, increasing and maintaining the Cur serum level in the long-term treatment period.

References

1. Cheng AL, Hsu CH, Lin JK, Hsu MM, Ho YF, Shen TS. Phase I clinical trial of curcumin a chemopreventive agent in patients with high-risk or pre-malignant lesions. Anticancer Res. 2001;21(4B):2895-900. PMID 11712783.

2. Karunagaran D, Joseph J, Kumar TR. Cell growth regulation. Adv Exp Med Biol. 2007;595:245-68. doi: 10.1007/978-0-387-46401-5_11, PMID 17569215.

3. Gowdy KM. Selenium supplementation and antioxidant protection in broiler chickens; 2004.

4. Zachara BA, Gromadzinska J, Wąsowicz W, Zbrog Z. Red blood cell and plasma glutathione peroxidase activities and selenium concentration in patients with chronic kidney disease: a review. Acta Biochim Pol. 2006;53(4):663-77. doi: 10.18388/abp.2006_3294, PMID 17160142.

5. Vareed SK, Kakarala M, Ruffin MT, Crowell JA, Normolle DP, Djuric Z. Pharmacokinetics of curcumin conjugate metabolites in healthy human subjects. Cancer Epidemiol Biomarkers Prev. 2008;17(6):1411-7. doi: 10.1158/1055-9965.EPI-07-2693, PMID 18559556, PMCID PMC4138955.

6. Scott ML, Thompsom JN. Selenium content of feedstuffs and effects of dietary selenium levels upon tissue selenium in chicks and poults. Poult Sci. 1971;50(6):1742-8. doi: 10.3382/ps.0501742, PMID 5158618.

7. Khosravian Dehkordi P, Asadi Samani M, Altememy D, Javadi Farsani F, Akbari M, Moradi MT. In vitro antiviral activity of curcumin-loaded selenium nanoparticles against human herpes virus type 1. J Shahrekord Univ Med Sci. 2024;26(2):73-7. doi: 10.34172/jsums.943.

8. Tabanelli R, Brogi S, Calderone V. Improving curcumin bioavailability: current strategies and future perspectives. Pharmaceutics. 2021;13(10):1715. doi: 10.3390/pharmaceutics13101715, PMID 34684008, PMCID PMC8540263.

9. Asl FD, Altememy D, Khosravian P, Rezaee M, Saffari Chaleshtori J. Evaluation of curcumin effects on bad bak and bim: a molecular dynamics simulation study. J Pharm Negat Results. 2022;13(3):8-14. doi: 10.47750/pnr.2022.13.03.002.

10. Pescatello LS, Turner D, Rodriguez N, Blanchard BE, Tsongalis GJ, Maresh CM. Dietary calcium intake and renin angiotensin system polymorphisms alter the blood pressure response to aerobic exercise: a randomized control design. Nutr Metab (Lond). 2007 Jan 4;4:1. doi: 10.1186/1743-7075-4-1, PMID 17204161.

11. Garcea G, Berry DP, Jones DJ, Singh R, Dennison AR, Farmer PB. Consumption of the putative chemopreventive agent curcumin by cancer patients: assessment of curcumin levels in the colorectum and their pharmacodynamic consequences. Cancer Epidemiol Biomarkers Prev. 2005;14(1):120-5. doi: 10.1158/1055-9965.120.14.1, PMID 15668484.

12. Mohamad RH, El Bastawesy AM, Zekry ZK, Al Mehdar HA, Al Said MG, Aly SS. The role of Curcuma longa against doxorubicin (adriamycin) induced toxicity in rats. J Med Food. 2009;12(2):394-402. doi: 10.1089/jmf.2007.0715, PMID 19459743.

13. Jungbauer A, Hahn R. Ion-exchange chromatography. Methods Enzymol. 2009;463:349-71. doi: 10.1016/S0076-6879(09)63022-6, PMID 19892182.

14. Stadtman TC. Selenium biochemistry. Annu Rev Biochem. 1990;59:111-27. doi: 10.1146/annurev.bi.59.070190.000551, PMID 2142875.

15. Kumari M, Purohit MP, Patnaik S, Shukla Y, Kumar P, Gupta KC. Curcumin loaded selenium nanoparticles synergize the anticancer potential of doxorubicin contained in self-assembled cell receptor targeted nanoparticles. Eur J Pharm Biopharm. 2018;130:185-99. doi: 10.1016/j.ejpb.2018.06.030, PMID 29969665.

16. Adaramoye OA, Anjos RM, Almeida MM, Veras RC, Silvia DF, Oliveira FA. Hypotensive and endothelium independent vasorelaxant effects of methanolic extract from Curcuma longa L. in rats. J Ethnopharmacol. 2009;124(3):457-62. doi: 10.1016/j.jep.2009.05.021, PMID 19481144.

17. Altememy D, Javdani M, Khosravian P, Khosravi A, Moghtadaei Khorasgani E. Preparation of transdermal patch containing selenium nanoparticles loaded with doxycycline and evaluation of skin wound healing in a rat model. Pharmaceuticals (Basel). 2022;15(11):1381. doi: 10.3390/ph15111381, PMID 36355552.

18. Al Shoyaib A, Archie SR, Karamyan VT. Intraperitoneal route of drug administration: should it be used in experimental animal studies? Pharm Res. 2019;37(1):12. doi: 10.1007/s11095-019-2745-x, PMID 31873819, PMCID PMC7412579.

19. Lestari ML, Indrayanto G. Curcumin. Profiles Drug Subst Excip Relat Methodol. 2014;39:113-204. doi: 10.1016/B978-0-12-800173-8.00003-9, PMID 24794906.

20. Wahlstrom B, Blennow G. A study on the fate of curcumin in the rat. Acta Pharmacol Toxicol (Copenh). 1978;43(2):86-92. doi: 10.1111/j.1600-0773.1978.tb02240.x, PMID 696348.

21. Yu H, Huang Q. Enhanced in vitro anti-cancer activity of curcumin encapsulated in hydrophobically modified starch. Food Chem. 2010;119(2):669-74. doi: 10.1016/j.foodchem.2009.07.018.

22. Hong J, Bose M, Ju J, Ryu JH, Chen X, Sang S. Modulation of arachidonic acid metabolism by curcumin and related β-diketone derivatives: effects on cytosolic phospholipase a 2, cyclooxygenases and 5-lipoxygenase. Carcinogenesis. 2004;25(9):1671-9. doi: 10.1093/carcin/bgh165, PMID 15073046.

23. Yallapu MM, Jaggi M, Chauhan SC. Curcumin nanoformulations: a future nanomedicine for cancer. Drug Discov Today. 2012;17(1-2):71-80. doi: 10.1016/j.drudis.2011.09.009, PMID 21959306.

24. Mohammad Akaboli, Javdani M, Amini Khoei H, Mehreganzadeh P, Driss F, Karimi M. Investigating the role of nanoparticle based curcumin implants in prevention of post laparotomy peritoneal adhesion: an in vivo study. International Journal of Applied Pharmaceutics. 2024;16(5):326-31. doi: 10.22159/ijap.2024v16i5.50976.

25. Apiratikul N, Penglong T, Suksen K, Svasti S, Chairoungdua A, Yingyongnarongkula B. In vitro delivery of curcumin with cholesterol based cationic liposomes. Bioorg Khim. 2013;39(4):497-503. doi: 10.1134/S1068162013030035, PMID 24707732.

26. Zhang R, Zhang W, Zhang Q, Wang L, Yang F, Sun W. Curcumin modified selenium nanoparticles improve S180 tumour therapy in mice by regulating the gut microbiota and chemotherapy. Int J Nanomedicine. 2024 Dec 20;19:13653-69. doi: 10.2147/IJN.S476686, PMID 39720218, PMCID PMC11668068.

27. Sadeghi R, Kalbasi A, Emam Jomeh Z, Razavi SH, Kokini J, Moosavi Movahedi AA. Biocompatible nanotubes as potential carrier for curcumin as a model bioactive compound. J Nanopart Res. 2013;15(11):1-11. doi: 10.1007/s11051-013-1931-8.

28. Tiyaboonchai W, Tungpradit W, Plianbangchang P. Formulation and characterization of curcuminoids loaded solid lipid nanoparticles. Int J Pharm. 2007;337(1-2):299-306. doi: 10.1016/j.ijpharm.2006.12.043, PMID 17287099.

29. Rahimzadeh M, Sadeghizadeh M, Najafi F, Arab SS, Mobasheri H. Study of loading cytotoxicity uptake and release of curcumin from a novel gemini surfactant nanocarrier. Pathobiol Res. 2016;19(1):13-27.

30. Naderinezhad S, Haghirosadat F, Amoabediny G, Naderinezhad A, Esmaili Z, Akbarzade A. Synthesis of biodegradable and self-assembled anionic nano-carrier: novel approach for improvement of curcumin delivery to bone tumors cells and mathematical modeling of drug release kinetic. New Cellular and Molecular. Biotechnol J. 2017;7(27):77-84.

31. Shehneh MZ, Kalantar SM, Sheikhha MH, Asri Kojabad AA, Haghiralsadat BF. Study of anti-cancer effects of curcumin; formulation of curcumin loaded nano carrier and its toxicity effect on MCF-7 cell line. J Shahid Sadoughi Univ Med Sci. 2019;27(1):875. doi: 10.18502/ssu.v27i1.875.

32. Xia T, Li N, Nel AE. Potential health impact of nanoparticles. Annu Rev Public Health. 2009;30(1):137-50. doi: 10.1146/annurev.publhealth.031308.100155, PMID 19705557.

33. Foster LH, Sumar S. Selenium in the environment food and health. Nutr Food Sci. 1995;95(5):17-23. doi: 10.1108/00346659510093991.

34. Zhang J, Wang X, Xu T. Elemental selenium at nano size (nano-Se) as a potential chemopreventive agent with reduced risk of selenium toxicity: comparison with se-methylselenocysteine in mice. Toxicol Sci. 2008;101(1):22-31. doi: 10.1093/toxsci/kfm221, PMID 17728283.

35. Li H, Zhang J, Wang T, Luo W, Zhou Q, Jiang G. Elemental selenium particles at nano-size (nano-Se) are more toxic to Medaka (Oryzias latipes) as a consequence of hyper accumulation of selenium: a comparison with sodium selenite. Aquat Toxicol. 2008;89(4):251-6. doi: 10.1016/j.aquatox.2008.07.008, PMID 18768225.

36. Hadrup N, Ravn Haren G. Acute human toxicity and mortality after selenium ingestion: a review. J Trace Elem Med Biol. 2020 Mar;58:126435. doi: 10.1016/j.jtemb.2019.126435, PMID 31775070.

Published

07-09-2025

How to Cite

KABOUTARI, J., SABAGHI, . F., ALTEMEMY, D., ARAB, H. A., JAVDAI, M., & KHOSRAVIYAN, P. (2025). PLASMA CONCENTRATION OF CURCUMIN AND SELENIUM FOLLOWING ADMINISTRATION OF SLOW-RELEASE CURCUMIN-LOADED SELENIUM NANOPARTICLES. International Journal of Applied Pharmaceutics, 17(5), 528–533. https://doi.org/10.22159/ijap.2025v17i5.53543

Issue

Section

Original Article(s)

Similar Articles

<< < 4 5 6 7 8 > >> 

You may also start an advanced similarity search for this article.