EXOSOMES AS MEDIATORS OF NEUROINFLAMMATION IN PARKINSON'S DISEASE: A REVIEW

Authors

  • MUJIBULLAH SHEIKH Datta Meghe College of Pharmacy DMIHER (Deemed to be University), Wardha, Maharashtra-442001, India https://orcid.org/0009-0003-1867-7028
  • ARSHIYA SAIYYAD Datta Meghe College of Pharmacy DMIHER (Deemed to be University), Wardha, Maharashtra-442001, India https://orcid.org/0009-0004-2034-1387
  • PRANITA S. JIRVANKAR Datta Meghe College of Pharmacy DMIHER (Deemed to be University), Wardha, Maharashtra-442001, India

DOI:

https://doi.org/10.22159/ijap.2025v17i3.53756

Keywords:

Exosomes, Neuroinflammation, PD, Dopaminergic neurons, α-Synuclein, Glial cells, Microglia, Astrocytes, Immune response

Abstract

Parkinson’s Disease (PD), a neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons, is closely associated with neuroinflammation mediated by exosomes. This review discusses the role of exosomes in the modulation of neuroinflammatory processes in PD. Small Extracellular Vesicles (EVs) are exosomes that communicate between cells by transporting proteins, lipids, and RNAs that affect neuronal health. We investigated how exosomes propagate misfolded α-synuclein and proinflammatory mediators, leading to microglial activation and neurodegeneration. The key questions addressed include the following: (1) How do exosomes promote the spread of α-synuclein pathology? (2) What molecular pathways drive exosome-mediated neuroinflammation in PD? (3) Can exosomes serve as diagnostic biomarkers or therapeutic vehicles? By analyzing these mechanisms, this review underscores the dual role of exosomes in exacerbating disease progression and their potential for innovative treatments. This finding highlights the challenges in current methodologies and future prospects of exosome-targeted therapy in PD.

References

Kalia LV, Lang AE. Parkinsons disease. Lancet. 2015;386(9996):896-912. doi: 10.1016/S0140-6736(14)61393-3, PMID 25904081.

Kouli A, Torsney KM, Kuan WL. Parkinsons disease: etiology neuropathology and pathogenesis. Parkinsons Disease: Pathogenesis and Clinical Aspects; 2018. doi: 10.15586/codonpublications.parkinsonsdisease.2018.ch1.

Parkinson disease. Available from: https://www.who.int/news-room/fact-sheets/detail/parkinson-disease. [Last accessed on 12 Oct 2024].

Rajan R, Holla VV, Kamble N, Yadav R, Pal PK. Genetic heterogeneity of early onset parkinson disease: the dilemma of clinico genetic correlation. Parkinsonism Relat Disord. 2024;129:107146. doi: 10.1016/j.parkreldis.2024.107146, PMID 39313403.

Nichols WC, Pankratz N, Marek DK, Pauciulo MW, Elsaesser VE, Halter CA. Mutations in GBA are associated with familial parkinson disease susceptibility and age at onset. Neurology. 2009;72(4):310-6. doi: 10.1212/01.wnl.0000327823.81237.d1, PMID 18987351.

Laulagnier K, Grand D, Dujardin A, Hamdi S, Vincent Schneider H, Lankar D. PLD2 is enriched on exosomes and its activity is correlated to the release of exosomes. FEBS Lett. 2004;572(1-3):11-4. doi: 10.1016/j.febslet.2004.06.082, PMID 15304316.

Ashique S, Kumar N, Mishra N, Muthu S, Rajendran RL, Chandrasekaran B. Unveiling the role of exosomes as cellular messengers in neurodegenerative diseases and their potential therapeutic implications. Pathol Res Pract. 2024 Aug;260:155451. doi: 10.1016/j.prp.2024.155451, PMID 39002435.

Singh G, Mehra A, Arora S, Gugulothu D, Vora LK, Prasad R. Exosome mediated delivery and regulation in neurological disease progression. Int J Biol Macromol. 2024;264(2):130728. doi: 10.1016/j.ijbiomac.2024.130728, PMID 38467209.

Liu W, Bai X, Zhang A, Huang J, XU S, Zhang J. Role of exosomes in central nervous system diseases. Front Mol Neurosci. 2019 Oct 4;12:240. doi: 10.3389/fnmol.2019.00240, PMID 31636538.

Marostica G, Gelibter S, Gironi M, Nigro A, Furlan R. Extracellular vesicles in neuroinflammation. Front Cell Dev Biol. 2020;8:623039. doi: 10.3389/fcell.2020.623039, PMID 33553161.

Kumari PV, Srilekhya K, Sindhu KB, Rao YS. Exosome nanocarriers: basic biology diagnosis novel and perspective approach in drug delivery systems: a review. Int J App Pharm. 2021;13(4):23-30. doi: 10.22159/ijap.2021v13i4.40842.

Beraud D, Maguire Zeiss KA. Misfolded α-synuclein and toll-like receptors: therapeutic targets for parkinsons disease. Parkinsonism Relat Disord. 2012 Jan;18 Suppl 1:S17-20. doi: 10.1016/S1353-8020(11)70008-6, PMID 22166424.

Porro C, Panaro MA, Lofrumento DD, Hasalla E, Trotta T. The multiple roles of exosomes in parkinsons disease: an overview. Immunopharmacol Immunotoxicol. 2019;41(4):469-76. doi: 10.1080/08923973.2019.1650371, PMID 31405314.

Aires ID, Ribeiro Rodrigues T, Boia R, Ferreira Rodrigues M, Girao H, Ambrosio AF. Microglial extracellular vesicles as vehicles for neurodegeneration spreading. Biomolecules. 2021;11(6):770. doi: 10.3390/biom11060770, PMID 34063832.

Gupta A, Pulliam L. Exosomes as mediators of neuroinflammation. J Neuroinflammation. 2014 Apr 3;11:68. doi: 10.1186/1742-2094-11-68, PMID 24694258.

Patil M, Henderson J, Luong H, Annamalai D, Sreejit G, Krishnamurthy P. The art of intercellular wireless communications: exosomes in heart disease and therapy. Front Cell Dev Biol. 2019;7:315. doi: 10.3389/fcell.2019.00315, PMID 31850349.

Jella KK, Nasti TH, LI Z, Malla SR, Buchwald ZS, Khan MK. Exosomes their biogenesis and role in inter cellular communication tumor microenvironment and cancer immunotherapy. Vaccines (Basel). 2018;6(4):69. doi: 10.3390/vaccines6040069, PMID 30261592.

Nail HM, Chiu CC, Leung CH, Ahmed MM, Wang HD. Exosomal miRNA-mediated intercellular communications and immunomodulatory effects in tumor microenvironments. J Biomed Sci. 2023;30(1):69. doi: 10.1186/s12929-023-00964-w, PMID 37605155.

Kalluri R, LE Bleu VS. The biology function and biomedical applications of exosomes. Science. 2020;367(6478):eaau6977. doi: 10.1126/science.aau6977, PMID 32029601.

O Brien K, Breyne K, Ughetto S, Laurent LC, Breakefield XO. RNA delivery by extracellular vesicles in mammalian cells and its applications. Nat Rev Mol Cell Biol. 2020;21(10):585-606. doi: 10.1038/s41580-020-0251-y, PMID 32457507.

Kourembanas S. Exosomes: vehicles of intercellular signalling biomarkers and vectors of cell therapy. Annu Rev Physiol. 2015;77:13-27. doi: 10.1146/annurev-physiol-021014-071641, PMID 25293529.

Rajendran L, Bali J, Barr MM, Court FA, Kramer Albers EM, Picou F. Emerging roles of extracellular vesicles in the nervous system. J Neurosci. 2014;34(46):15482-9. doi: 10.1523/JNEUROSCI.3258-14.2014, PMID 25392515.

Sarkar S, Patranabis S. Emerging role of extracellular vesicles in intercellular communication in the brain: implications for neurodegenerative diseases and therapeutics. Cell Biochem Biophys. 2024;82(2):379-98. doi: 10.1007/s12013-024-01221-z, PMID 38300375.

Bobrie A, Colombo M, Raposo G, Thery C. Exosome secretion: molecular mechanisms and roles in immune responses. Traffic. 2011;12(12):1659-68. doi: 10.1111/j.1600-0854.2011.01225.x, PMID 21645191.

Manzoor T, Farooq N, Sharma A, Shiekh PA, Hassan A, Dar LA. Exosomes in nanomedicine: a promising cell-free therapeutic intervention in burn wounds. Stem Cell Res Ther. 2024;15(1):355. doi: 10.1186/s13287-024-03970-3, PMID 39385310.

Zhang Y, Liu Y, Liu H, Tang WH. Exosomes: biogenesis biologic function and clinical potential. Cell Biosci. 2019;9:19. doi: 10.1186/s13578-019-0282-2, PMID 30815248.

Garcia NA, Ontoria Oviedo I, Gonzalez King H, Diez Juan A, Sepulveda P. Glucose starvation in cardiomyocytes enhances exosome secretion and promotes angiogenesis in endothelial cells. Plos One. 2015;10(9):e0138849. doi: 10.1371/journal.pone.0138849, PMID 26393803.

Pascual M, Ibanez F, Guerri C. Exosomes as mediators of neuron-glia communication in neuroinflammation. Neural Regen Res. 2020;15(5):796-801. doi: 10.4103/1673-5374.268893, PMID 31719239.

Bellingham SA, Guo BB, Coleman BM, Hill AF. Exosomes: vehicles for the transfer of toxic proteins associated with neurodegenerative diseases? Front Physiol. 2012 May 3;3:124. doi: 10.3389/fphys.2012.00124, PMID 22563321.

Rahbaran M, Zekiy AO, Bahramali M, Jahangir M, Mardasi M, Sakhaei D. Therapeutic utility of mesenchymal stromal cell (MSC) based approaches in chronic neurodegeneration: a glimpse into underlying mechanisms current status and prospects. Cell Mol Biol Lett. 2022;27(1):56. doi: 10.1186/s11658-022-00359-z, PMID 35842587.

Schiera G, DI Liegro CM, DI Liegro I. Cell to cell communication in learning and memory: from neuro and glio transmission to information exchange mediated by extracellular vesicles. Int J Mol Sci. 2019;21(1):266. doi: 10.3390/ijms21010266, PMID 31906013.

Pegtel DM, Peferoen L, Amor S. Extracellular vesicles as modulators of cell-to-cell communication in the healthy and diseased brain. Philos Trans R Soc Lond B Biol Sci. 2014;369(1652):20130516. doi: 10.1098/rstb.2013.0516, PMID 25135977.

Huo L, DU X, LI X, Liu S, XU Y. The emerging role of neural cell derived exosomes in intercellular communication in health and neurodegenerative diseases. Front Neurosci. 2021 Aug 31;15:738442. doi: 10.3389/fnins.2021.738442, PMID 34531720.

HE S, Zhong S, Liu G, Yang J. Alpha synuclein: the interplay of pathology neuroinflammation and environmental factors in parkinsons disease. Neurodegener Dis. 2020;20(2-3):55-64. doi: 10.1159/000511083, PMID 33465773.

Liu TW, Chen CM, Chang KH. Biomarker of neuroinflammation in parkinsons disease. Int J Mol Sci. 2022;23(8):4148. doi: 10.3390/ijms23084148, PMID 35456966.

Forloni G, Artuso V, LA Vitola P, Balducci C. Oligomeropathies and pathogenesis of alzheimer and parkinsons diseases. Mov Disord. 2016;31(6):771-81. doi: 10.1002/mds.26624, PMID 27030592.

Jellinger KA. Basic mechanisms of neurodegeneration: a critical update. J Cell Mol Med. 2010;14(3):457-87. doi: 10.1111/j.1582-4934.2010.01010.x, PMID 20070435.

Grasso M, Piscopo P, Confaloni A, Denti MA. Circulating miRNAs as biomarkers for neurodegenerative disorders. Molecules. 2014;19(5):6891-910. doi: 10.3390/molecules19056891, PMID 24858274.

Olivieri F, Prattichizzo F, Giuliani A, Matacchione G, Rippo MR, Sabbatinelli J. miR-21 and miR-146a: the microRNAs of inflammaging and age-related diseases. Ageing Res Rev. 2021;70:101374. doi: 10.1016/j.arr.2021.101374, PMID 34082077.

Xie F, XU M, LU J, Mao L, Wang S. The role of exosomal PD-L1 in tumor progression and immunotherapy. Mol Cancer. 2019;18(1):146. doi: 10.1186/s12943-019-1074-3, PMID 31647023.

Zhou K, Guo S, LI F, Sun Q, Liang G. Exosomal PD-L1: new insights into tumor immune escape mechanisms and therapeutic strategies. Front Cell Dev Biol. 2020;8:569219. doi: 10.3389/fcell.2020.569219, PMID 33178688.

Gordon T. The physiology of neural injury and regeneration: the role of neurotrophic factors. J Commun Disord. 2010;43(4):265-73. doi: 10.1016/j.jcomdis.2010.04.003, PMID 20451212.

Meeker RB, Williams KS. The p75 neurotrophin receptor: at the crossroad of neural repair and death. Neural Regen Res. 2015;10(5):721-5. doi: 10.4103/1673-5374.156967, PMID 26109945.

Somerville EN, Gan-Or Z. Genetic based diagnostics of Parkinson’s disease and other parkinsonian syndromes. Expert Rev Mol Diagn. 2024 Nov 15;1-13. doi: 10.1080/14737159.2024.2427625, PMID 39545628.

Woo KA, Kim HJ, Lee CY, Shin JH, Sun C, IM H. Parkinsons disease is associated with clonal hematopoiesis with TET2 mutation. NPJ Parkinsons Dis. 2024;10(1):168. doi: 10.1038/s41531-024-00784-1, PMID 39242596.

Norden DM, Godbout JP. Review: microglia of the aged brain: primed to be activated and resistant to regulation. Neuropathol Appl Neurobiol. 2013;39(1):19-34. doi: 10.1111/j.1365-2990.2012.01306.x, PMID 23039106.

Miller AH, Haroon E, Raison CL, Felger JC. Cytokine targets in the brain: impact on neurotransmitters and neurocircuits. Depress Anxiety. 2013;30(4):297-306. doi: 10.1002/da.22084, PMID 23468190.

Azevedo RS, DE Sousa JR, Araujo MT, Martins Filho AJ, DE Alcantara BN, Araujo FM. In situ immune response and mechanisms of cell damage in central nervous system of fatal cases microcephaly by zika virus. Sci Rep. 2018;8(1):1. doi: 10.1038/s41598-017-17765-5, PMID 29311619.

Hong S, Beja Glasser VF, Nfonoyim BM, Frouin A, LI S, Ramakrishnan S. Complement and microglia mediate early synapse loss in alzheimer mouse models. Science. 2016;352(6286):712-6. doi: 10.1126/science.aad8373, PMID 27033548.

Setiawan E, Wilson AA, Mizrahi R, Rusjan PM, Miler L, Rajkowska G. Role of translocator protein density a marker of neuroinflammation in the brain during major depressive episodes. JAMA Psychiatry. 2015;72(3):268-75. doi: 10.1001/jamapsychiatry.2014.2427, PMID 25629589.

Monahan AJ, Warren M, Carvey PM. Neuroinflammation and peripheral immune infiltration in parkinsons disease: an autoimmune hypothesis. Cell Transplant. 2008;17(4):363-72. doi: 10.3727/096368908784423328, PMID 18522239.

Weiss F, Labrador Garrido A, Dzamko N, Halliday G. Immune responses in the parkinsons disease brain. Neurobiol Dis. 2022;168:105700. doi: 10.1016/j.nbd.2022.105700, PMID 35314321.

Brochard V, Combadiere B, Prigent A, Laouar Y, Perrin A, Beray Berthat V. Infiltration of CD4+lymphocytes into the brain contributes to neurodegeneration in a mouse model of parkinson disease. J Clin Invest. 2009;119(1):182-92. doi: 10.1172/JCI36470, PMID 19104149.

Qin XY, Zhang SP, Cao C, Loh YP, Cheng Y. Aberrations in peripheral inflammatory cytokine levels in parkinson disease: a systematic review and meta-analysis. JAMA Neurol. 2016;73(11):1316-24. doi: 10.1001/jamaneurol.2016.2742, PMID 27668667.

Chen X, Feng W, OU R, Liu J, Yang J, FU J. Evidence for peripheral immune activation in parkinsons disease. Front Aging Neurosci. 2021;13:617370. doi: 10.3389/fnagi.2021.617370, PMID 33994989.

Tansey MG, Wallings RL, Houser MC, Herrick MK, Keating CE, Joers V. Inflammation and immune dysfunction in parkinson disease. Nat Rev Immunol. 2022;22(11):657-73. doi: 10.1038/s41577-022-00684-6, PMID 35246670.

Alrouji M, Al Kuraishy HM, Al Gareeb AI, Alexiou A, Papadakis M, Jabir MS. NF-κB/NLRP3 inflammasome axis and risk of parkinsons disease in type 2 diabetes mellitus: a narrative review and new perspective. J Cell Mol Med. 2023;27(13):1775-89. doi: 10.1111/jcmm.17784, PMID 37210624.

Mamuladze T, Kipnis J. Type 2 immunity in the brain and brain borders. Cell Mol Immunol. 2023;20(11):1290-9. doi: 10.1038/s41423-023-01043-8, PMID 37429945.

Godbout JP, Johnson RW. Age and neuroinflammation: a lifetime of psychoneuroimmune consequences. Neurol Clin. 2006;24(3):521-38. doi: 10.1016/j.ncl.2006.03.010, PMID 16877122.

Kempuraj D, Thangavel R, Selvakumar GP, Zaheer S, Ahmed ME, Raikwar SP. Brain and peripheral atypical inflammatory mediators potentiate neuroinflammation and neurodegeneration. Front Cell Neurosci. 2017 Jul 24;11:216. doi: 10.3389/fncel.2017.00216, PMID 28790893.

DI Sabato DJ, Quan N, Godbout JP. Neuroinflammation: the devil is in the details. J Neurochem. 2016;139 Suppl 2:136-53. doi: 10.1111/jnc.13607, PMID 26990767.

In brief: what is an inflammation? In institute for quality and efficiency in health care (IQWiG). Inform Educ Health; 2021.

Woodcock T, Morganti Kossmann MC. The role of markers of inflammation in traumatic brain injury. Front Neurol. 2013;4:18. doi: 10.3389/fneur.2013.00018, PMID 23459929.

Corps KN, Roth TL, MC Gavern DB. Inflammation and neuroprotection in traumatic brain injury. JAMA Neurol. 2015;72(3):355-62. doi: 10.1001/jamaneurol.2014.3558, PMID 25599342.

Marschallinger J, Iram T, Zardeneta M, Lee SE, Lehallier B, Haney MS. Lipid droplet accumulating microglia represent a dysfunctional and pro-inflammatory state in the aging brain. Nat Neurosci. 2020;23(2):194-208. doi: 10.1038/s41593-019-0566-1, PMID 31959936.

Brundin P, Melki R. Prying into the prion hypothesis for parkinsons disease. J Neurosci. 2017;37(41):9808-18. doi: 10.1523/JNEUROSCI.1788-16.2017, PMID 29021298.

Rocha EM, DE Miranda B, Sanders LH. Alpha synuclein: pathology mitochondrial dysfunction and neuroinflammation in parkinsons disease. Neurobiol Dis. 2018;109(B):249-57. doi: 10.1016/j.nbd.2017.04.004, PMID 28400134.

Volpicelli Daley LA, Luk KC, Lee VM. Addition of exogenous α-synuclein preformed fibrils to primary neuronal cultures to seed recruitment of endogenous α-synuclein to lewy body and lewy neurite-like aggregates. Nat Protoc. 2014;9(9):2135-46. doi: 10.1038/nprot.2014.143, PMID 25122523.

Luk KC, Song C, O Brien P, Stieber A, Branch JR, Brunden KR. Exogenous α-synuclein fibrils seed the formation of lewy body like intracellular inclusions in cultured cells. Proc Natl Acad Sci USA. 2009;106(47):20051-6. doi: 10.1073/pnas.0908005106, PMID 19892735.

Kim C, HO DH, Suk JE, You S, Michael S, Kang J. Neuron released oligomeric α-synuclein is an endogenous agonist of TLR2 for paracrine activation of microglia. Nat Commun. 2013;4:1562. doi: 10.1038/ncomms2534, PMID 23463005.

Mao X, OU MT, Karuppagounder SS, Kam TI, Yin X, Xiong Y. Pathological α-synuclein transmission initiated by binding lymphocyte activation gene 3. Science. 2016;353(6307):aah3374. doi: 10.1126/science.aah3374, PMID 27708076.

Moynihan KD, Opel CF, Szeto GL, Tzeng A, Zhu EF, Engreitz JM. Eradication of large established tumors in mice by combination immunotherapy that engages innate and adaptive immune responses. Nat Med. 2016;22(12):1402-10. doi: 10.1038/nm.4200, PMID 27775706.

Ghoreschi K, Jesson MI, LI X, Lee JL, Ghosh S, Alsup JW. Modulation of innate and adaptive immune responses by tofacitinib (CP-690,550). J Immunol. 2011;186(7):4234-43. doi: 10.4049/jimmunol.1003668, PMID 21383241.

Masliah E, Rockenstein E, Mante M, Crews L, Spencer B, Adame A. Passive immunization reduces behavioral and neuropathological deficits in an alpha-synuclein transgenic model of lewy body disease. Plos One. 2011;6(4):e19338. doi: 10.1371/journal.pone.0019338, PMID 21559417.

Madsen L, Labrecque N, Engberg J, Dierich A, Svejgaard A, Benoist C. Mice lacking all conventional MHC class II genes. Proc Natl Acad Sci USA. 1999;96(18):10338-43. doi: 10.1073/pnas.96.18.10338, PMID 10468609.

Tan JS, Chao YX, Rotzschke O, Tan EK. New insights into immune mediated mechanisms in parkinsons disease. Int J Mol Sci. 2020;21(23):9302. doi: 10.3390/ijms21239302, PMID 33291304.

Zekeridou A, Kryzer T, Guo Y, Hassan A, Lennon V, Lucchinetti CF. Phosphodiesterase 10A IgG: a novel biomarker of paraneoplastic neurologic autoimmunity. Neurology. 2019;93(8):e815-22. doi: 10.1212/WNL.0000000000007971, PMID 31315972.

Pinnell JR, Cui M, Tieu K. Exosomes in parkinson disease. J Neurochem. 2021;157(3):413-28. doi: 10.1111/jnc.15288, PMID 33372290.

YU H, Sun T, AN J, Wen L, Liu F, BU Z. Potential roles of exosomes in parkinsons disease: from pathogenesis diagnosis and treatment to prognosis. Front Cell Dev Biol. 2020 Feb 21;8:86. doi: 10.3389/fcell.2020.00086, PMID 32154247.

Ouerdane Y, Hassaballah MY, Nagah A, Ibrahim TM, Mohamed HA, El Baz A. Exosomes in parkinson: revisiting their pathologic role and potential applications. Pharmaceuticals (Basel). 2022;15(1):76. doi: 10.3390/ph15010076, PMID 35056133.

Hessvik NP, Llorente A. Current knowledge on exosome biogenesis and release. Cell Mol Life Sci. 2018;75(2):193-208. doi: 10.1007/s00018-017-2595-9, PMID 28733901.

Guo M, Wang J, Zhao Y, Feng Y, Han S, Dong Q. Microglial exosomes facilitate α-synuclein transmission in parkinsons disease. Brain. 2020;143(5):1476-97. doi: 10.1093/brain/awaa090, PMID 32355963.

Bridi JC, Hirth F. Mechanisms of α-synuclein induced synaptopathy in parkinsons disease. Front Neurosci. 2018;12:80. doi: 10.3389/fnins.2018.00080, PMID 29515354.

Buratta S, Tancini B, Sagini K, Delo F, Chiaradia E, Urbanelli L. Lysosomal exocytosis exosome release and secretory autophagy: the autophagic and endo-lysosomal systems go extracellular. Int J Mol Sci. 2020;21(7):2576. doi: 10.3390/ijms21072576, PMID 32276321.

Shaheen N, Shaheen A, Osama M, Nashwan AJ, Bharmauria V, Flouty O. MicroRNAs regulation in parkinsons disease and their potential role as diagnostic and therapeutic targets. NPJ Parkinsons Dis. 2024;10(1):186. doi: 10.1038/s41531-024-00791-2, PMID 39369002.

Scoyni F. Unlocking the potential of noncoding RNAs in regulating neurodegeneration: a glimpse into alzheimers disease and ischemic stroke pathophysiology; 2024.

Hsu CY, Ahmed AT, Bansal P, Hjazi A, Al Hetty HR, Qasim MT. MicroRNA-enriched exosome as dazzling dancer between cancer and immune cells. J Physiol Biochem. 2024;80(4):811-29. doi: 10.1007/s13105-024-01050-x, PMID 39316240.

Hussain MS, Moglad E, Afzal M, Sharma S, Gupta G, Sivaprasad GV. Autophagy associated non-coding RNAs: unraveling their impact on parkinsons disease pathogenesis. CNS Neurosci Ther. 2024;30(5):e14763. doi: 10.1111/cns.14763, PMID 38790149.

Sharma K, Chib S, Gupta A, Singh R, Chalotra R. Interplay between α-synuclein and parkin genes: insights of parkinsons disease. Mol Biol Rep. 2024;51(1):586. doi: 10.1007/s11033-024-09520-7, PMID 38683365.

Choi I, Zhang Y, Seegobin SP, Pruvost M, Wang Q, Purtell K. Microglia clear neuron-released α-synuclein via selective autophagy and prevent neurodegeneration. Nat Commun. 2020;11(1):1386. doi: 10.1038/s41467-020-15119-w, PMID 32170061.

Danzer KM, Ruf WP, Putcha P, Joyner D, Hashimoto T, Glabe C. Heat shock protein 70 modulates toxic extracellular α‐synuclein oligomers and rescues trans-synaptic toxicity. FASEB J. 2011;25(1):326-36. doi: 10.1096/fj.10-164624, PMID 20876215.

Mazzulli JR, Zunke F, Isacson O, Studer L, Krainc D. α-Synuclein induced lysosomal dysfunction occurs through disruptions in protein trafficking in human midbrain synucleinopathy models. Proc Natl Acad Sci USA. 2016;113(7):1931-6. doi: 10.1073/pnas.1520335113, PMID 26839413.

Shi M, Liu C, Cook TJ, Bullock KM, Zhao Y, Ginghina C. Plasma exosomal α-synuclein is likely CNS-derived and increased in parkinsons disease. Acta Neuropathol. 2014;128(5):639-50. doi: 10.1007/s00401-014-1314-y, PMID 24997849.

Gurunathan S, Kang MH, Jeyaraj M, Qasim M, Kim JH. Review of the isolation characterization biological function and multifarious therapeutic approaches of exosomes. Cells. 2019;8(4):307. doi: 10.3390/cells8040307, PMID 30987213.

Chevillet JR, Kang Q, Ruf IK, Briggs HA, Vojtech LN, Hughes SM. Quantitative and stoichiometric analysis of the microRNA content of exosomes. Proc Natl Acad Sci USA. 2014;111(41):14888-93. doi: 10.1073/pnas.1408301111, PMID 25267620.

Khan M, Nickoloff E, Abramova T, Johnson J, Verma SK, Krishnamurthy P. Embryonic stem cell-derived exosomes promote endogenous repair mechanisms and enhance cardiac function following myocardial infarction. Circ Res. 2015;117(1):52-64. doi: 10.1161/CIRCRESAHA.117.305990, PMID 25904597.

Ohshima K, Inoue K, Fujiwara A, Hatakeyama K, Kanto K, Watanabe Y. Let-7 microRNA family is selectively secreted into the extracellular environment via exosomes in a metastatic gastric cancer cell line. Plos One. 2010;5(10):e13247. doi: 10.1371/journal.pone.0013247, PMID 20949044.

Yang D, Zhang W, Zhang H, Zhang F, Chen L, MA L. Progress opportunity and perspective on exosome isolation efforts for efficient exosome-based theranostics. Theranostics. 2020;10(8):3684-707. doi: 10.7150/thno.41580, PMID 32206116.

Van Balkom BW, DE Jong OG, Smits M, Brummelman J, Den Ouden K, DE Bree PM. Endothelial cells require miR-214 to secrete exosomes that suppress senescence and induce angiogenesis in human and mouse endothelial cells. Blood. 2013;121(19):3997-4006. doi: 10.1182/blood-2013-02-478925, PMID 23532734.

LI W, LI C, Zhou T, Liu X, Liu X, LI X. Role of exosomal proteins in cancer diagnosis. Mol Cancer. 2017;16(1):145. doi: 10.1186/s12943-017-0706-8, PMID 28851367.

Merchant ML, Rood IM, Deegens JK, Klein JB. Isolation and characterization of urinary extracellular vesicles: implications for biomarker discovery. Nat Rev Nephrol. 2017;13(12):731-49. doi: 10.1038/nrneph.2017.148, PMID 29081510.

Liang G, Zhu Y, Ali DJ, Tian T, XU H, SI K. Engineered exosomes for targeted co-delivery of miR-21 inhibitor and chemotherapeutics to reverse drug resistance in colon cancer. J Nanobiotechnology. 2020;18(1):10. doi: 10.1186/s12951-019-0563-2, PMID 31918721.

Zheng B, Liao Z, Locascio JJ, Lesniak KA, Roderick SS, Watt ML. PGC-1 α, A potential therapeutic target for early intervention in parkinsons disease. Sci Transl Med. 2010;2(52). doi: 10.1126/scitranslmed.3001059.

Jiang T, Sun Q, Chen S. Oxidative stress: a major pathogenesis and potential therapeutic target of antioxidative agents in parkinsons disease and alzheimers disease. Prog Neurobiol. 2016;147:1-19. doi: 10.1016/j.pneurobio.2016.07.005, PMID 27769868.

Hong XU C, FU Chao L, Ping G. Exosomes derived from mesenchymal stem cells repair a parkinsons disease model by inducing autophagy. Cell Death Dis. 2020 Apr 27;11(4)288. Doi: 10.1038/s41419-020-2473-5.

Zheng Y, LU H, MU Q, YI P, Lin L, LI P. Effects of SEV derived from SHED and DPSC on the proliferation migration and osteogenesis of PDLSC. Regen Ther. 2023;24:489-98. doi: 10.1016/j.reth.2023.09.009, PMID 37767183.

Vilaça Faria H, Salgado AJ, Teixeira FG. Mesenchymal stem cells derived exosomes: a new possible therapeutic strategy for parkinsons disease? Cells. 2019;8(2):118. doi: 10.3390/cells8020118, PMID 30717429.

Abrishamdar M, Jalali MS, Yazdanfar N. The role of exosomes in pathogenesis and the therapeutic efficacy of mesenchymal stem cell-derived exosomes against parkinsons disease. Neurol Sci. 2023;44(7):2277-89. doi: 10.1007/s10072-023-06706-y, PMID 36949298.

Heris RM, Shirvaliloo M, Abbaspour Aghdam S, Hazrati A, Shariati A, Youshanlouei HR. The potential use of mesenchymal stem cells and their exosomes in parkinsons disease treatment. Stem Cell Res Ther. 2022;13(1):371. doi: 10.1186/s13287-022-03050-4, PMID 35902981.

Benameur T, Soleti R, Porro C. The potential neuroprotective role of free and encapsulated quercetin mediated by miRNA against neurological diseases. Nutrients. 2021;13(4):1318. doi: 10.3390/nu13041318, PMID 33923599.

Angelova PR, Esteras N, Abramov AY. Mitochondria and lipid peroxidation in the mechanism of neurodegeneration: finding ways for prevention. Med Res Rev. 2021;41(2):770-84. doi: 10.1002/med.21712, PMID 32656815.

Wang CC, HU XM, Long YF, Huang HR, HE Y, XU ZR. Treatment of parkinsons disease model with human umbilical cord mesenchymal stem cell-derived exosomes loaded with BDNF. Life Sci. 2024;356:123014. doi: 10.1016/j.lfs.2024.123014, PMID 39182566.

Nicoletti VG, Pajer K, Calcagno D, Pajenda G, Nogradi A. The role of metals in the neuro regenerative action of BDNF GDNF NGF and other neurotrophic factors. Biomolecules. 2022;12(8):1015. doi: 10.3390/biom12081015, PMID 35892326.

Mitchell CL, Kurouski D. Novel strategies in Parkinsons disease treatment: a review. Front Mol Neurosci. 2024;17:1431079. doi: 10.3389/fnmol.2024.1431079, PMID 39183754.

Bashyal S, Thapa C, Lee S. Recent progresses in exosome-based systems for targeted drug delivery to the brain. J Control Release. 2022 Aug;348:723-44. doi: 10.1016/j.jconrel.2022.06.011, PMID 35718214.

Hong P, Yang H, WU Y, LI K, Tang Z. The functions and clinical application potential of exosomes derived from adipose mesenchymal stem cells: a comprehensive review. Stem Cell Res Ther. 2019;10(1):242. doi: 10.1186/s13287-019-1358-y, PMID 31391108.

Blanc L, Vidal M. New insights into the function of Rab GTPases in the context of exosomal secretion. Small GTPases. 2018;9(1-2):95-106. doi: 10.1080/21541248.2016.1264352, PMID 28135905.

Ferreira D, Moreira JN, Rodrigues LR. New advances in exosome based targeted drug delivery systems. Crit Rev Oncol Hematol. 2022;172:103628. doi: 10.1016/j.critrevonc.2022.103628, PMID 35189326.

HE J, Ren W, Wang W, Han W, Jiang L, Zhang D. Exosomal targeting and its potential clinical application. Drug Deliv Transl Res. 2022;12(10):2385-402. doi: 10.1007/s13346-021-01087-1, PMID 34973131.

Gurunathan S, Kang MH, Kim JH. A comprehensive review on factors influences biogenesis functions therapeutic and clinical implications of exosomes. Int J Nanomedicine. 2021;16:1281-312. doi: 10.2147/IJN.S291956, PMID 33628021.

Choi H, Choi Y, Yim HY, Mirzaaghasi A, Yoo JK, Choi C. Biodistribution of exosomes and engineering strategies for targeted delivery of therapeutic exosomes. Tissue Eng Regen Med. 2021;18(4):499-511. doi: 10.1007/s13770-021-00361-0, PMID 34260047.

LI M, Fang F, Sun M, Zhang Y, HU M, Zhang J. Extracellular vesicles as bioactive nanotherapeutics: an emerging paradigm for regenerative medicine. Theranostics. 2022;12(11):4879-903. doi: 10.7150/thno.72812, PMID 35836815.

Keighron CN, Avazzadeh S, Goljanek Whysall K, MC Donagh B, Howard L, Ritter T. Extracellular vesicles cell-penetrating peptides and miRNAs as future novel therapeutic interventions for parkinsons and alzheimers disease. Biomedicines. 2023;11(3):728. doi: 10.3390/biomedicines11030728, PMID 36979707.

Moura RP, Pacheco C, Pego AP, Des Rieux A, Sarmento B. Lipid nanocapsules to enhance drug bioavailability to the central nervous system. J Control Release. 2020 Jun 10;322:390-400. doi: 10.1016/j.jconrel.2020.03.042, PMID 32247807.

Anthony DP, Hegde M, Shetty SS, Rafic T, Mutalik S, Rao BS. Targeting receptor ligand chemistry for drug delivery across blood-brain barrier in brain diseases. Life Sci. 2021;274:119326. doi: 10.1016/j.lfs.2021.119326, PMID 33711385.

Tan F, LI X, Wang Z, LI J, Shahzad K, Zheng J. Clinical applications of stem cell-derived exosomes. Signal Transduct Target Ther. 2024;9(1):17. doi: 10.1038/s41392-023-01704-0, PMID 38212307.

Yamashita T, Takahashi Y, Takakura Y. Possibility of exosome-based therapeutics and challenges in production of exosomes eligible for therapeutic application. Biol Pharm Bull. 2018;41(6):835-42. doi: 10.1248/bpb.b18-00133, PMID 29863072.

Yamashita T, Takahashi Y, Takakura Y. Possibility of exosome-based therapeutics and challenges in production of exosomes eligible for therapeutic application. Biol Pharm Bull. 2018;41(6):835-42. doi: 10.1248/bpb.b18-00133, PMID 29863072.

Koh HB, Kim HJ, Kang SW, Yoo TH. Exosome-based drug delivery: translation from bench to clinic. Pharmaceutics. 2023;15(8):2042. doi: 10.3390/pharmaceutics15082042, PMID 37631256.

Ranjan P, Colin K, Dutta RK, Verma SK. Challenges and future scope of exosomes in the treatment of cardiovascular diseases. J Physiol. 2023;601(22):4873-93. doi: 10.1113/JP282053, PMID 36398654.

Dutta A, Paul S. Advancement in exosome-based cancer therapeutics: a new era in cancer treatment. Front Nanotechnol. 2022;4. doi: 10.3389/fnano.2022.939197.

Palakurthi SS, Shah B, Kapre S, Charbe N, Immanuel S, Pasham S. A comprehensive review of challenges and advances in exosome based drug delivery systems. Nanoscale Adv. 2024;6(23):5803-26. doi: 10.1039/d4na00501e, PMID 39484149.

Weng S, Lai QL, Wang J, Zhuang L, Cheng L, MO Y. The role of exosomes as mediators of neuroinflammation in the pathogenesis and treatment of alzheimers disease. Front Aging Neurosci. 2022;14:899944. doi: 10.3389/fnagi.2022.899944, PMID 35837481.

Cabrera Pastor A. Extracellular vesicles as mediators of neuroinflammation in intercellular and inter-organ crosstalk. Int J Mol Sci. 2024;25(13):7041. doi: 10.3390/ijms25137041, PMID 39000150.

Published

07-05-2025

How to Cite

SHEIKH, M., SAIYYAD, A., & JIRVANKAR, P. S. (2025). EXOSOMES AS MEDIATORS OF NEUROINFLAMMATION IN PARKINSON’S DISEASE: A REVIEW. International Journal of Applied Pharmaceutics, 17(3), 80–92. https://doi.org/10.22159/ijap.2025v17i3.53756

Issue

Section

Review Article(s)

Similar Articles

<< < 83 84 85 86 > >> 

You may also start an advanced similarity search for this article.