REPURPOSED SIMVASTATIN-LOADED NANOSTRUCTURED LIPID CARRIERS: OPTIMIZATION, CHARACTERIZATION AND EVALUATION AGAINST LUNG CANCER

Authors

  • NARGIS ARA Faculty of Pharmacy, Integral University, Lucknow-226026, India https://orcid.org/0009-0008-0472-3536
  • ABDUL HAFEEZ Faculty of Pharmacy, Integral University, Lucknow-226026, India https://orcid.org/0000-0002-6752-2773
  • SHOM PRAKASH KUSHWAHA Faculty of Pharmacy, Integral University, Lucknow-226026, India
  • ARCHITA KAPOOR Faculty of Pharmacy, Integral University, Lucknow-226026, India

DOI:

https://doi.org/10.22159/ijap.2025v17i4.53890

Keywords:

Simvastatin, Nanostructured lipid carriers, Box-behnken design, Anticancer activity, in vitro drug release, A549 cell line

Abstract

Objective: Repurposed Simvastatin (SMV) is being investigated for the treatment of lung malignancies. However, its inadequate solubility in water and formulation constraints are the potential challenges for its use against lung cancer. This study aimed at synthesis of SMV-loaded Nanostructured Lipid Carriers (SMV-NLC) for lung cancer management.

Methods: Emulsification and probe sonication approach was chosen for the formulation of NLCs. A three-factor, three-level Box-Behnken design was utilized for the development of SMV-NLC formulation. The independent variables selected were total lipid concentration (%w/w), solid lipid: liquid lipid ratio, and surfactant concentration (%w/w). Screening of components was performed based on SMV solubility and SMV-excipient compatibility studies.

Results: Optimized SMV-NLC showed a particle size of 209.8±1.8 nm, low polydispersity index (0.319±0.14), negative zeta potential (-20.35 mV) and good entrapment efficiency (73.51±4.22%). Transmission electron microscopy examination revealed spherical shape of NLC with validation of nanometric size. Fourier Transform Infrared analysis revealed the entrapment of the SMV within the lipid matrix of NLC. SMV release of 86.97±1.7% was obtained from NLC after 24 h with sustained release characteristics. In vitro cytotoxic activity against A549 cell lines (lung cancer) showed IC50of 11.34±0.12 and 30.26±0.14 µg/ml for SMV-NLC and SMV-suspension, respectively.

Conclusion: The developed SMV-NLC may be utilized as an effective platform for the management of lung cancer.

References

Thandra KC, Barsouk A, Saginala K, Aluru JS, Barsouk A. Epidemiology of lung cancer. Contemp Oncol (Pozn). 2021 Feb;25(1):45-52. doi: 10.5114/wo.2021.103829, PMID 33911981.

Leiter A, Veluswamy RR, Wisnivesky JP. The global burden of lung cancer: current status and future trends. Nat Rev Clin Oncol. 2023 Sep;20(9):624-39. doi: 10.1038/s41571-023-00798-3, PMID 37479810.

Lahiri A, Maji A, Potdar PD, Singh N, Parikh P, Bisht B. Lung cancer immunotherapy: progress pitfalls and promises. Mol Cancer. 2023 Feb;22(1):40. doi: 10.1186/s12943-023-01740-y, PMID 36810079.

Howlader N, Forjaz G, Mooradian MJ, Meza R, Kong CY, Cronin KA. The effect of advances in lung cancer treatment on population mortality. N Engl J Med. 2020 Aug;383(7):640-9. doi: 10.1056/NEJMoa1916623, PMID 32786189.

Nooreldeen R, Bach H. Current and future development in lung cancer diagnosis. Int J Mol Sci. 2021 Aug;22(16):8661. doi: 10.3390/ijms22168661, PMID 34445366.

Vestergaard HH, Christensen MR, Lassen UN. A systematic review of targeted agents for non-small cell lung cancer. Acta Oncol. 2018 Feb;57(2):176-86. doi: 10.1080/0284186X.2017.1404634, PMID 29172833.

Tang L, Li J, Zhao Q, Pan T, Zhong H, Wang W. Advanced and innovative nano-systems for anticancer targeted drug delivery. Pharmaceutics. 2021 Jul;13(8):1151. doi: 10.3390/pharmaceutics13081151, PMID 34452113.

Din FU, Aman W, Ullah I, Qureshi OS, Mustapha O, Shafique S. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine. 2017 Oct 5;12:7291-309. doi: 10.2147/IJN.S146315, PMID 29042776.

Edis Z, Wang J, Waqas MK, Ijaz M, Ijaz M. Nanocarriers mediated drug delivery systems for anticancer agents: an overview and perspectives. Int J Nanomedicine. 2021 Feb 17;16:1313-30. doi: 10.2147/IJN.S289443, PMID 33628022.

Sarkar S, Osama K, Jamal QM, Kamal MA, Sayeed U, Khan MK. Advances and implications in nanotechnology for lung cancer management. Curr Drug Metab. 2017 Jan;18(1):30-8. doi: 10.2174/1389200218666161114142646, PMID 27842486.

Alshawwa SZ, Kassem AA, Farid RM, Mostafa SK, Labib GS. Nanocarrier drug delivery systems: characterization limitations future perspectives and implementation of artificial intelligence. Pharmaceutics. 2022 Apr;14(4):883. doi: 10.3390/pharmaceutics14040883, PMID 35456717.

Singh N, Kushwaha P, Gupta A, Ved A, Swarup S. Development and evaluation of sesamol loaded self-nanoemulsifying drug delivery system for breast cancer. Pharmacogn Mag. 2022 Mar;18(77):94-102. doi: 10.4103/pm.pm_248_21.

Ansari MT, Ramlan TA, Jamaluddin NN, Zamri N, Salfi R, Khan A. Lipid-based nanocarriers for cancer and tumor treatment. Curr Pharm Des. 2020 Sep;26(34):4272-6. doi: 10.2174/1381612826666200720235752, PMID 32693760.

Fatima A, Naseem N, Haider MF, Rahman MA, Mall J, Saifi MS. A comprehensive review on nanocarriers as a targeted delivery system for the treatment of breast cancer. Intell Pharm. 2024;2(3):415-26. doi: 10.1016/j.ipha.2024.04.001.

S Pragati, S Kuldeep, S Ashok, M Satheesh. Solid lipid nanoparticles: a promising drug delivery technology. PCI- Approved-IJPSN. 2009;2(2):509-16. doi: 10.37285/ijpsn.2009.2.2.3.

Kim SJ, Puranik N, Yadav D, Jin JO, Lee PC. Lipid nanocarrier based drug delivery systems: therapeutic advances in the treatment of lung cancer. Int J Nanomedicine. 2023 Dec;18:2659-76. doi: 10.2147/IJN.S406415, PMID 37223276.

Kim CH, Lee SG, Kang MJ, Lee S, Choi YW. Surface modification of lipid-based nanocarriers for cancer cell-specific drug targeting. J Pharm Investig. 2017 May;47(3):203-27. doi: 10.1007/s40005-017-0329-5.

Viegas C, Patricio AB, Prata JM, Nadhman A, Chintamaneni PK, Fonte P. Solid lipid nanoparticles vs. nanostructured lipid carriers: a comparative review. Pharmaceutics. 2023 May;15(6):1593. doi: 10.3390/pharmaceutics15061593, PMID 37376042.

Sakellari GI, Zafeiri I, Batchelor H, Spyropoulos F. Formulation design production and characterisation of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for the encapsulation of a model hydrophobic active. Food Hydrocoll Health. 2021 Aug 31;1:18. doi: 10.1016/j.fhfh.2021.100024, PMID 35028634.

Shaif M, Kushwaha P, Usmani S, Pandey S. Exploring the potential of nanocarriers in antipsoriatic therapeutics. J Dermatolog Treat. 2022 Oct;33(7):2919-30. doi: 10.1080/09546634.2022.2089616, PMID 35729857.

Otarola JJ, Alejandra Luna M, Mariano Correa N, Molina PG. Noscapine-loaded nanostructured lipid carriers as a potential topical delivery to bovine mastitis treatment. Chemistry Select. 2020 May;5(20):5922-7. doi: 10.1002/slct.202001138.

Selvamuthukumar S, Velmurugan R. Nanostructured lipid carriers: a potential drug carrier for cancer chemotherapy. Lipids Health Dis. 2012 Dec;11:159. doi: 10.1186/1476-511X-11-159, PMID 23167765.

Borawake PD, Arumugam KA, Shinde JV. Formulation of solid dispersions for enhancement of solubility and dissolution rate of simvastatin. Int J Pharm Pharm Sci. 2021 Jul;13(7):94-100. doi: 10.22159/ijpps.2021v13i7.41205.

Boccuzzi SJ, Bocanegra TS, Walker JF, Shapiro DR, Keegan ME. Long-term safety and efficacy profile of simvastatin. Am J Cardiol. 1991 Nov;68(11):1127-31. doi: 10.1016/0002-9149(91)90182-K, PMID 1951069.

Pedersen TR, Tobert JA. Simvastatin: a review. Expert Opin Pharmacother. 2004 Dec;5(12):2583-96. doi: 10.1517/14656566.5.12.2583, PMID 15571475.

Duarte JA, De Barros AL, Leite EA. The potential use of simvastatin for cancer treatment: a review. Biomed Pharmacother. 2021 Sep;141:111858. doi: 10.1016/j.biopha.2021.111858, PMID 34323700.

Turabi KS, Deshmukh A, Paul S, Swami D, Siddiqui S, Kumar U. Drug repurposing an emerging strategy in cancer therapeutics. Naunyn Schmiedebergs Arch Pharmacol. 2022 Oct;395(10):1139-58. doi: 10.1007/s00210-022-02263-x, PMID 35695911.

Tripathi S, Gupta E, Galande S. Statins as anti‐tumor agents: a paradigm for repurposed drugs. Cancer Rep (Hoboken). 2024 May;7(5):e2078. doi: 10.1002/cnr2.2078, PMID 38711272.

Climent E, Benaiges D, Pedro Botet J. Hydrophilic or lipophilic statins? Front Cardiovasc Med. 2021 May;8:687585. doi: 10.3389/fcvm.2021.687585, PMID 34095267.

Brito Raj S, Chandrasekhar KB, Reddy KB. Formulation in vitro and in vivo pharmacokinetic evaluation of simvastatin nanostructured lipid carrier loaded transdermal drug delivery system. Futur J Pharm Sci. 2019 Dec;5(1):1-14. doi: 10.1186/s43094-019-0008-7.

Devi A, Kumar M, Kumar M, Mandal UK. Review on disease dose destination and delivery aspects of simvastatin. Drug Deliv Lett. 2020 Dec;10(4):278-87. doi: 10.2174/2210303110999200730215812.

Ghasemiyeh P, Mohammadi Samani S. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: applications advantages and disadvantages. Res Pharm Sci. 2018 Aug;13(4):288-303. doi: 10.4103/1735-5362.235156, PMID 30065762.

Sharma A, Baldi A. Nanostructured lipid carriers: a review. J Dev Drugs. 2018 Aug;7(2):1-15. doi: 10.4172/2329-6631.1000191.

Yousry C, Goyal M, Gupta V. Excipients for novel inhaled dosage forms: an overview. AAPS PharmSciTech. 2024 Feb;25(2):36. doi: 10.1208/s12249-024-02741-w, PMID 38356031.

Bandgar SA, Jadhav NR. Validated UV spectrophotometric method for estimation of simvastatin in bulk and pharmaceutical formulation. Res J Pharm Technol. 2019 Feb;12(12):5745-8. doi: 10.5958/0974-360X.2019.00994.6.

Negi LM, Jaggi M, Talegaonkar S. Development of protocol for screening the formulation components and the assessment of common quality problems of nano-structured lipid carriers. Int J Pharm. 2014 Jan;461(1-2):403-10. doi: 10.1016/j.ijpharm.2013.12.006, PMID 24345574.

Kovacevic AB, Muller RH, Keck CM. Formulation development of lipid nanoparticles: improved lipid screening and development of tacrolimus loaded nanostructured lipid carriers (NLC). Int J Pharm. 2020 Feb 25;576:118918. doi: 10.1016/j.ijpharm.2019.118918, PMID 31870954.

Saatkamp RH, Dos Santos BM, Sanches MP, Conte J, Rauber GS, Caon T. Drug excipient compatibility studies in formulation development: a case study with benznidazole and monoglycerides. J Pharm Biomed Anal. 2023 Oct;235:115634. doi: 10.1016/j.jpba.2023.115634, PMID 37595356.

Bal T, Murthy PN. Studies of drug polymer interactions of simvastatin with various polymers. Int J Pharm Sci Res. 2012 Feb;3(2):561-3. doi: 10.13040/IJPSR.0975-8232.3(2).561-63.

Jaiswal P, Gidwani B, Vyas A. Nanostructured lipid carriers and their current application in targeted drug delivery. Artif Cells Nanomed Biotechnol. 2016 Jan;44(1):27-40. doi: 10.3109/21691401.2014.909822, PMID 24813223.

Gomaa E, Fathi HA, Eissa NG, Elsabahy M. Methods for preparation of nanostructured lipid carriers. Methods. 2022 Mar;199:3-8. doi: 10.1016/j.ymeth.2021.05.003, PMID 33992771.

Zhang W, Li X, Ye T, Chen F, Sun X, Kong J. Design characterization and in vitro cellular inhibition and uptake of optimized genistein loaded NLC for the prevention of posterior capsular opacification using response surface methodology. Int J Pharm. 2013 Sep;454(1):354-66. doi: 10.1016/j.ijpharm.2013.07.032, PMID 23876384.

Jafar GA, Salsabilla SY, Santoso RA. Development and characterization of compritol ato® base in nanostructured lipid carriers formulation with the probe sonication method. Int J App Pharm. 2022 Sep;14(4):64-6. doi: 10.22159/ijap.2022.v14s4.PP04.

Javed S, Mangla B, Almoshari Y, Sultan MH, Ahsan W. Nanostructured lipid carrier system: a compendium of their formulation development approaches optimization strategies by quality by design and recent applications in drug delivery. Nanotechnol Rev. 2022 Apr;11(1):1744-77. doi: 10.1515/ntrev-2022-0109.

Kaur P, Garg T, Rath G, Murthy RS, Goyal AK. Development optimization and evaluation of surfactant-based pulmonary nanolipid carrier system of paclitaxel for the management of drug resistance lung cancer using box-behnken design. Drug Deliv. 2016 Jul;23(6):1912-25. doi: 10.3109/10717544.2014.993486, PMID 25544602.

Agrawal M, Saraf S, Pradhan M, Patel RJ, Singhvi G, Ajazuddin. Design and optimization of curcumin-loaded nano lipid carrier system using box-behnken design. Biomed Pharmacother. 2021 Sep;141:111919. doi: 10.1016/j.biopha.2021.111919, PMID 34328108.

Sherif AY, Harisa GI, Shahba AA, Alanazi FK, Qamar W. Optimization of gefitinib loaded nanostructured lipid carrier as a biomedical tool in the treatment of metastatic lung cancer. Molecules. 2023 Jan;28(1):448. doi: 10.3390/molecules28010448, PMID 36615641.

Alhalmi A, Amin S, Beg S, Al Salahi R, Mir SR, Kohli K. Formulation and optimization of naringin loaded nanostructured lipid carriers using box-behnken based design: in vitro and ex vivo evaluation. J Drug Deliv Sci Technol. 2022 Aug;74:103590. doi: 10.1016/j.jddst.2022.103590.

Soni K, Rizwanullah MD, Kohli K. Development and optimization of sulforaphane loaded nanostructured lipid carriers by the box-behnken design for improved oral efficacy against cancer: in vitro, ex vivo and in vivo assessments. Artif Cells Nanomed Biotechnol. 2018 Oct;46 Suppl 1:15-31. doi: 10.1080/21691401.2017.1408124, PMID 29183147.

Magalhaes J, L Chaves L, C Vieira A, G Santos S, Pinheiro M, Reis S. Optimization of rifapentine loaded lipid nanoparticles using a quality by design strategy. Pharmaceutics. 2020 Jan;12(1):75. doi: 10.3390/pharmaceutics12010075, PMID 31963468.

Rahamathulla M, HG, Veerapu G, Hani U, Alhamhoom Y, Alqahtani A. Characterization optimization in vitro and in vivo evaluation of simvastatin proliposomes as a drug delivery. AAPS PharmSciTech. 2020;21(4):129. doi: 10.1208/s12249-020-01666-4, PMID 32405982.

Mainuddin KA, Kumar A, Ratnesh RK, Singh J, Dumoga S, Sharma N. Physical characterization and bioavailability assessment of 5-fluorouracil based nanostructured lipid carrier (NLC): in vitro drug release hemolysis and permeability modulation. Med Oncol. 2024 Mar;41(5):95. doi: 10.1007/s12032-024-02319-3, PMID 38526657.

Jahan S, Aqil M, Ahad A, Imam SS, Waheed A, Qadir A. Nanostructured lipid carrier for transdermal gliclazide delivery: development and optimization by box-behnken design. Inorg Nano Met Chem. 2024;54(5):474-87. doi: 10.1080/24701556.2021.2025097.

Midekessa G, Godakumara K, Ord J, Viil J, Lattekivi F, Dissanayake K. Zeta potential of extracellular vesicles: toward understanding the attributes that determine colloidal stability. ACS Omega. 2020 Jun;5(27):16701-10. doi: 10.1021/acsomega.0c01582, PMID 32685837.

Guimaraes D, Cavaco Paulo A, Nogueira E. Design of liposomes as drug delivery system for therapeutic applications. Int J Pharm. 2021 May;601:120571. doi: 10.1016/j.ijpharm.2021.120571, PMID 33812967.

Rawal S, Bora V, Patel B, Patel M. Surface-engineered nanostructured lipid carrier systems for synergistic combination oncotherapy of non-small cell lung cancer. Drug Deliv Transl Res. 2021 Oct;11(5):2030-51. doi: 10.1007/s13346-020-00866-6, PMID 33215254.

Orgul D, Eroglu H, Tiryaki M, Pınarlı FA, Hekimoglu S. In vivo evaluation of tissue scaffolds containing simvastatin-loaded nanostructured lipid carriers and mesenchymal stem cells in diabetic wound healing. J Drug Deliv Sci Technol. 2021 Feb;61:102140. doi: 10.1016/j.jddst.2020.102140.

Huguet Casquero A, Moreno Sastre M, Lopez Mendez TB, Gainza E, Pedraz JL. Encapsulation of oleuropein in nanostructured lipid carriers: biocompatibility and antioxidant efficacy in lung epithelial cells. Pharmaceutics. 2020 May;12(5):429. doi: 10.3390/pharmaceutics12050429, PMID 32384817.

Wu IY, Bala S, Skalko Basnet N, Di Cagno MP. Interpreting non-linear drug diffusion data: utilizing korsmeyer peppas model to study drug release from liposomes. Eur J Pharm Sci. 2019 Oct;138:105026. doi: 10.1016/j.ejps.2019.105026, PMID 31374254.

Zhang Y, Huo M, Zhou J, Zou A, Li W, Yao C. DDSolver: an add-in program for modeling and comparison of drug dissolution profiles. AAPS J. 2010 Sep;12(3):263-71. doi: 10.1208/s12248-010-9185-1, PMID 20373062.

Van Meerloo J, Kaspers GJ, Cloos J. Cell sensitivity assays: the MTT assay. Methods Mol Biol. 2011 Mar;731:237-45. doi: 10.1007/978-1-61779-080-5_20, PMID 21516412.

Tihauan BM, Berca LM, Adascalului M, Sanmartin AM, Nica S, Cimponeriu D. Experimental in vitro cytotoxicity evaluation of plant bioactive compounds and phytoagents. Rom Biotechnol Lett. 2020 Feb;25(4):1832-42. doi: 10.25083/rbl/25.4/1832.1842.

Shete H, Patravale V. Long chain lipid-based tamoxifen NLC. Part I: preformulation studies formulation development and physicochemical characterization. Int J Pharm. 2013 Sep;454(1):573-83. doi: 10.1016/j.ijpharm.2013.03.034, PMID 23535345.

Doktorovova S, Shegokar R, Souto EB. Role of excipients in formulation development and biocompatibility of lipid nanoparticles (SLNs/NLCs). In: Nanostructures for novel therapy. Elsevier; 2017. p. 811-43. doi: 10.1016/B978-0-323-46142-9.00030-X.

Munir A, Ahmad M, Malik MZ, Minhas MU. Analysis of simvastatin using a simple and fast high-performance liquid chromatography ultraviolet method: development validation and application in solubility studies. Trop J Pharm Res. 2014 Feb;13(1):135-9. doi: 10.4314/tjpr.v13i1.19.

Khan FM, Ahmad M, Idrees HA. Simvastatin nicotinamide co-crystals: formation pharmaceutical characterization and in vivo profile. Drug Des Dev Ther. 2020 Oct 19;14:4303-13. doi: 10.2147/DDDT.S270742, PMID 33116417.

Shah VA, Patel JK. Optmization and characterization of doxorubicin-loaded solid lipid nanosuspension for nose to brain delivery using design expert software. Int J Pharm Pharm Sci. 2021 Feb;13(5):45-57. doi: 10.22159/ijpps.2021v13i5.41137.

Madupoju B, Areti A, Malothu N, Chamakuri K. Optimization characterization and in vivo hepatoprotective evaluation of nac-loaded nanoparticles using QbdAndImagej® software. Int J App Pharm. 2025 Jan;17(2):339-51. doi: 10.22159/IJAP.2025V17I2.52384.

Choi KO, Choe J, Suh S, Ko S. Positively charged nanostructured lipid carriers and their effect on the dissolution of poorly soluble drugs. Molecules. 2016 May;21(5):672. doi: 10.3390/molecules21050672, PMID 27213324.

Garbuzenko OB, Mainelis G, Taratula O, Minko T. Inhalation treatment of lung cancer: the influence of composition size and shape of nanocarriers on their lung accumulation and retention. Cancer Biol Med. 2014 Mar;11(1):44-55. doi: 10.7497/j.issn.2095-3941.2014.01.004, PMID 24738038.

Khan I, Hussein S, Houacine C, Khan Sadozai SK, Islam Y, Bnyan R. Fabrication characterization and optimization of nanostructured lipid carrier formulations using beclomethasone dipropionate for pulmonary drug delivery via medical nebulizers. Int J Pharm. 2021 Apr;598:120376. doi: 10.1016/j.ijpharm.2021.120376, PMID 33617949.

Zeng XM, Martin GP, Marriott C. The controlled delivery of drugs to the lung. International Journal of Pharmaceutics. 1995 Oct;124(2):149-64. doi: 10.1016/0378-5173(95)00104-Q.

Chishti N, Jagwani S, Dhamecha D, Jalalpure S, Dehghan MH. Preparation optimization and in vivo evaluation of nanoparticle based formulation for pulmonary delivery of anticancer drug. Medicina (Kaunas). 2019 Jun;55(6):294. doi: 10.3390/medicina55060294, PMID 31226865.

Baba H, Bunu SJ. Spectroscopic and molecular docking analysis of phytoconstituent isolated from solenostemon monostachyus as potential cyclooxygenase enzymes inhibitor. Int J Chem Res. 2025 Jan;9(1):1-6. doi: 10.22159/ijcr.2025v9i1.241.

Brito Raj S, Chandrasekhar KB, Reddy KB. Formulation in vitro and in vivo pharmacokinetic evaluation of simvastatin nanostructured lipid carrier loaded transdermal drug delivery system. Futur J Pharm Sci. 2019 Dec;5(1):1-14. doi: 10.1186/s43094-019-0008-7.

Brito Raj S, Chandrasekhar KB, Reddy KB. Formulation in vitro and in vivo pharmacokinetic evaluation of simvastatin nanostructured lipid carrier loaded transdermal drug delivery system. Futur J Pharm Sci. 2019 Dec;5(1):1-14. doi: 10.1186/s43094-019-0008-7.

Kumbhar PS, Manjappa AS, Shah RR, Nadaf SJ, Disouza JI. Nanostructured lipid carrier based gel for repurposing simvastatin in localized treatment of breast cancer: formulation design development and in vitro and in vivo characterization. AAPS PharmSciTech. 2023 Apr;24(5):106. doi: 10.1208/s12249-023-02565-0, PMID 37085596.

Alam M, Ahmed S, Moon G, Aqil M, Sultana Y. Chemical engineering of a lipid nano-scaffold for the solubility enhancement of an antihyperlipidaemic drug simvastatin; preparation optimization physicochemical characterization and pharmacodynamic study. Artif Cells Nanomed Biotechnol. 2017;46(8):1-12. doi: 10.1080/21691401.2017.1396223.

Garcia Pinel B, Porras Alcala C, Ortega Rodriguez A, Sarabia F, Prados J, Melguizo C. Lipid-based nanoparticles: application and recent advances in cancer treatment. Nanomaterials (Basel). 2019 Apr;9(4):638. doi: 10.3390/nano9040638, PMID 31010180.

Patel S, Shah J, Bhairy S, Hirlekar R. Development of curcumin loaded nanostructured lipid carriers: preparation characterization and in vitro evaluation of anti-cancer activity against a-549 human lung cancer cell line. JCTI. 2021 Dec;11(4):66-88. doi: 10.9734/JCTI/2021/v11i430162.

Patlolla RR, Chougule M, Patel AR, Jackson T, Tata PN, Singh M. Formulation characterization and pulmonary deposition of nebulized celecoxib encapsulated nanostructured lipid carriers. J Control Release. 2010 Jun;144(2):233-41. doi: 10.1016/j.jconrel.2010.02.006, PMID 20153385.

Gupta B, Sharma R. Formulation and in vitro characterization of the solid lipid nanoparticles of naftopidil for enhancing oral bioavailability. Asian J Pharm Clin Res. 2023 Jan;16(2):77-82. doi: 10.22159/ajpcr.2023.v16i2.46465.

Mehnert W, Mader K. Solid lipid nanoparticles: production characterization and applications. Adv Drug Deliv Rev. 2001;47(2-3):165-96. doi: 10.1016/s0169-409x(01)00105-3, PMID 11311991.

Patil YP, Rathi SR. Nanostructured lipid carriers (NLCs) as an emerging platform for targeted drug delivery. J Pharm Sci. 2016;105(1):146-57. doi: 10.1016/j.jsps.2021.07.015.

Stine JE, Guo H, Sheng X, Han X, Schointuch MN, Gilliam TP. The HMG-CoA reductase inhibitor simvastatin exhibits anti-metastatic and anti-tumorigenic effects in ovarian cancer. Oncotarget. 2016;7(1):946-60. doi: 10.18632/oncotarget.5834, PMID 26503475.

Shah JI, Patel SH, Bhairy SR, Hirlekar RA. Formulation optimization characterization and in vitro anti-cancer activity of curcumin loaded nanostructured lipid carriers. Int J Curr Pharm Sci. 2022 Jan;14(1):31-43. doi: 10.22159/ijcpr.2022v14i1.44110.

Box GE, Behnken DW. Some new three-level designs for the study of quantitative variables. Technometrics. 1960 Nov;2(4):455-75. doi: 10.1080/00401706.1960.10489912.

Azarmi S, Tao X, Chen H, Wang Z, Finlay WH, Lobenberg R. Formulation and cytotoxicity of doxorubicin nanoparticles carried by dry powder aerosol particles. Int J Pharm. 2006 Aug 17;319(1-2):155-61. doi: 10.1016/j.ijpharm.2006.03.052, PMID 16713150.

Ajdary M, Moosavi MA, Rahmati M, Falahati M, Mahboubi M, Mandegary A. Health concerns of various nanoparticles: a review of their in vitro and in vivo toxicity. Nanomaterials (Basel). 2018 Aug 21;8(9):634. doi: 10.3390/nano8090634, PMID 30134524.

Published

07-07-2025

How to Cite

ARA, N., HAFEEZ, A., KUSHWAHA, S. P., & KAPOOR, A. (2025). REPURPOSED SIMVASTATIN-LOADED NANOSTRUCTURED LIPID CARRIERS: OPTIMIZATION, CHARACTERIZATION AND EVALUATION AGAINST LUNG CANCER. International Journal of Applied Pharmaceutics, 17(4), 497–510. https://doi.org/10.22159/ijap.2025v17i4.53890

Issue

Section

Original Article(s)

Similar Articles

<< < 134 135 136 137 > >> 

You may also start an advanced similarity search for this article.