HPTLC QUANTIFICATION OF 4, 4’-METHYLENE BIS (2,6-DI-TERT-BUTYL PHENOL) IN FLAX MICROGREEN EXTRACTS AND ITS ANTICANCER POTENTIAL AGAINST PROSTATE CANCER

Authors

  • MUDASSIR LAWAL Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India. Department of Biochemistry and Molecular Biology, Federal University Dutsin-Ma, Katsina-Nigeria https://orcid.org/0000-0002-5899-084X
  • NEETA RAJ SHARMA Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
  • AWADHESH KUMAR VERMA Department of Bioinformatics, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India https://orcid.org/0000-0002-1497-6210
  • IBRAHIM HAMZA KANKIA Department of Biochemistry, Faculty of Natural and Applied Sciences, Umaru Musa Yar’adua University, Katsina-Nigeria https://orcid.org/0000-0001-7474-2347
  • VETRISELVAN SUBRAMANIYAN Department of Medical Sciences, School of Medical and Life Sciences Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500 Selangor Darul Ehsan Malaysia
  • GURMEEN RAKHRA Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India

DOI:

https://doi.org/10.22159/ijap.2025v17i4.53939

Keywords:

ADMET, Antioxidants, Anti-prostate cancer, Flax microgreens, HPTLC, Molecular docking

Abstract

Objective: This research aimed to evaluate the antioxidant activity of methanolic extract of flax microgreens (MEFM), to identify and quantify 4,4’-Methylenebis (2,6-Di-tert-butylphenol) [4,4’-M(2,6-DTBP)] using GC-MS and HPTLC, and to assess its inhibitory activity against prostate cancer.

Methods: In vitro antioxidant activity was determined by 2,2-Diphenyl-2-picryl-hydrazyl (DPPH) scavenging activity. 4,4’-M(2,6-DTBP) was identified and quantified by Gas Chromatography-Mass Spectrometry (GC-MS) and High Performance Thin Layer Chromatography (HPTLC) analysis. The docking simulation had been carried out in PyRx 0.8 software. Toxicity studies were performed using ADMETlab 3.0 and ProTox 3.0 prediction tools, respectively. The cytotoxic effects and induction of apoptotic cell death by MEFM and 4,4’-M(2,6-DTBP) on PC-3 cell lines were assessed by MTT(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and Annexin V apoptosis assays, respectively.

Results: The HPTLC fingerprint confirmed the presence of 4,4’-M(2,6-DTBP) in the MEFM and indicated its existence in high content. 4,4’-M(2,6-DTBP) exhibited the highest binding energies (−17.1 kcal/mol) and favorable interactions against prostate cancer target proteins. The Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) prediction studies revealed that this 4,4’-M(2,6-DTBP) compound had low toxicity and distinct metabolic properties. The MEFM showed strong growth inhibition against PC-3 (IC50: 377.5 μg/ml), whereas 4,4’-M(2,6-DTBP) exhibited weak growth inhibition (IC50: 2324.78 μg/ml). The Annexin V assay revealed that the MEFM and 4,4’-M(2,6-DTBP) significantly increased total apoptosis to 41.03% and 22.86%, respectively. In early apoptotic cells, the MEFM and 4,4’-M(2,6-DTBP) caused 40.9% and 19.5% cell death, while in late apoptotic cells, cell death was found to be 0.13% and 3.36%, respectively.

Conclusion: The extract and its bioactive compound demonstrate anticancer potential, but in vivo studies are required to further evaluate efficacy, metabolism, and toxicity in a living system.

References

Bergengren O, Pekala KR, Matsoukas K, Fainberg J, Mungovan SF, Bratt O. 2022 Update on prostate cancer epidemiology and risk factors a systematic review. Eur Urol. 2023 Aug 1;84(2):191-206. doi: 10.1016/j.eururo.2023.04.021, PMID 37202314.

Siegel RL, Giaquinto AN, Jemal A. Cancer statistics 2024. CA Cancer J Clin. 2024;74(1):12-49. doi: 10.3322/caac.21820, PMID 38230766.

Nweze C, Lay T, Muhammad A, Ubhenin A. Hypoglycemic hepatoprotective and hypolipidemic effects of pleurotus ostreatus in alloxan-induced hyperglycemic rats. TJNPR. 2017;1(4):163-7. doi: 10.26538/tjnpr/v1i4.5.

Stavropoulos P, Mavroeidis A, Papadopoulos G, Roussis I, Bilalis D, Kakabouki I. On the path towards a greener EU: a mini-review on flax (Linum usitatissimum L.) as a case study. Plants (Basel). 2023 Mar 1;12(5):1102. doi: 10.3390/plants12051102, PMID 36903961.

Nowak W, Jeziorek M. The role of flaxseed in improving human health. Healthcare (Basel). 2023 Jan 30;11(3):395. doi: 10.3390/healthcare11030395, PMID 36766971.

Imran S, Munir S, Altemimi AB, Fatima I, Rabail R, Batool I. Therapeutic implications of flaxseed peptides and bioactive components against various diseases. J Funct Foods. 2024 Aug 1;119:106324. doi: 10.1016/j.jff.2024.106324.

Mueed A, Shibli S, Jahangir M, Jabbar S, Deng Z. A comprehensive review of flaxseed (Linum usitatissimum L.): health affecting compounds mechanism of toxicity detoxification anticancer and potential risk. Crit Rev Food Sci Nutr. 2023 Dec 21;63(32):11081-104. doi: 10.1080/10408398.2022.2092718, PMID 35833457.

Krishnamoorthi R, Ganapathy AA, Hari Priya VM, Kumaran A. Future aspects of plant-derived bioactive metabolites as therapeutics to combat benign prostatic hyperplasia. J Ethnopharmacol. 2024 Aug 10;330:118207. doi: 10.1016/j.jep.2024.118207, PMID 38636573.

Rana A, Samtiya M, Dhewa T, Mishra V, Aluko RE. Health benefits of polyphenols: a concise review. J Food Biochem. 2022 Oct;46(10):e14264. doi: 10.1111/jfbc.14264, PMID 35694805.

Gasmi A, Mujawdiya PK, Noor S, Lysiuk R, Darmohray R, Piscopo S. Polyphenols in metabolic diseases. Molecules. 2022 Sep 23;27(19):6280. doi: 10.3390/molecules27196280, PMID 36234817.

Rudrapal M, Khairnar SJ, Khan J, Dukhyil AB, Ansari MA, Alomary MN. Dietary polyphenols and their role in oxidative stress-induced human diseases: insights into protective effects antioxidant potentials and mechanism(s) of action. Front Pharmacol. 2022 Feb 14;13:806470. doi: 10.3389/fphar.2022.806470, PMID 35237163.

Sharma A, Shahzad B, Rehman A, Bhardwaj R, Landi M, Zheng B. Response of the phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules. 2019 Jul 4;24(13):2452. doi: 10.3390/molecules24132452, PMID 31277395.

Samec D, Karalija E, Sola I, Vujcic Bok V, Salopek Sondi B. The role of polyphenols in abiotic stress response: the influence of molecular structure. Plants (Basel). 2021 Jan 8;10(1):118. doi: 10.3390/plants10010118, PMID 33430128.

Boyle TJ, Steele LA, Yonemoto DT. Synthesis and characterization of 4, 4′-methylenebis (2,6-di- tert -butylphenol) derivatives of a series of metal alkoxides and alkyls. J Coord Chem. 2012 Feb 10;65(3):487-505. doi: 10.1080/00958972.2012.654785.

Aravinth A, Perumal P, Rajaram R, Dhanasundaram S, Narayanan M, Maharaja S. Isolation and characterization of 2, 4-di-tert-butyl phenol from the brown seaweed dictyota ciliolata and assessment of its antioxidant and anticancer characteristics. Biocatal Agric Biotechnol. 2023 Nov 1;54:102933. doi: 10.1016/j.bcab.2023.102933.

Dalawai D, Murthy HN, Dewir YH, Sebastian JK, Nag A. Phytochemical composition bioactive compounds and antioxidant properties of different parts of andrographis macrobotrys nees. Life (Basel). 2023 May 11;13(5):1166. doi: 10.3390/life13051166, PMID 37240810.

Vargas Madriz AF, Kuri Garcia A, Vargas Madriz H, Chavez Servin JL, Ferriz Martinez RA, Hernandez Sandoval LG. Phenolic profile and antioxidant capacity of pithecellobium dulce (Roxb) Benth: a review. J Food Sci Technol. 2020;57(12):4316-36. doi: 10.1007/s13197-020-04453-y, PMID 33087946.

Lawal M, Sharma NR, Verma AK, Rakhra G. Molecular modeling and identification of flax microgreens lignans as novel prostate cancer target inhibitors. J App Biol Biotech. 2025;13(2):242-57. doi: 10.7324/JABB.2025.205522.

Hussen EM, Endalew SA. In vitro antioxidant and free radical scavenging activities of polar leaf extracts of Vernonia amygdalina. BMC Complement Med Ther. 2023 May 4;23(1):146. doi: 10.1186/s12906-023-03923-y, PMID 37143058.

Rajasree RS, Ittiyavirah SP, Naseef PP, Kuruniyan MS, Anisree GS, Elayadeth Meethal M. An evaluation of the antioxidant activity of a methanolic extract of Cucumis melo L. fruit (F1 hybrid). Separations. 2021 Aug 18;8(8):123. doi: 10.3390/separations8080123.

Ogoubi A, Evenamede KS, Kpegba K, Simalou O, Agbonon A. Phytochemical study and antioxidant antibacterial and antidiabetic activities of Flacourtia indica leaves extracts from the Togolese flora. Int J Pharm Pharm Sci. 2023 Aug 1;15(8):50-6. doi: 10.22159/ijpps.2023v15i8.48035.

Shaikh S, Badruddeen MIK, Irfan Khan M, Ahmed A. In vitro and in vivo screening of anti-inflammatory activity of methanolic and aqueous extracts of Anogeissus latifolia leaves. Int J Pharm Pharm Sci. 2022;14(11):65-72. doi: 10.22159/ijpps.2022v14i11.45593.

Mallard WG, Linstrom PJ. Editors. NIST chemistry WebBook. In: NIST standard reference database. Gaithersburg (MD): National Institute of Standards and Technology; 2008. Available from: https://webbook.nist.gov. [Last accessed on 19 Mar 2025].

Muhammad II, Pandey DK. HPTLC quantification of quercetin from leaf extracts of C. occidentalis L. and its inhibitory activity against protease enzyme of P. falciparum. Vegetos. 2024 Jun 11;37(5):1804-16. doi: 10.1007/s42535-024-00934-z.

Muhammad II, Pandey DK. A validated HPTLC quantification of artemisinin from different extracts of Artemisia annua L. and its inhibitory activity against serine hydroxyl methyltransferase (SHMT). J App Biol Biotech. 2024;12(6):1-10. doi: 10.7324/JABB.2024.178566.

Adhikari T, Ray PB, Saha P. Comparative study of quercetin content in marketed seeds of Linum usitatissimum L. (Flax) Salvia hispanica L. (Chia) and Helianthus annuus L. (Sunflower) and their microgreens using HPTLC from West Bengal. Ind J Pharm Edu Res. 2025;59(1s):s221-8. doi: 10.5530/ijper.20255309.

Adhikari T, Saha P. Quantitative estimation of immunomodulatory flavonoid quercetin by HPTLC in different leafy vegetables available in West Bengal. Pharmacogn Res. 2022;14(4):423-8. doi: 10.5530/Pres.14.4.62.

Verma AK, Gulati P, Lakshmi GB, Solanki PR, Kumar A. Interaction studies of gut metabolite; trimethylene amine oxide with bovine serum albumin through spectroscopic DFT and molecular docking approach. Biorxiv. 2023 Apr 6;4. doi: 10.1101/2023.04.06.535846.

Zulfat M, Hakami MA, Hazazi A, Mahmood A, Khalid A, Alqurashi RS. Identification of novel NLRP3 inhibitors as therapeutic options for epilepsy by machine learning based virtual screening molecular docking and biomolecular simulation studies. Heliyon. 2024 Aug 15;10(15):e34410. doi: 10.1016/j.heliyon.2024.e34410, PMID 39170440.

Lawal M, Verma AK, Umar IA, Gadanya AM, Umar B, Yahaya N. Analysis of new potent antidiabetic molecules from phytochemicals of pistiastrateotes with Sglt1 and G6pc proteins of homo sapiens for treatment of diabetes mellitus. An in silico approach. Silico approach. IOSR JPBS. 2020;15:59-73. doi: 10.9790/3008-1504025973.

Gulati P, Verma A, Kumar A, Solanki P. Para cresyl sulfate and BSA conjugation for developing aptasensor: spectroscopic methods and molecular simulation. ECS J Solid State Sci Technol. 2023;12(7):073004. doi: 10.1149/2162-8777/ace286.

Ogoubi A, Evenamede KS, Kpegba K, Simalou O, Agbonon A. Phytochemical study and antioxidant antibacterial and antidiabetic activities of Flacourtia indica leaves extracts from the Togolese flora. Int J Pharm Pharm Sci. 2023 Aug;15(8):50-6. doi: 10.22159/ijpps.2023v15i8.48035.

Baba H, Bunu SJ. Spectroscopic and molecular docking analysis of phytoconstituent isolated from solenostemon monostachyus as potential cyclooxygenase enzymes inhibitor. Int J Chem Res. 2025 Jan 1;9(1):1-6. doi: 10.22159/ijcr.2025v9i1.241.

Aiswariya, BV S, Satya MS. Molecular docking and admet studies of benzotriazole derivatives tethered with isoniazid for antifungal activity. Int J Curr Pharm Sci. 2022;14(4):78-80. doi: 10.22159/ijcpr.2022v14i4.2004.

Spackman PR, Turner MJ, McKinnon JJ, Wolff SK, Grimwood DJ, Jayatilaka D. CrystalExplorer: a program for hirshfeld surface analysis visualization and quantitative analysis of molecular crystals. J Appl Crystallogr. 2021 Jun 1;54(3):1006-11. doi: 10.1107/S1600576721002910, PMID 34188619.

Kumar S, Mohan A, Sharma NR, Kumar A, Girdhar M, Malik T. Computational frontiers in aptamer based nanomedicine for precision therapeutics: a comprehensive review. ACS Omega. 2024 Jun 10;9(25):26838-62. doi: 10.1021/acsomega.4c02466, PMID 38947800.

Ortiz CL, Completo GC, Nacario RC, Nellas RB. Potential inhibitors of galactofuranosyl transferase 2 (GlfT2): molecular docking 3D-QSAR, and in silico ADMETox studies. Sci Rep. 2019 Nov 19;9(1):17096. doi: 10.1038/s41598-019-52764-8, PMID 31745103.

Jha V, Dhamapurkar V, Thakur K, Kaur N, Patel R, Devkar S. In silico prediction of potential inhibitors for the M2 protein of influenza a virus using molecular docking studies. Asian J Pharm Clin Res. 2022;15(8):100-8. doi: 10.22159/ajpcr.2022.v15i8.44608.

Kaur B, Rolta R, Salaria D, Kumar B, Fadare OA, DA Costa RA. An in silico investigation to explore anti-cancer potential of foeniculum vulgare mill. phytoconstituents for the management of human breast cancer. Molecules. 2022 Jun 24;27(13):4077. doi: 10.3390/molecules27134077, PMID 35807321.

Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983 Dec 16;65(1-2):55-63. doi: 10.1016/0022-1759(83)90303-4, PMID 6606682.

Avadhoot Shastry R, Karur N, Habbu P, Daniel Madagundi S, Sangangouda Patil B, Hanumanthrao Kulkarni V. Pharmacognostical evaluation and in vitro cytotoxic activity of alcoholic and aqueous extracts of corm of Amorphophallus paeoniifolius (Dennst). RGUHS J Pharm Sci. 2021;11(4). doi: 10.26463/rjps.11_4_6.

Elasbali AM, Al Soud WA, Al Oanzi ZH, Qanash H, Alharbi B, Binsaleh NK. Cytotoxic activity cell cycle inhibition and apoptosis inducing potential of athyrium hohenackerianum (Lady fern) with its phytochemical profiling. Evid Based Complement Alternat Med. 2022;2022(1):2055773. doi: 10.1155/2022/2055773, PMID 35692581.

Shalal OS, Irayyif SM. Evaluation of cytotoxicity and apoptotic effects of Simarouba glauca on the prostate cancer cell lines PC3. J Pak Med Assoc. IQ-24. 2023 Sep 1;73(9):S113-8. doi: 10.47391/JPMA.

Chera EI, Pop RM, Parvu M, Soritau O, Uifalean A, Catoi FA. Flaxseed ethanol extracts antitumor antioxidant and anti-inflammatory potential. Antioxidants (Basel). 2022 Apr 30;11(5):892. doi: 10.3390/antiox11050892, PMID 35624757.

Girish YR, Sharath Kumar KS, Prashantha K, Rangappa S, Sudhanva MS. Significance of antioxidants and methods to evaluate their potency. Mater Chem Horiz. 2023 May 1;2(2):93-112. doi: 10.22128/mch.2023.647.1037.

Alachaher FZ, Dali S, Dida N, Krouf D. Comparison of phytochemical and antioxidant properties of extracts from flaxseed (Linum usitatissimum) using different solvents. Int Food Res J. 2018 Feb 1;25(1):75-82.

Hanaa MH, Ismail HA, Mahmoud ME, Ibrahim HM. Antioxidant activity and phytochemical analysis of flaxseeds (Linumusitatisimum L.). Minia J Agric Res Dev. 2017 Nov;37(1):129-40.

Saah SA, Sakyi PO, Adu Poku D, Boadi NO, Djan G, Amponsah D. Docking and molecular dynamics identify leads against 5 alpha reductase 2 for benign prostate hyperplasia treatment. J Chem. 2023;2023(1):1-20. doi: 10.1155/2023/8880213.

Ito Y, Sadar MD. Enzalutamide and blocking androgen receptor in advanced prostate cancer: lessons learnt from the history of drug development of antiandrogens. Res Rep Urol. 2018 Feb;10:23-32. doi: 10.2147/RRU.S157116, PMID 29497605.

Rao CM, Yejella RP, Rehman RS, Basha SH. Molecular docking based screening of novel designed chalcone series of compounds for their anti-cancer activity targeting EGFR kinase domain. Bioinformation. 2015;11(7):322-9. doi: 10.6026/97320630011322, PMID 26339147.

Cheng J, Hao Y, Shi Q, Hou G, Wang Y, Wang Y. Discovery of novel Chinese medicine compounds targeting 3CL protease by virtual screening and molecular dynamics simulation. Molecules. 2023 Jan 17;28(3):937. doi: 10.3390/molecules28030937, PMID 36770604.

Laskowski RA, Swindells MB. LigPlot+: multiple ligand protein interaction diagrams for drug discovery. J Chem Inf Model. 2011 Sep 15;51(10):2778-86. doi: 10.1021/ci200227u, PMID 21919503.

Rosario Ferreira N, Baptista SJ, Barreto CA, Rodrigues FE, Silva TF, Ferreira SG. In silico end to end protein ligand interaction characterization pipeline: the case of SARS-CoV-2. ACS Synth Biol. 2021 Nov 4;10(11):3209-35. doi: 10.1021/acssynbio.1c00368, PMID 34736321.

Dhiani BA, Nurulita NA, Fitriyani F. Protein protein docking studies of estrogen receptor alpha and TRIM56 interaction for breast cancer drug screening. Indones J Cancer Chemoprevent. 2022 Jun 28;13(1):46-54. doi: 10.14499/indonesianjcanchemoprev13iss1pp46-54.

Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001;46(1-3):3-26. doi: 10.1016/s0169-409x(00)00129-0, PMID 11259830.

Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD. Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem. 2002 Jun 6;45(12):2615-23. doi: 10.1021/jm020017n, PMID 12036371.

Gilani B, Cassagnol M. Biochemistry, cytochrome P450. In: Treasure Island, (FL): StatPearls Publishing; 2023. StatPearls. PMID: 32491630.

Deodhar M, Al Rihani SB, Arwood MJ, Darakjian L, Dow P, Turgeon J. Mechanisms of CYP450 inhibition: understanding drug drug interactions due to mechanism based inhibition in clinical practice. Pharmaceutics. 2020;12(9):846. doi: 10.3390/pharmaceutics12090846, PMID 32899642.

Kumari R, Saini AK, Kumar A, Saini RV. Apoptosis induction in lung and prostate cancer cells through silver nanoparticles synthesized from Pinus roxburghii bioactive fraction. J Biol Inorg Chem. 2020 Feb;25(1):23-37. doi: 10.1007/s00775-019-01729-3, PMID 31641851.

Khan F, Pandey P, Ahmad V, Upadhyay TK. Moringa oleifera methanolic leaves extract induces apoptosis and G0/G1 cell cycle arrest via downregulation of hedgehog signaling pathway in human prostate PC-3 cancer cells. J Food Biochem. 2020 Aug;44(8):e13338. doi: 10.1111/jfbc.13338, PMID 32588472.

Huang H, LI P, YE X, Zhang F, Lin Q, WU K. Isoalantolactone increases the sensitivity of prostate cancer cells to cisplatin treatment by inducing oxidative stress. Front Cell Dev Biol. 2021;9:632779. doi: 10.3389/fcell.2021.632779, PMID 33959604.

Published

07-07-2025

How to Cite

LAWAL, M., SHARMA, N. R., VERMA, A. K., KANKIA, I. H., SUBRAMANIYAN, V., & RAKHRA, G. (2025). HPTLC QUANTIFICATION OF 4, 4’-METHYLENE BIS (2,6-DI-TERT-BUTYL PHENOL) IN FLAX MICROGREEN EXTRACTS AND ITS ANTICANCER POTENTIAL AGAINST PROSTATE CANCER. International Journal of Applied Pharmaceutics, 17(4), 511–520. https://doi.org/10.22159/ijap.2025v17i4.53939

Issue

Section

Original Article(s)

Similar Articles

<< < 1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.