REVOLUTIONIZING ALZHEIMER’S THERAPEUTICS: FROM MICROTECHNOLOGIES TO AI-DRIVEN INNOVATIONS

Authors

  • AKANKSHA LAHIRI Department of Pharmaceutics, JSS College of Pharmacy, Mysuru, JSS Academy of Higher Education Research, Mysuru-570015, Karnataka, India https://orcid.org/0000-0002-7952-6093
  • BALAMURALIDHARA V. Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education Research, Mysuru-570015, Karnataka, India
  • MANOHAR S. K. Department of Pharmaceutics, JSS College of Pharmacy, Mysuru, JSS Academy of Higher Education Research, Mysuru-570015, Karnataka, India https://orcid.org/0000-0003-0215-5594
  • AKHILA A. R. Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education Research, Mysuru-570015, Karnataka, India https://orcid.org/0000-0003-4324-7698

DOI:

https://doi.org/10.22159/ijap.2025v17i3.53726

Keywords:

Alzheimer's disease, Artificial intelligence, Drug delivery, Clinical trials, Regulatory guidelines

Abstract

This review article dives deep into Alzheimer's Disease (AD), a progressive and incurable brain disorder. It aims to equip readers with a comprehensive understanding of AD by exploring its history, classification, causes, and risk factors. The article explores the emerging field of Artificial Intelligence (AI) and its potential to revolutionize AD management. It examines how AI can impact diagnostics, treatment strategies, and, particularly, the development of targeted therapies. AI-powered imaging tools, such as Deep Learning-based Positron Emission Tomography (PET)/Magnetic Resonance Imaging (MRI) analysis, have achieved over 90% accuracy in early AD detection by identifying subtle brain changes years before clinical symptoms appear. Machine learning models have also enhanced precision medicine by predicting patient responses to therapies with 85–92% accuracy, optimizing treatment regimens based on genetic and biomarker profiles. These novel delivery systems enhance drug efficacy, improve patient compliance, and reduce systemic toxicity, addressing key challenges in AD treatment. Future developments will focus on AI-guided personalized medicine, smart nanocarriers responsive to AD biomarkers, and AI-powered neuroprosthetics for cognitive rehabilitation. Next, it compares established management methods with the latest investigational drug therapies for AD. This analysis sheds light on promising future directions and potential breakthroughs in AD treatment. However, the article emphasizes the importance of patient safety and highlights the rigorous processes of clinical trials, and regulatory hurdles that new AD therapies and delivery systems must overcome. The review concludes by summarizing the key takeaways and identifying the most promising avenues for future research and development in AD treatment. It emphasizes the potential of these cutting-edge approaches to transform AD care and significantly improve patient quality of life.

References

GS, Raj A, Tabassum S, Chhakchhuak DZ. Oxidative stress in alzheimers disease evaluating the amyloid beta hypothesis. Int J Curr Pharm Sci. 2021;13(5):32-8. doi: 10.22159/ijcpr.2021v13i5.1906.

Sharma A. Understanding the diagnostic evolution of alzheimers disease over the phase of 100 Y. Syst Rev Pharm. 2023 Jun 1;14(7):457-64.

Kumar N, Gahlawat A, Kumar RN, Singh YP, Modi G, Garg P. Drug repurposing for alzheimers disease: in silico and in vitro investigation of FDA-approved drugs as acetylcholinesterase inhibitors. J Biomol Struct Dyn. 2022 May 3;40(7):2878-92. doi: 10.1080/07391102.2020.1844054, PMID 33170091.

Godyn J, Jonczyk J, Panek D, Malawska B. Therapeutic strategies for alzheimers disease in clinical trials. Pharmacol Rep. 2016 Feb 1;68(1):127-38. doi: 10.1016/j.pharep.2015.07.006, PMID 26721364.

Mecocci P, Boccardi V, Cecchetti R, Bastiani P, Scamosci M, Ruggiero C. A long journey into aging brain aging and alzheimers disease following the oxidative stress tracks. J Alzheimers Dis. 2018;62(3):1319-35. doi: 10.3233/JAD-170732, PMID 29562533.

Brauner DJ, Muir JC, Sachs GA. Treating nondementia illnesses in patients with dementia. JAMA. 2000;283(24):3230-5. doi: 10.1001/jama.283.24.3230, PMID 10866871.

Slattum PW, Johnson MA. Caregiver burden in alzheimers disease. Consult Pharm. 2004;19(4):352-62. doi: 10.4140/tcp.n.2004.352, PMID 16553479.

Mohamed S, Rosenheck R, Lyketsos CG, Schneider LS. Caregiver burden in alzheimer disease: cross-sectional and longitudinal patient correlates. Am J Geriatr Psychiatry. 2010 Oct 1;18(10):917-27. doi: 10.1097/JGP.0b013e3181d5745d, PMID 20808108.

Osterberg L, Blaschke T. Adherence to medication. N Engl J Med. 2005 Aug 4;353(5):487-97. doi: 10.1056/NEJMra050100, PMID 16079372.

Cutler DM, Everett W. Thinking outside the pillbox medication adherence as a priority for health care reform. N Engl J Med. 2010;362(17):1553-5. doi: 10.1056/NEJMp1002305, PMID 20375400.

Arlt S, Lindner R, Rosler A, Von Renteln Kruse W. Adherence to medication in patients with dementia: predictors and strategies for improvement. Drugs Aging. 2008 Dec;25(12):1033-47. doi: 10.2165/0002512-200825120-00005, PMID 19021302.

Clark CM, Karlawish JH. Alzheimer disease: current concepts and emerging diagnostic and therapeutic strategies. Ann Intern Med. 2003 Mar 4;138(5):400-10. doi: 10.7326/0003-4819-138-5-200303040-00010, PMID 12614093.

Scott LJ, Goa KL. Galantamine: a review of its use in alzheimers disease. Drugs. 2000;60(5):1095-122. doi: 10.2165/00003495-200060050-00008, PMID 11129124.

Hasnain MS, Al Eissa MS, Alqahtani RA. Novel drug delivery to the brain for neurodegenerative disorder treatment using carbon nanotubes. Al-zharani M. J King Saud Univ Sci. 2024 Nov 1;36(11):103513.

Mittal KR, Pharasi N, Sarna B, Singh M, Rachana HS, Haider SK. Nanotechnology based drug delivery for the treatment of CNS disorders. Transl Neurosci. 2022 Dec 31;13(1):527-46. doi: 10.1515/tnsci-2022-0258, PMID 36741545.

Utsuki T, Uchimura N, Irikura M, Moriuchi H, Holloway HW, YU QS. Preclinical investigation of the topical administration of phenserine: transdermal flux cholinesterase inhibition and cognitive efficacy. J Pharmacol Exp Ther. 2007;321(1):353-61. doi: 10.1124/jpet.106.118000, PMID 17255466.

Alzheimer A. Uber eigenartige erkrankung der hirnrinde. All Z Psychiatr. 1907;64:146-8.

Perusini G. Uberklinisch und histologischeigenartigepsychische Erkrankungen des spateren lebensalters. Histologische Histopathologische Arb. 1909;3:297-351.

Behl C. Biochemistry and genetics point out a prime suspect for causing alzheimers disease. In: alzheimers disease research: what has guided research so far and why it is high time for a paradigm shift 2023 Jul 14. Berlin: Springer International Publishing; 2023. p. 109-17. doi: 10.1007/978-3-031-31570-1_7.

Glenner GG, Wong CW. Alzheimers disease and downs syndrome: sharing of a unique cerebrovascular amyloid fibril protein. Biochem Biophys Res Commun. 1984 Aug 16;122(3):1131-5. doi: 10.1016/0006-291x(84)91209-9, PMID 6236805.

Karagas N, Young JE, Blue EE, Jayadev S. The spectrum of genetic risk in alzheimer disease. Neurol Genet. 2025 Jan 29;11(1):e200224. doi: 10.1212/NXG.0000000000200224, PMID 39885961.

MA F, Akolkar H, XU J, Liu Y, Popova D, Xie J. The amyloid precursor protein modulates the position and length of the axon initial segment. J Neurosci. 2023 Mar 8;43(10):1830-44. doi: 10.1523/JNEUROSCI.0172-22.2023, PMID 36717226.

Chartier Harlin MC, Crawford F, Houlden H, Warren A, Hughes D, Fidani L. Early onset alzheimers disease caused by mutations at codon 717 of the β-amyloid precursor protein gene. Nature. 1991 Oct 31;353(6347):844-6. doi: 10.1038/353844a0, PMID 1944558.

Hardy J. The discovery of alzheimer causing mutations in the APP gene and the formulation of the amyloid cascade hypothesis. FEBS Journal. 2017 Apr;284(7):1040-4. doi: 10.1111/febs.14004, PMID 28054745.

Hardy J, Allsop D. Amyloid deposition as the central event in the aetiology of alzheimers disease. Trends Pharmacol Sci. 1991 Jan 1;12(10):383-8. doi: 10.1016/0165-6147(91)90609-V, PMID 1763432.

https://www.drugwatch.com/health/alzheimers-disease.

Bieger A, Brum WS, Borelli WV, Therriault J, DE Bastiani MA, Moreira AG. Influence of different diagnostic criteria on alzheimer disease clinical research. Neurology. 2024 Sep 10;103(5):e209753. doi: 10.1212/WNL.0000000000209753, PMID 39167736.

Marrie RA, Maxwell CJ, Rotstein DL, Tsai CC, Tremlett H. Prodromes in demyelinating disorders amyotrophic lateral sclerosis parkinson disease and alzheimers dementia. Rev Neurol (Paris). 2024 Mar 1;180(3):125-40. doi: 10.1016/j.neurol.2023.07.002, PMID 37567819.

Weintraub S. Neuropsychological assessment in dementia diagnosis. Continuum (Minneap Minn). 2022 Jun 1;28(3):781-99. doi: 10.1212/CON.0000000000001135, PMID 35678402.

Subasi A. Use of artificial intelligence in alzheimers disease detection. In: Artificial Intelligence in precision health. Amsterdam: Elsevier; 2020. p. 257-78. doi: 10.1016/B978-0-12-817133-2.00011-2.

AS, Kannayiram GO. Alzheimers disease therapeutic approaches. Asian J Pharm Clin Res. 2018;11(7):17-24. doi: 10.22159/ajpcr.2018.v11i7.25104.

Querfurth HW, LA Ferla FM. Alzheimers disease. N Engl J Med. 2010;362(4):329-44. doi: 10.1056/NEJMra0909142, PMID 20107219.

Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S. Correlative memory deficits Aβ elevation and amyloid plaques in transgenic mice. Science. 1996 Oct 4;274(5284):99-102. doi: 10.1126/science.274.5284.99, PMID 8810256.

Webster SJ, Bachstetter AD, Nelson PT, Schmitt FA, Van Eldik LJ. Using mice to model alzheimers dementia: an overview of the clinical disease and the preclinical behavioral changes in 10 mouse models. Front Genet. 2014 Apr 23;5:88. doi: 10.3389/fgene.2014.00088, PMID 24795750.

Edbauer D, Winkler E, Regula JT, Pesold B, Steiner H, Haass C. Reconstitution of γ-secretase activity. Nat Cell Biol. 2003 May 1;5(5):486-8. doi: 10.1038/ncb960, PMID 12679784.

GU Y, Misonou H, Sato T, Dohmae N, Takio K, Ihara Y. Distinct intramembrane cleavage of the β-amyloid precursor protein family resembling γ-secretase-like cleavage of notch. J Biol Chem. 2001;276(38):35235-8. doi: 10.1074/jbc.C100357200, PMID 11483588.

Wolfe MS, Xia W, Ostaszewski BL, Diehl TS, Kimberly WT, Selkoe DJ. Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and γ-secretase activity. Nature. 1999;398(6727):513-7. doi: 10.1038/19077, PMID 10206644.

Hong S, Quintero Monzon O, Ostaszewski BL, Podlisny DR, Cavanaugh WT, Yang T. Dynamic analysis of amyloid β-protein in behaving mice reveals opposing changes in ISF versus parenchymal Aβ during age-related plaque formation. J Neurosci. 2011 Nov 2;31(44):15861-9. doi: 10.1523/JNEUROSCI.3272-11.2011, PMID 22049429.

Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med. 2012 Aug 15;4(147):147ra111. doi: 10.1126/scitranslmed.3003748, PMID 22896675.

Mawuenyega KG, Sigurdson W, Ovod V, Munsell L, Kasten T, Morris JC. Decreased clearance of CNS β-amyloid in alzheimers disease. Science. 2010;330(6012):1774. doi: 10.1126/science.1197623, PMID 21148344.

Lucin KM, Wyss Coray T. Immune activation in brain aging and neurodegeneration: too much or too little? Neuron. 2009 Oct 15;64(1):110-22. doi: 10.1016/j.neuron.2009.08.039, PMID 19840553.

Schwartz M, Kipnis J, Rivest S, Prat A. How do immune cells support and shape the brain in health disease and aging? J Neurosci. 2013;33(45):17587-96. doi: 10.1523/JNEUROSCI.3241-13.2013, PMID 24198349.

Wyss Coray T. Inflammation in alzheimer disease: driving force bystander or beneficial response? Nat Med. 2006 Sep 1;12(9):1005-15. doi: 10.1038/nm1484, PMID 16960575.

Emre M, Bernabei R, Blesa R, Bullock R, Cunha L, Daniels H. Drug profile: transdermal rivastigmine patch in the treatment of alzheimer disease. CNS Neurosci Ther. 2010;16(4):246-53. doi: 10.1111/j.1755-5949.2010.00141.x, PMID 20370805.

LI WZ, Huo MR, Zhou JP, Zhou YQ, Hao BH, Liu T. Super short solid silicon microneedles for transdermal drug delivery applications. Int J Pharm. 2010;389(1-2):122-9. doi: 10.1016/j.ijpharm.2010.01.024, PMID 20096759.

https://medcraveonline.com/JAPLR/Patho-Physiology-and-Management-of-Alzheimerrsquos-Disease-an-Overview.HTML. [Last accessed on 26 Mar 2025].

Rawat P, Sehar U, Bisht J, Selman A, Culberson J, Reddy PH. Phosphorylated tau in alzheimers disease and other tauopathies. Int J Mol Sci. 2022 Oct 25;23(21):12841. doi: 10.3390/ijms232112841, PMID 36361631.

Rashid AB, Kausik MA. AI revolutionizing industries worldwide: a comprehensive overview of its diverse applications. Hybrid Adv. 2024 Dec;7:100277. doi: 10.1016/j.hybadv.2024.100277.

Silva MV, Loures CM, Alves LC, DE Souza LC, Borges KB, Carvalho MD. Alzheimers disease: risk factors and potentially protective measures. J Biomed Sci. 2019;26(1):33. doi: 10.1186/s12929-019-0524-y, PMID 31072403.

Kumar DE, Kumar PU, Ahmed IF, Singh SA. Integrating artificial intelligence in disease diagnosis treatment and formulation development: a review. Asian J Pharm Clin Res. 2023 Nov;16(3):1-8. doi: 10.22159/ajpcr.2023.v16i11.48193.

Nazir A, Assad A, Hussain A, Singh M. Alzheimers disease diagnosis using deep learning techniques: datasets challenges research gaps and future directions. Int J Syst Assur Eng Manag. 2024 Jul 30:1-35. doi: 10.1007/s13198-024-02441-5.

Bertram L, McQueen MB, Mullin K, Blacker D, Tanzi RE. Systematic meta-analyses of alzheimer disease genetic association studies: the AlzGene database. Nat Genet. 2007 Jan 1;39(1):17-23. doi: 10.1038/ng1934, PMID 17192785.

Spalletta G, Piras F, Piras F, Sancesario G, Iorio M, Fratangeli C. Neuroanatomical correlates of awareness of illness in patients with amnestic mild cognitive impairment who will or will not convert to alzheimers disease. Cortex. 2014 Dec 1;61:183-95. doi: 10.1016/j.cortex.2014.10.010, PMID 25481475.

Giulietti G, Torso M, Serra L, Spano B, Marra C, Caltagirone C. Whole brain white matter histogram analysis of diffusion tensor imaging data detects microstructural damage in mild cognitive impairment and alzheimers disease patients. J Magn Reson Imaging. 2018 Sep;48(3):767-79. doi: 10.1002/jmri.25947, PMID 29356183.

Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM. Toward defining the preclinical stages of alzheimers disease: recommendations from the national institute on aging alzheimers association workgroups on diagnostic guidelines for alzheimers disease. Alzheimers Dement. 2011 May 1;7(3):280-92. doi: 10.1016/j.jalz.2011.03.003, PMID 21514248.

Jack JR CR, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB. NIA-AA research framework: toward a biological definition of alzheimers disease. Alzheimers Dement. 2018 Apr 1;14(4):535-62. doi: 10.1016/j.jalz.2018.02.018, PMID 29653606.

Salas Gonzalez D, Gorriz JM, Ramirez J, Lopez M, Alvarez I, Segovia F. Computer aided diagnosis of alzheimers disease using support vector machines and classification trees. Phys Med Biol. 2010 Apr 22;55(10):2807-17. doi: 10.1088/0031-9155/55/10/002, PMID 20413829.

Gorriz JM, Ramirez J, Lassl A, Salas Gonzalez D, Lang EW, Puntonet CG. Automatic computer aided diagnosis tool using component based SVM IEEE nuclear science symposium conference record. IEEE; 2008 Oct 19. p. 4392-5. doi: 10.1109/NSSMIC.2008.4774255.

Marcus DS, Wang TH, Parker J, Csernansky JG, Morris JC, Buckner RL. Open access series of imaging studies (oasis): cross sectional mri data in young middle aged nondemented and demented older adults. J Cogn Neurosci. 2007;19(9):1498-507. doi: 10.1162/jocn.2007.19.9.1498, PMID 17714011.

Zhang Y, Dong Z, Phillips P, Wang S, JI G, Yang J. Detection of subjects and brain regions related to alzheimers disease using 3D MRI scans based on eigenbrain and machine learning. Front Comput Neurosci. 2015 Jun 2;9:66. doi: 10.3389/fncom.2015.00066, PMID 26082713.

Ding Y, Sohn JH, Kawczynski MG, Trivedi H, Harnish R, Jenkins NW. A deep learning model to predict a diagnosis of alzheimer disease by using 18F-FDG PET of the brain. Radiology. 2019 Feb;290(2):456-64. doi: 10.1148/radiol.2018180958, PMID 30398430.

Petersen RC. How early can we diagnose alzheimer disease (and is it sufficient)? the 2017 wartenberg lecture. Neurology. 2018;91(9):395-402. doi: 10.1212/WNL.0000000000006088, PMID 30089620.

Davatzikos C, Bhatt P, Shaw LM, Batmanghelich KN, Trojanowski JQ. Prediction of MCI to AD conversion via MRI CSF biomarkers and pattern classification. Neurobiol Aging. 2011;32(12):2322.e19-27. doi: 10.1016/j.neurobiolaging.2010.05.023, PMID 20594615.

Grundman M, Petersen RC, Ferris SH, Thomas RG, Aisen PS, Bennett DA. Mild cognitive impairment can be distinguished from alzheimer disease and normal aging for clinical trials. Arch Neurol. 2004 Jan 1;61(1):59-66. doi: 10.1001/archneur.61.1.59, PMID 14732621.

Grassi M, Rouleaux N, Caldirola D, Loewenstein D, Schruers K, Perna G. A novel ensemble based machine learning algorithm to predict the conversion from mild cognitive impairment to alzheimers disease using socio demographic characteristics clinical information and neuropsychological measures. Front Neurol. 2019 Jul 16;10:756. doi: 10.3389/fneur.2019.00756, PMID 31379711.

Koch G, Belli L, Giudice TL, Lorenzo FD, Sancesario GM, Sorge R. Frailty among alzheimers disease patients. CNS Neurol Disord Drug Targets. 2013 Jun 1;12(4):507-11. doi: 10.2174/1871527311312040010, PMID 23574166.

Clark C, Rabl M, Dayon L, Popp J. The promise of multi-omics approaches to discover biological alterations with clinical relevance in alzheimers disease. Front Aging Neurosci. 2022 Dec 7;14:1065904. doi: 10.3389/fnagi.2022.1065904, PMID 36570537.

Cummings J. Lessons learned from alzheimer disease: clinical trials with negative outcomes. Clin Transl Sci. 2018;11(2):147-52. doi: 10.1111/cts.12491, PMID 28767185.

Hay M, Thomas DW, Craighead JL, Economides C, Rosenthal J. Clinical development success rates for investigational drugs. Nat Biotechnol. 2014;32(1):40-51. doi: 10.1038/nbt.2786, PMID 24406927.

Stimulus package. Nat Med. 2018;24(3):247. doi: 10.1038/nm.4515, PMID 29509749.

Zwierzyna M, Davies M, Hingorani AD, Hunter J. Clinical trial design and dissemination: comprehensive analysis of clinicaltrials.gov and PubMed data since 2005. BMJ. 2018 Jun 6;361:k2130. doi: 10.1136/bmj.k2130, PMID 29875212.

Cummings JL, Morstorf T, Zhong K. Alzheimers disease drug development pipeline: few candidates frequent failures. Alzheimers Res Ther. 2014;6(4):37. doi: 10.1186/alzrt269, PMID 25024750.

Sharma A, Kala S, Kumar A, Sharma S, Gupta G, Jaiswal V. Deep learning in genomics personalized medicine and neurodevelopmental disorders. In: Sharma N, Cengiz K, Chattarjee P, editors. Intelligent data analytics for bioinformatics and biomedical systems; 2024 Nov 1. p. 235-64.

Xie T, Grossman JC. Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties. Phys Rev Lett. 2018;120(14):145301. doi: 10.1103/PhysRevLett.120.145301, PMID 29694125.

Zitnik M, Agrawal M, Leskovec J. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics. 2018 Jul;34(13):i457-66. doi: 10.1093/bioinformatics/bty294, PMID 29949996.

Palop JJ, Chin J, Mucke L. A network dysfunction perspective on neurodegenerative diseases. Nature. 2006;443(7113):768-73. doi: 10.1038/nature05289, PMID 17051202.

Zhang B, Gaiteri C, Bodea LG, Wang Z, McElwee J, Podtelezhnikov AA. Integrated systems approach identifies genetic nodes and networks in late onset alzheimers disease. Cell. 2013;153(3):707-20. doi: 10.1016/j.cell.2013.03.030, PMID 23622250.

Fornari Laurindo L, Aparecido Dias J, Cressoni Araujo A, Torres Pomini K, Machado Galhardi C, Rucco Penteado Detregiachi CL, Donizeti Roque D. Immunological dimensions of neuroinflammation and microglial activation: exploring innovative immunomodulatory approaches to mitigate neuroinflammatory progression. FrontImmunol. 2024 Jan 8;14:1305933.

Haure Mirande JV, Wang M, Audrain M, Fanutza T, Kim SH, Heja S. Integrative approach to sporadic alzheimers disease: deficiency of tyrobp in cerebral Aβ amyloidosis mouse normalizes clinical phenotype and complement subnetwork molecular pathology without reducing Aβ burden. Mol Psychiatry. 2019 Mar;24(3):431-46. doi: 10.1038/s41380-018-0255-6, PMID 30283032.

Kale MB, Wankhede NL, Pawar RS, Ballal S, Kumawat R, Goswami M. AI driven innovations in alzheimers disease: integrating early diagnosis personalized treatment and prognostic modelling. Ageing Res Rev. 2024 Sep 16;101:102497. doi: 10.1016/j.arr.2024.102497, PMID 39293530.

Maudsley S, Devanarayan V, Martin B, Geerts H. Brain health modeling initiative. Intelligent and effective informatic deconvolution of “Big Data” and its future impact on the quantitative nature of neurodegenerative disease therapy. Alzheimers Dement. 2018 Jul 1;14(7):961-75. doi: 10.1016/j.jalz.2018.01.014.

Valliani AA, Ranti D, Oermann EK. Deep learning and neurology: a systematic review. Neurol Ther. 2019;8(2):351-65. doi: 10.1007/s40120-019-00153-8, PMID 31435868.

Mishra R, LI B. The application of artificial intelligence in the genetic study of alzheimers disease. Aging Dis. 2020 Dec;11(6):1567-84. doi: 10.14336/AD.2020.0312, PMID 33269107.

Redzic Z. Molecular biology of the blood brain and the blood cerebrospinal fluid barriers: similarities and differences. Fluids Barriers CNS. 2011 Dec;8(1):3. doi: 10.1186/2045-8118-8-3, PMID 21349151.

Banks WA. Characteristics of compounds that cross the blood brain barrier. BMC Neurol. 2009;9 Suppl 1:S3. doi: 10.1186/1471-2377-9-S1-S3, PMID 19534732.

Kean EA, Adeleke OA. Geriatric drug delivery barriers current technologies and the road ahead. J Drug Target. 2024 Nov 25;32(10):1186-206. doi: 10.1080/1061186X.2024.2386626, PMID 39076049.

Siafaka PI, Bulbul EO, Mutlu G, Okur ME, Karantas ID, Okur NU. Transdermal drug delivery systems and their potential in alzheimers disease management. CNS and neurological disorders drug targets CNS and neurological disorders. 2020 Jun 1;19(5):360-73.

Utsuki T, Uchimura N, Irikura M, Moriuchi H, Holloway HW, YU QS. Preclinical investigation of the topical administration of phenserine: transdermal flux cholinesterase inhibition and cognitive efficacy. J Pharmacol Exp Ther. 2007 Apr 1;321(1):353-61. doi: 10.1124/jpet.106.118000, PMID 17255466.

Levy A, Brandeis R, Treves TA, Meshulam Y, Mawassi F, Feiler D. Transdermal physostigmine in the treatment of Alzheimer’s disease. Alzheimer Dis Assoc Disord. 1994 Apr 1;8(1):15-21. doi: 10.1097/00002093-199408010-00004, PMID 8185877.

Walter K, Muller M, Barkworth MF, Nieciecki AV, Stanislaus F. Pharmacokinetics of physostigmine in man following a single application of a transdermal system. Br J Clin Pharmacol. 1995 Jan;39(1):59-63. doi: 10.1111/j.1365-2125.1995.tb04410.x, PMID 7756100.

Kankkunen T, Sulkava R, Vuorio M, Kontturi K, Hirvonen J. Transdermal iontophoresis of tacrine in vivo. Pharm Res. 2002;19(5):704-7. doi: 10.1023/a:1015374600683, PMID 12069176.

Allen TM, Cullis PR. Drug delivery systems: entering the mainstream. Science. 2004;303(5665):1818-22. doi: 10.1126/science.1095833, PMID 15031496.

Valia KH, Ramaraju VS. Transdermal methods and systems for treating alzheimers disease. US Patent 9248106; 2008.

Park CW, Son DD, Kim JY, OH TO, HA JM, Rhee YS. Investigation of formulation factors affecting in vitro and in vivo characteristics of a galantamine transdermal system. Int J Pharm. 2012 Oct 15;436(1-2):32-40. doi: 10.1016/j.ijpharm.2012.06.057, PMID 22771734.

Furtado D, Bjornmalm M, Ayton S, Bush AI, Kempe K, Caruso F. Overcoming the blood brain barrier: the role of nanomaterials in treating neurological diseases. Adv Mater. 2018;30(46):e1801362. doi: 10.1002/adma.201801362, PMID 30066406.

Battaglia L, Panciani PP, Muntoni E, Capucchio MT, Biasibetti E, DE Bonis P. Lipid nanoparticles for intranasal administration: application to nose to brain delivery. Expert Opin Drug Deliv. 2018;15(4):369-78. doi: 10.1080/17425247.2018.1429401, PMID 29338427.

Djupesland PG, Messina JC, Mahmoud RA. The nasal approach to delivering treatment for brain diseases: an anatomic physiologic and delivery technology overview. Ther Deliv. 2014;5(6):709-33. doi: 10.4155/tde.14.41, PMID 25090283.

Fonseca LC, Lopes JA, Vieira J, Viegas C, Oliveira CS, Hartmann RP. Intranasal drug delivery for treatment of alzheimers disease. Drug Deliv Transl Res. 2021 Apr;11(2):411-25. doi: 10.1007/s13346-021-00940-7, PMID 33638130.

Nageeb El Helaly S, Abd Elbary A, Kassem MA, El Nabarawi MA. Electrosteric stealth rivastigmine loaded liposomes for brain targeting: preparation characterization ex vivo bio-distribution and in vivo pharmacokinetic studies. Drug Deliv. 2017 Jan 1;24(1):692-700. doi: 10.1080/10717544.2017.1309476, PMID 28415883.

Raliya R, Saha D, Chadha TS, Raman B, Biswas P. Non-invasive aerosol delivery and transport of gold nanoparticles to the brain. Sci Rep. 2017;7(1):44718. doi: 10.1038/srep44718, PMID 28300204.

Zhang P, Chen L, GU W, XU Z, Gao Y, LI Y. In vitro and in vivo evaluation of donepezil sustained release microparticles for the treatment of alzheimers disease. Biomaterials. 2007 Apr 1;28(10):1882-8. doi: 10.1016/j.biomaterials.2006.12.016, PMID 17196249.

DI Stefano A, Iannitelli A, Laserra S, Sozio P. Drug delivery strategies for alzheimers disease treatment. Expert Opin Drug Deliv. 2011 May 1;8(5):581-603. doi: 10.1517/17425247.2011.561311, PMID 21391862.

Mathew A, Fukuda T, Nagaoka Y, Hasumura T, Morimoto H, Yoshida Y. Curcumin loaded PLGA nanoparticles conjugated with Tet-1 peptide for potential use in alzheimers disease. Plos One. 2012 Mar 5;7(3):e32616. doi: 10.1371/journal.pone.0032616, PMID 22403681.

Alzheimers Association. Steps to ensuring safety: preventing wandering and getting lost. Alzheimers Dis Relat Disord Association; 1999.

Tang MX, Jacobs D, Stern Y, Marder K, Schofield P, Gurland B. Effect of oestrogen during menopause on risk and age at onset of alzheimers disease. Lancet. 1996;348(9025):429-32. doi: 10.1016/S0140-6736(96)03356-9, PMID 8709781.

Kawas C, Resnick S, Morrison A, Brookmeyer R, Corrada M, Zonderman A. A prospective study of estrogen replacement therapy and the risk of developing alzheimers disease: the baltimore longitudinal study of aging. Neurology. 1997;48(6):1517-21. doi: 10.1212/wnl.48.6.1517, PMID 9191758.

Beach MA, Nayanathara U, Gao Y, Zhang C, Xiong Y, Wang Y. Polymeric nanoparticles for drug delivery. Chem Rev. 2024 Apr 16;124(9):5505-616. doi: 10.1021/acs.chemrev.3c00705, PMID 38626459.

Pham DT, Saelim N, Tiyaboonchai W. Design of experiments model for the optimization of silk fibroin based nanoparticles. Int J Appl Pharm. 2018 Sep 7;10(5):195-201.

Khan Y, Sadia H, Ali Shah SZ, Khan MN, Shah AA, Ullah N. Classification synthetic and characterization approaches to nanoparticles and their applications in various fields of nanotechnology: a review. Catalysts. 2022 Nov 8;12(11):1386.

Ray B, Bisht S, Maitra A, Maitra A, Lahiri DK. Neuroprotective and neurorescue effects of a novel polymeric nanoparticle formulation of curcumin (NanoCurc™) in the neuronal cell culture and animal model: implications for alzheimers disease. J Alzheimers Dis. 2011 Jan 1;23(1):61-77. doi: 10.3233/JAD-2010-101374, PMID 20930270.

Rabiee N, Ahmadi S, Afshari R, Khalaji S, Rabiee M, Bagherzadeh M. Polymeric nanoparticles for nasal drug delivery to the brain: relevance to alzheimers disease. Advanced Therapeutics. 2021 Mar;4(3):2000076. doi: 10.1002/adtp.202000076.

Mittal G, Carswell H, Brett R, Currie S, Kumar MN. Development and evaluation of polymer nanoparticles for oral delivery of estradiol to rat brain in a model of alzheimers pathology. J Control Release. 2011;150(2):220-8. doi: 10.1016/j.jconrel.2010.11.013, PMID 21111014.

Sathya S, Shanmuganathan B, Saranya S, Vaidevi S, Ruckmani K, Pandima Devi K. Phytol loaded PLGA nanoparticle as a modulator of alzheimers toxic Aβ peptide aggregation and fibrillation associated with impaired neuronal cell function. Artif Cells Nanomed Biotechnol. 2018;46(8):1719-30. doi: 10.1080/21691401.2017.1391822, PMID 29069924.

Fornaguera C, Feiner Gracia N, Caldero G, Garcia Celma MJ, Solans C. Galantamine loaded PLGA nanoparticles from nano emulsion templating as novel advanced drug delivery systems to treat neurodegenerative diseases. Nanoscale. 2015;7(28):12076-84. doi: 10.1039/c5nr03474d, PMID 26118655.

El Salamouni NS, Farid RM, El Kamel AH, El Gamal SS. Effect of sterilization on the physical stability of brimonidine loaded solid lipid nanoparticles and nanostructured lipid carriers. Int J Pharm. 2015 Dec 30;496(2):976-83. doi: 10.1016/j.ijpharm.2015.10.043, PMID 26498372.

Rostami E, Kashanian S, Azandaryani AH, Faramarzi H, Dolatabadi JE, Omidfar K. Drug targeting using solid lipid nanoparticles. Chem Phys Lipids. 2014;181:56-61. doi: 10.1016/j.chemphyslip.2014.03.006, PMID 24717692.

Elnaggar YS, El Refaie WM, El Massik MA, Abdallah OY. Lecithin based nanostructured gels for skin delivery: an update on state of art and recent applications. J Control Release. 2014;180:10-24. doi: 10.1016/j.jconrel.2014.02.004, PMID 24531009.

Dara T, Vatanara A, Sharifzadeh M, Khani S, Vakilinezhad MA, Vakhshiteh F. Improvement of memory deficits in the rat model of alzheimers disease by erythropoietin loaded solid lipid nanoparticles. Neurobiol Learn Mem. 2019;166:107082. doi: 10.1016/j.nlm.2019.107082, PMID 31493483.

Loureiro JA, Andrade S, Duarte A, Neves AR, Queiroz JF, Nunes C. Resveratrol and grape extract loaded solid lipid nanoparticles for the treatment of alzheimers disease. Molecules. 2017 Feb 13;22(2):277. doi: 10.3390/molecules22020277, PMID 28208831.

Saini S, Sharma T, Jain A, Kaur H, Katare OP, Singh B. Systematically designed chitosan coated solid lipid nanoparticles of ferulic acid for effective management of alzheimers disease: a preclinical evidence. Colloids Surf B Biointerfaces. 2021;205:111838. doi: 10.1016/j.colsurfb.2021.111838, PMID 34022704.

Vakilinezhad MA, Amini A, Akbari Javar H, Baha Addini Beigi Zarandi BF, Montaseri H, Dinarvand R. Nicotinamide loaded functionalized solid lipid nanoparticles improves cognition in alzheimers disease animal model by reducing tau hyperphosphorylation. Daru. 2018;26(2):165-77. doi: 10.1007/s40199-018-0221-5, PMID 30386982.

Rassu G, Soddu E, Posadino AM, Pintus G, Sarmento B, Giunchedi P. Nose to brain delivery of BACE1 siRNA loaded in solid lipid nanoparticles for alzheimers therapy. Colloids Surf B Biointerfaces. 2017 Apr 1;152:296-301. doi: 10.1016/j.colsurfb.2017.01.031, PMID 28126681.

Vedagiri A, Thangarajan S. Mitigating effect of chrysin loaded solid lipid nanoparticles against amyloid β25-35 induced oxidative stress in rat hippocampal region: an efficient formulation approach for alzheimers disease. Neuropeptides. 2016 Aug;58:111-25. doi: 10.1016/j.npep.2016.03.002, PMID 27021394.

Misra S, Chopra K, Sinha VR, Medhi B. Galantamine loaded solid lipid nanoparticles for enhanced brain delivery: preparation characterization in vitro and in vivo evaluations. Drug Deliv. 2016 May 3;23(4):1434-43. doi: 10.3109/10717544.2015.1089956, PMID 26405825.

Raju M, Kunde SS, Auti ST, Kulkarni YA, Wairkar S. Berberine loaded nanostructured lipid carrier for alzheimers disease: design statistical optimization and enhanced in vivo performance. Life Sci. 2021 Nov 15;285:119990. doi: 10.1016/j.lfs.2021.119990, PMID 34592234.

Shehata MK, Ismail AA, Kamel MA. Nose to brain delivery of astaxanthin loaded nanostructured lipid carriers in rat model of alzheimers disease: preparation in vitro and in vivo evaluation. Int J Nanomedicine. 2023 Dec 31;18:1631-58. doi: 10.2147/IJN.S402447, PMID 37020692.

Sadegh Malvajerd S, Izadi Z, Azadi A, Kurd M, Derakhshankhah H, Sharifzadeh M. Neuroprotective potential of curcumin loaded nanostructured lipid carrier in an animal model of alzheimers disease: behavioral and biochemical evidence. J Alzheimers Dis. 2019;69(3):671-86. doi: 10.3233/JAD-190083, PMID 31156160.

Mendes IT, Ruela AL, Carvalho FC, Freitas JT, Bonfilio R, Pereira GR. Development and characterization of nanostructured lipid carrier based gels for the transdermal delivery of donepezil. Colloids Surf B Biointerfaces. 2019;177:274-81. doi: 10.1016/j.colsurfb.2019.02.007, PMID 30763792.

Markova E, Taneska L, Kostovska M, Shalabalija D, Mihailova L, Glavas Dodov M. Design and evaluation of nanostructured lipid carriers loaded with salvia officinalis extract for alzheimers disease treatment. J Biomed Mater Res B Appl Biomater. 2022;110(6):1368-90. doi: 10.1002/jbm.b.35006, PMID 35019231.

Rajput AP, Butani SB. Resveratrol anchored nanostructured lipid carrier loaded in situ gel via nasal route: formulation optimization and in vivo characterization. J Drug Deliv Sci Technol. 2019 Jun 1;51:214-23. doi: 10.1016/j.jddst.2019.01.040.

Zafar A, Alruwaili KN, Alharbi SK, Alotaibi HN, Jafar M. Liposome preparation and related techniques. In: Liposomes for functional foods and nutraceuticals. New York: Apple Academic Press; 2022 Jun 15. p. 41-64. doi: 10.1201/9781003277361-2.

Mahor S, Rawat A, Dubey PK, Gupta PN, Khatri K, Goyal AK. Cationic transfersomes based topical genetic vaccine against hepatitis B. Int J Pharm. 2007 Aug 1;340(1-2):13-9. doi: 10.1016/j.ijpharm.2007.03.006, PMID 17446015.

Freag MS, Elnaggar YS, Abdallah OY. Lyophilized phytosomal nanocarriers as platforms for enhanced diosmin delivery: optimization and ex vivo permeation. Int J Nanomedicine. 2013;8:2385-97. doi: 10.2147/IJN.S45231, PMID 23861584.

Lim SB, Banerjee A, Onyuksel H. Improvement of drug safety by the use of lipid based nanocarriers. J Control Release. 2012 Oct 10;163(1):34-45. doi: 10.1016/j.jconrel.2012.06.002, PMID 22698939.

Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov. 2005 Feb 1;4(2):145-60. doi: 10.1038/nrd1632, PMID 15688077.

Al Asmari AK, Ullah Z, Tariq M, Fatani A. Preparation characterization and in vivo evaluation of intranasally administered liposomal formulation of donepezil. Drug Des Devel Ther. 2016;10:205-15. doi: 10.2147/DDDT.S93937, PMID 26834457.

Zheng X, Shao X, Zhang C, Tan Y, Liu Q, Wan X. Intranasal H102 peptide loaded liposomes for brain delivery to treat alzheimers disease. Pharm Res. 2015 Dec;32(12):3837-49. doi: 10.1007/s11095-015-1744-9, PMID 26113236.

Fernandes M, Lopes I, Magalhaes L, Sarria MP, Machado R, Sousa JC. Novel concept of exosome like liposomes for the treatment of alzheimers disease. J Control Release. 2021 Aug 10;336:130-43. doi: 10.1016/j.jconrel.2021.06.018, PMID 34126168.

Arora S, Layek B, Singh J. Design and validation of liposomal apoe2 gene delivery system to evade blood-brain barrier for effective treatment of alzheimers disease. Mol Pharm. 2021;18(2):714-25. doi: 10.1021/acs.molpharmaceut.0c00461, PMID 32787268.

LI W, Zhou Y, Zhao N, Hao B, Wang X, Kong P. Pharmacokinetic behavior and efficiency of acetylcholinesterase inhibition in rat brain after intranasal administration of galanthamine hydrobromide loaded flexible liposomes. Environ Toxicol Pharmacol. 2012;34(2):272-9. doi: 10.1016/j.etap.2012.04.012, PMID 22613079.

Yang ZZ, Zhang YQ, Wang ZZ, WU K, Lou JN, QI XR. Enhanced brain distribution and pharmacodynamics of rivastigmine by liposomes following intranasal administration. Int J Pharm. 2013 Aug 16;452(1-2):344-54. doi: 10.1016/j.ijpharm.2013.05.009, PMID 23680731.

Chen H, Khemtong C, Yang X, Chang X, Gao J. Nanonization strategies for poorly water soluble drugs. Drug Discov Today. 2011 Apr 1;16(7-8):354-60. doi: 10.1016/j.drudis.2010.02.009, PMID 20206289.

LU Y, Park K. Polymeric micelles and alternative nanonized delivery vehicles for poorly soluble drugs. Int J Pharm. 2013;453(1):198-214. doi: 10.1016/j.ijpharm.2012.08.042, PMID 22944304.

Sood S, Jain K, Gowthamarajan K. Optimization of curcumin nanoemulsion for intranasal delivery using design of experiment and its toxicity assessment. Colloids Surf B Biointerfaces. 2014 Jan;113:330-7. doi: 10.1016/j.colsurfb.2013.09.030, PMID 24121076.

Kaur A, Nigam K, Srivastava S, Tyagi A, Dang S. Memantine nanoemulsion: a new approach to treat alzheimers disease. J Microencapsul. 2020 Jul 3;37(5):355-65. doi: 10.1080/02652048.2020.1756971, PMID 32293915.

Kaur A, Nigam K, Bhatnagar I, Sukhpal H, Awasthy S, Shankar S. Treatment of alzheimers diseases using donepezil nanoemulsion: an intranasal approach. Drug Deliv Transl Res. 2020 Dec 10;10(6):1862-75. doi: 10.1007/s13346-020-00754-z, PMID 32297166.

Seguy L, Guyon L, Maurel M, Verdie P, Davis A, Corvaisier S. Active targeted nanoemulsions for repurposing of tegaserod in alzheimers disease treatment. Pharmaceutics. 2021 Oct 6;13(10):1626. doi: 10.3390/pharmaceutics13101626, PMID 34683919.

Song Y, Wang X, Wang X, Wang J, Hao Q, Hao J. Osthole loaded nanoemulsion enhances brain target in the treatment of alzheimers disease via intranasal administration. Oxid Med Cell Longev. 2021 Jan 25;2021:8844455. doi: 10.1155/2021/8844455, PMID 33564364.

Md S, Gan SY, Haw YH, HO CL, Wong S, Choudhury H. In vitro neuroprotective effects of naringenin nanoemulsion against β-amyloid toxicity through the regulation of amyloidogenesis and tau phosphorylation. Int J Biol Macromol. 2018;118(A):1211-9. doi: 10.1016/j.ijbiomac.2018.06.190, PMID 30001606.

Sapra B, Thatai P, Bhandari S, Sood J, Jindal M, Tiwary A. A critical appraisal of microemulsions for drug delivery: part I. Ther Deliv. 2013 Dec;4(12):1547-64. doi: 10.4155/tde.13.116, PMID 24304251.

Lawrence MJ, Rees GD. Microemulsion based media as novel drug delivery systems. Adv Drug Deliv Rev. 2000;45(1):89-121. doi: 10.1016/s0169-409x(00)00103-4, PMID 11104900.

Sharma D, Singh M, Kumar P, Vikram V, Mishra N. Development and characterization of morin hydrate loaded microemulsion for the management of alzheimers disease. Artif Cells Nanomed Biotechnol. 2017 Nov 17;45(8):1620-30. doi: 10.1080/21691401.2016.1276919, PMID 28102083.

Espinoza LC, Vacacela M, Clares B, Garcia ML, Fabrega MJ, Calpena AC. Development of a nasal donepezil loaded microemulsion for the treatment of alzheimers disease: in vitro and ex vivo characterization. CNS Neurol Disord Drug Targets. 2018 Feb 1;17(1):43-53. doi: 10.2174/1871527317666180104122347, PMID 29299992.

Wen MM, Ismail NI, Nasra MM, El Kamel AH. Repurposing ibuprofen loaded microemulsion for the management of alzheimers disease: evidence of potential intranasal brain targeting. Drug Deliv. 2021 Jan 1;28(1):1188-203. doi: 10.1080/10717544.2021.1937383, PMID 34121565.

Etman SM, Elnaggar YS, Abdelmonsif DA, Abdallah OY. Oral brain targeted microemulsion for enhanced piperine delivery in alzheimers disease therapy: in vitro appraisal in vivo activity and nanotoxicity. AAPS Pharm Sci Tech. 2018 Nov 19;19(8):3698-711. doi: 10.1208/s12249-018-1180-3, PMID 30238305.

Shi J, Cong W, Wang Y, Liu Q, Luo G. Microemulsion based patch for transdermal delivery of huperzine a and ligustrazine phosphate in treatment of alzheimers disease. Drug Dev Ind Pharm. 2012 Jun 1;38(6):752-61. doi: 10.3109/03639045.2011.625031, PMID 22014311.

Klementieva O, Benseny Cases N, Gella A, Appelhans D, Voit B, Cladera J. Dense shell glycodendrimers as potential nontoxic anti-amyloidogenic agents in alzheimers disease. Amyloid dendrimer aggregates morphology and cell toxicity. Biomacromolecules. 2011;12(11):3903-9. doi: 10.1021/bm2008636, PMID 21936579.

Fischer M, Vogtle F. Dendrimers: from design to application a progress report. Angew Chem Int Ed Engl. 1999 Apr 1;38(7):884-905. doi: 10.1002/(SICI)1521-3773(19990401)38:7<884::AID-ANIE884>3.0.CO;2-K, PMID 29711851.

Singh A, Ujjwal RR, Naqvi S, Verma RK, Tiwari S, Kesharwani P. Formulation development of tocopherol polyethylene glycol nanoengineered polyamidoamine dendrimer for neuroprotection and treatment of alzheimer disease. J Drug Target. 2022 Aug 9;30(7):777-91. doi: 10.1080/1061186X.2022.2063297, PMID 35382657.

Igartua DE, Martinez CS, Del V Alonso S, Prieto MJ. Combined therapy for alzheimers disease: tacrine and PAMAM dendrimers co-administration reduces the side effects of the drug without modifying its activity. AAPS Pharm Sci Tech. 2020 Apr;21(3):110. doi: 10.1208/s12249-020-01652-w, PMID 32215751.

Liu P, Zhang T, Chen Q, LI C, Chu Y, Guo Q. Biomimetic dendrimer peptide conjugates for early multi target therapy of alzheimers disease by inflammatory microenvironment modulation. Adv Mater. 2021 Jul;33(26):e2100746. doi: 10.1002/adma.202100746, PMID 33998706.

Gothwal A, Kumar H, Nakhate KT, Ajazuddin, Dutta A, Borah A. Lactoferrin coupled lower generation pamam dendrimers for brain targeted delivery of memantine in aluminium chloride induced alzheimers disease in mice. Bioconjug Chem. 2019;30(10):2573-83. doi: 10.1021/acs.bioconjchem.9b00505, PMID 31553175.

Safiri S, Ghaffari Jolfayi A, Fazlollahi A, Morsali S, Sarkesh A, Daei Sorkhabi A. Alzheimers disease: a comprehensive review of epidemiology risk factors symptoms diagnosis management caregiving advanced treatments and associated challenges. Front Med (Lausanne). 2024 Dec 16;11:1474043. doi: 10.3389/fmed.2024.1474043, PMID 39736972.

Budd Haeberlein S, O Gorman J, Chiao P, Bussiere T, von Rosenstiel P, Tian Y. Clinical development of aducanumab an anti-Aβ human monoclonal antibody being investigated for the treatment of early alzheimers disease. J Prev Alzheimers Dis. 2017 Jan 1;4(4):255-63. doi: 10.14283/jpad.2017.39, PMID 29181491.

https://clinicaltrials.gov/study/NCT02477800. [Last accessed on 10 Feb 2024].

https://clinicaltrials.gov/ct2/show/NCT02484547. [Last accessed on 10 Feb 2024].

https://clinicaltrials.gov/ct2/show/NCT03639987. [Last accessed on 10 Feb 2024].

https://clinicaltrials.gov/ct2/show/NCT01677572. [Last accessed on 10 Feb 2024].

Cummings JL, Cohen S, Van Dyck CH, Brody M, Curtis C, Cho W. ABBY: a phase 2 randomized trial of crenezumab in mild to moderate alzheimer disease. Neurology. 2018;90(21):e1889-97. doi: 10.1212/WNL.0000000000005550, PMID 29695589.

Salloway S, Honigberg LA, Cho W, Ward M, Friesenhahn M, Brunstein F. Amyloid positron emission tomography and cerebrospinal fluid results from a crenezumab anti-amyloid beta antibody double blind placebo controlled randomized phase II study in mild to moderate alzheimers disease (BLAZE). Alzheimers Res Ther. 2018 Dec;10(1):96. doi: 10.1186/s13195-018-0424-5, PMID 30231896.

https://clinicaltrials.gov/ct2/show/results/NCT02670083?view=results. [Last accessed on 12 Feb 2024].

https://www.Clinicaltrials.gov.ct2/show/results/NCT03114657?view=results. [Last accessed on 12 Feb 2024].

https://clinicaltrials.gov/ct2/show/results/NCT02353598. [Last accessed on 12 Feb 2024].

https://www.Clinicaltrials.gov.ct2/show/NCT01998841. [Last accessed on 12 Feb 2024].

Klein G, Delmar P, Voyle N, Rehal S, Hofmann C, Abi Saab D. Gantenerumab reduces amyloid-β plaques in patients with prodromal to moderate alzheimers disease: a PET substudy interim analysis. Alzheimers Res Ther. 2019 Dec;11(1):101. doi: 10.1186/s13195-019-0559-z, PMID 31831056.

https://clinicaltrials.gov/ct2/show/NCT01224106. [Last accessed on 12 Feb 2024].

Ostrowitzki S, Lasser RA, Dorflinger E, Scheltens P, Barkhof F, Nikolcheva T. A phase III randomized trial of gantenerumab in prodromal alzheimers disease. Alzheimers Res Ther. 2017;9(1):95. doi: 10.1186/s13195-017-0318-y, PMID 29221491.

https://clinicaltrials.gov/ct2/show/NCT03444870. [Last accessed on 12 Feb 2024].

https://clinicaltrials.gov/ct2/show/NCT03443973. [Last accessed on 12 Feb 2024].

Honig LS, Vellas B, Woodward M, Boada M, Bullock R, Borrie M. Trial of solanezumab for mild dementia due to alzheimers disease. N Engl J Med. 2018;378(4):321-30. doi: 10.1056/NEJMoa1705971, PMID 29365294.

https://clinicaltrials.gov/ct2/show/NCT01900665. [Last accessed on 14 Feb 2024].

Zarghami A, Hojjati SM. Association between dental amalgam fillings and alzheimers disease. Alzheimers Res Ther. 2016;8:1. doi: 10.1186/s13195-016-0175-0, PMID 26776763.

https://clinicaltrials.gov/ct2/show/NCT03367403. [Last accessed on 14 Feb 2024].

Irizarry MC, Fleisher AS, Hake AM, Liu P, Shcherbinin S, DE Mattos RB. P4-388: trailblazer‐alz (NCT03367403): a phase 2 disease‐modification combination therapy trial targeting multiple mechanisms of action along the amyloid pathway. Alzheimer's & Dementia. 2018;14(7):P1617-71. https://doi.org/10.1016/j.jalz.2018.07.212.

Farlow MR, Andreasen N, Riviere ME, Vostiar I, Vitaliti A, Sovago J. Long term treatment with active Aβ immunotherapy with CAD106 in mild alzheimers disease. Alzheimers Res Ther. 2015;7(1):23. doi: 10.1186/s13195-015-0108-3, PMID 25918556.

https://clinicaltrials.gov/ct2/show/NCT02565511. [Last accessed on 14 Feb 2024].

Lacosta AM, Pascual Lucas M, Pesini P, Casabona D, Perez Grijalba V, Marcos Campos I. Safety tolerability and immunogenicity of an active anti-Aβ40 vaccine (ABvac40) in patients with alzheimers disease: a randomised double blind placebo controlled phase I trial. Alzheimers Res Ther. 2018;10(1):12. doi: 10.1186/s13195-018-0340-8, PMID 29378651.

https://clinicaltrials.gov/ct2/show/NCT03461276. [Last accessed on 16 Feb 2024].

Park HH, Lee KY, Kim S, Lee JW, Choi NY, Lee EH. Novel vaccine peptide GV1001 effectively blocks β-amyloid toxicity by mimicking the extra telomeric functions of human telomerase reverse transcriptase. Neurobiol Aging. 2014 Jun 1;35(6):1255-74. doi: 10.1016/j.neurobiolaging.2013.12.015, PMID 24439482.

https://clinicaltrials.gov/ct2/show/results/NCT03184467. [Last accessed on 16 Feb 2024].

https://clinicaltrials.gov/ct2/show/NCT03959553. [Last accessed on 16 Feb 2024].

Wang CY, Finstad CL, Walfield AM, Sia C, Sokoll KK, Chang TY. Site-specific UBITh amyloid beta vaccine for immunotherapy of alzheimers disease. Vaccine. 2007 Apr 20;25(16):3041-52. doi: 10.1016/j.vaccine.2007.01.031, PMID 17287052.

https://clinicaltrials.gov/ct2/show/results/NCT02551809. [Last accessed on 16 Feb 2024].

https://clinicaltrials.gov/ct2/show/NCT03819699. [Last accessed on 16 Feb 2024].

https://clinicaltrials.gov/ct2/show/NCT02388152. [Last accessed on 16 Feb 2024].

Davtyan H, Ghochikyan A, Petrushina I, Hovakimyan A, Davtyan A, Poghosyan A. Immunogenicity efficacy safety and mechanism of action of epitope vaccine (Lu AF20513) for alzheimers disease: prelude to a clinical trial. J Neurosci. 2013 Mar 13;33(11):4923-34. doi: 10.1523/JNEUROSCI.4672-12.2013, PMID 23486963.

Wani SU, Ali M, Masoodi MH, Khan NA, Zargar MI, Hassan R. A review on nanoparticles categorization characterization and applications in drug delivery systems. Vib Spectrosc. 2022 Jul 1;121:103407. doi: 10.1016/j.vibspec.2022.103407.

Dobrovolskaia MA, MC Neil SE. Understanding the correlation between in vitro and in vivo immunotoxicity tests for nanomedicines. J Control Release. 2013 Dec 10;172(2):456-66. doi: 10.1016/j.jconrel.2013.05.025, PMID 23742883.

Wolfram J, Zhu M, Yang Y, Shen J, Gentile E, Paolino D. Safety of nanoparticles in medicine. Curr Drug Targets. 2015;16(14):1671-81. doi: 10.2174/1389450115666140804124808, PMID 26601723.

Ali F, Neha K, Parveen S. Current regulatory landscape of nanomaterials and nanomedicines: a global perspective. J Drug Deliv Sci Technol. 2023 Feb 1;80:104118.

Gaspar RS. Therapeutic products: regulating drugs and medical devices. In: Hodge GA, Bowman DM, Maynard AD, editors. International handbook on regulating nanotechnologies. Edward Elgar Publishing; 2010. doi: 10.4337/9781849808125.00023.

Ich Official Website ICH. In: Available from: https://www.ich.org/products/guidelines?print=1. [Last accessed on 20 Feb 2024].

Nanomedicines. Qual Assist; 2024. Available from: https://www.quality-assistance.com/products/nanomedicines/nanomedicines.

Nanotechnology Characterization Laboratory (NCL). Available from: https://deainfonci.nih.Gov/advisory/fac/archive/0912/McNeil.pdf. [Last accessed on 10 Mar 2024].

Nanotechnology Characterization Laboratory. Cancer. Available from: https://nclGov/Resources/Assay-Cascade-Protocols.NationalCancerInstitute. [Last accessed on 10 Mar 2024].

Euncl. Available from: http://www.euncleu.Euncleu;1970.Eu/about-us/assay-cascade. [Last accessed on 10 Mar 2024].

Published

07-05-2025

How to Cite

LAHIRI, A., V., B., S. K., M., & A. R., A. (2025). REVOLUTIONIZING ALZHEIMER’S THERAPEUTICS: FROM MICROTECHNOLOGIES TO AI-DRIVEN INNOVATIONS. International Journal of Applied Pharmaceutics, 17(3), 55–79. https://doi.org/10.22159/ijap.2025v17i3.53726

Issue

Section

Review Article(s)

Similar Articles

<< < 4 5 6 7 8 > >> 

You may also start an advanced similarity search for this article.