NANOTECHNOLOGY IN PAEDIATRIC DRUG DELIVERY: ADVANCES, CHALLENGES, AND REGULATORY CONSIDERATIONS-A REVIEW

Authors

  • GOWTHAM ANGAMUTHU Department of Pharmaceutical Regulatory Affairs, JSS College of Pharmacy (JSS Academy of Higher Education and Research, Mysuru), Ooty - 643 001. The Nilgiris, Tamil Nadu, India https://orcid.org/0009-0008-3866-3885
  • GIRIDHARA MAHADEVSAMY Department of Pharmaceutics, JSS College of Pharmacy (JSS Academy of Higher Education and Research, Mysuru), Ooty - 643 001. The Nilgiris, Tamil Nadu, India https://orcid.org/0009-0004-5611-2156
  • GURUBARAN SIVANATHAN Department of Pharmaceutics, JSS College of Pharmacy (JSS Academy of Higher Education and Research, Mysuru), Ooty - 643 001. The Nilgiris, Tamil Nadu, India https://orcid.org/0009-0000-6386-1201
  • SANJAI RAJAGOPAL Department of Pharmaceutics, JSS College of Pharmacy (JSS Academy of Higher Education and Research, Mysuru), Ooty - 643 001. The Nilgiris, Tamil Nadu, India https://orcid.org/0009-0000-3399-0520
  • NAGASAMY VENKATESH DHANDAPANI Department of Pharmaceutics, JSS College of Pharmacy (JSS Academy of Higher Education and Research, Mysuru), Ooty - 643 001. The Nilgiris, Tamil Nadu, India https://orcid.org/0000-0002-5361-3586

DOI:

https://doi.org/10.22159/ijap.2025v17i6.54077

Keywords:

Nanotechnology, Paediatric drug delivery, Nanocarriers, Liposomes, Polymeric nanoparticles, Solid lipid nanoparticles, Paediatric pharmacotherapy, Controlled release, Targeted drug delivery and Nanomedicine applications

Abstract

Children's growth and physiology are basically different from that of adults, so paediatric pharmacotherapy is dissimilar in challenge. The traditional formulations of medicines are not suitable for children, as they face issues of poor taste, insusceptibility of dosage flexibility, and potential miscalculation of dosage. Nanotechnology of nanoscale dimensions holds great promise in solving paediatric drug delivery issues. In this article, the prospect of nanocarriers, such as liposomes, polymeric nanoparticles, and solid lipid nanoparticles, is discussed in paediatric medicine. Nanoformulations have been found to increase oral bioavailability by 60% and decrease dosing frequency by 50%, with improved therapeutic response in paediatric patients. Today, at least four FDA-approved nanoformulations are on the market for paediatric applications, such as liposomal amphotericin B for fungal infections and pegylated liposomal doxorubicin for paediatric oncology, showing the increasing clinical use of nanotechnology in paediatric medicine. However, there are huge challenges remaining: long-term safety of nanomaterials in developing organisms, scalable manufacturing, regulatory hurdles, and ethical considerations for paediatric clinical trials. The review will highlight the continued need for interdisciplinarity to overcome the challenges and reach the potential of nanotechnology for enhancing paediatric health outcomes. Future directions include stimuli-responsive and personalized nanocarriers, combination therapy, and theranostic nanoparticles. With further research and development, nanotechnology can potentially revolutionize paediatric pharmacotherapy with more effective, safer, and patient-compliant drug delivery.

References

1. Kearns GL, Abdel Rahman SM, Alander SW, Blowey DL, Leeder JS, Kauffman RE. Developmental pharmacology drug disposition action and therapy in infants and children. N Engl J Med. 2003 Sep 18;349(12):1157-67. doi: 10.1056/NEJMra035092, PMID 13679531.

2. Fernandez E, Perez R, Hernandez A, Tejada P, Arteta M, Ramos JT. Factors and mechanisms for pharmacokinetic differences between pediatric population and adults. Pharmaceutics. 2011 Feb 7;3(1):53-72. doi: 10.3390/pharmaceutics3010053, PMID 24310425, PMCID PMC3857037.

3. Allegaert K, Verbesselt R, Naulaers G, Van Den Anker JN, Rayyan M, Debeer A. Developmental pharmacology: neonates are not just small adults. Acta Clin Belg. 2008 Jan-Feb;63(1):16-24. doi: 10.1179/acb.2008.003, PMID 18386761.

4. Batchelor HK, Marriott JF. Formulations for children: problems and solutions. Br J Clin Pharmacol. 2015 Mar;79(3):405-18. doi: 10.1111/bcp.12268, PMID 25855822, PMCID PMC4345951.

5. Standing JF, Tuleu C. Paediatric formulations getting to the heart of the problem. Int J Pharm. 2005 Aug 26;300(1-2):56-66. doi: 10.1016/j.ijpharm.2005.05.006, PMID 15979830.

6. Patra JK, Das G, Fraceto LF, Campos EV, Rodriguez Torres MD, Acosta Torres LS. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology. 2018 Sep 19;16(1):71. doi: 10.1186/s12951-018-0392-8, PMID 30231877, PMCID PMC6145203.

7. Hua S. Advances in nanoparticulate drug delivery approaches for sublingual and buccal administration. Front Pharmacol. 2019 Nov 5;10:1328. doi: 10.3389/fphar.2019.01328, PMID 31827435, PMCID PMC6848967.

8. Yang S, Wallach M, Krishna A, Kurmasheva R, Sridhar S. Recent developments in nanomedicine for pediatric cancer. J Clin Med. 2021 Apr 1;10(7):1437. doi: 10.3390/jcm10071437, PMID 33916177, PMCID PMC8036287.

9. Puri A, Loomis K, Smith B, Lee JH, Yavlovich A, Heldman E. Lipid based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. Crit Rev Ther Drug Carrier Syst. 2009;26(6):523-80. doi: 10.1615/critrevtherdrugcarriersyst.v26.i6.10, PMID 20402623, PMCID PMC2885142.

10. Moreno Sastre M, Pastor M, Salomon CJ, Esquisabel A, Pedraz JL. Pulmonary drug delivery: a review on nanocarriers for antibacterial chemotherapy. J Antimicrob Chemother. 2015 Nov;70(11):2945-55. doi: 10.1093/jac/dkv192, PMID 26203182.

11. Germain M, Caputo F, Metcalfe S, Tosi G, Spring K, Aslund AK. Delivering the power of nanomedicine to patients today. J Control Release. 2020 Oct 10;326:164-71. doi: 10.1016/j.jconrel.2020.07.007, PMID 32681950, PMCID PMC7362824.

12. Tinkle S, McNeil SE, Muhlebach S, Bawa R, Borchard G, Barenholz YC. Nanomedicines: addressing the scientific and regulatory gap. Ann NY Acad Sci. 2014 Apr;1313:35-56. doi: 10.1111/nyas.12403, PMID 24673240.

13. Ventola CL. Progress in nanomedicine: approved and investigational nanodrugs. PT. 2017 Dec;42(12):742-55. PMID 29234213, PMCID PMC5720487.

14. Bulbake U, Doppalapudi S, Kommineni N, Khan W. Liposomal formulations in clinical use: an updated review. Pharmaceutics. 2017 Mar 27;9(2):12. doi: 10.3390/pharmaceutics9020012, PMID 28346375, PMCID PMC5489929.

15. Ladaviere C, Gref R. Toward an optimized treatment of intracellular bacterial infections: input of nanoparticulate drug delivery systems. Nanomedicine (Lond). 2015 Oct;10(19):3033-55. doi: 10.2217/nnm.15.128, PMID 26420270.

16. Chastagner P, Devictor B, Geoerger B, Aerts I, Leblond P, Frappaz D. Phase I study of non-pegylated liposomal doxorubicin in children with recurrent/refractory high grade glioma. Cancer Chemother Pharmacol. 2015 Aug;76(2):425-32. doi: 10.1007/s00280-015-2781-0, PMID 26115930.

17. Schwendener RA. Liposomes as vaccine delivery systems: a review of the recent advances. Ther Adv Vaccines. 2014 Nov;2(6):159-82. doi: 10.1177/2051013614541440, PMID 25364509, PMCID PMC4212474.

18. Patra JK, Das G, Fraceto LF, Campos EV, Rodriguez Torres MD, Acosta Torres LS. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology. 2018 Sep 19;16(1):71. doi: 10.1186/s12951-018-0392-8, PMID 30231877, PMCID PMC6145203.

19. Beach MA, Nayanathara U, Gao Y, Zhang C, Xiong Y, Wang Y. Polymeric nanoparticles for drug delivery. Chem Rev. 2024 May 8;124(9):5505-616. doi: 10.1021/acs.chemrev.3c00705, PMID 38626459, PMCID PMC11086401.

20. Muller RH, Mader K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery a review of the state of the art. Eur J Pharm Biopharm. 2000 Jul;50(1):161-77. doi: 10.1016/s0939-6411(00)00087-4, PMID 10840199.

21. Muller RH, Radtke M, Wissing SA. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev. 2002 Nov 1;54 Suppl 1:S131-55. doi: 10.1016/s0169-409x(02)00118-7, PMID 12460720.

22. Dasgupta S, Ghosh SK, Ray S, Mazumder B. Solid lipid nanoparticles (SLNs) gels for topical delivery of aceclofenac in vitro and in vivo evaluation. Curr Drug Deliv. 2013 Dec;10(6):656-66. doi: 10.2174/156720181006131125150023, PMID 24274634.

23. Moslehi JJ. Cardiovascular toxic effects of targeted cancer therapies. N Engl J Med. 2016 Oct 13;375(15):1457-67. doi: 10.1056/NEJMra1100265, PMID 27732808.

24. Marina NM, Cochrane D, Harney E, Zomorodi K, Blaney S, Winick N. Dose escalation and pharmacokinetics of pegylated liposomal doxorubicin (Doxil) in children with solid tumors: a pediatric oncology group study. Clin Cancer Res. 2002 Feb;8(2):413-8. PMID 11839657.

25. Sonali SRP, Singh RP, Singh N, Sharma G, Vijayakumar MR, Koch B. Transferrin liposomes of docetaxel for brain targeted cancer applications: formulation and brain theranostics. Drug Deliv. 2016 May;23(4):1261-71. doi: 10.3109/10717544.2016.1162878, PMID 26961144.

26. Bhosale RR, Janugade BU, Chavan DD, Thorat VM. Current perspectives on applications of nanoparticles for cancer management. Int J Pharm Pharm Sci. 2023;15(11):1-10. doi: 10.22159/ijpps.2023v15i11.49319.

27. Nafee N, Husari A, Maurer CK, Lu C, De Rossi C, Steinbach A. Antibiotic free nanotherapeutics: ultra-small mucus penetrating solid lipid nanoparticles enhance the pulmonary delivery and anti-virulence efficacy of novel quorum sensing inhibitors. J Control Release. 2014 Oct 28;192:131-40. doi: 10.1016/j.jconrel.2014.06.055, PMID 24997276.

28. Cipolla D, Blanchard J, Gonda I. Development of liposomal ciprofloxacin to treat lung infections. Pharmaceutics. 2016 Mar 1;8(1):6. doi: 10.3390/pharmaceutics8010006, PMID 26938551, PMCID PMC4810082.

29. Kunda NK, Somavarapu S, Gordon SB, Hutcheon GA, Saleem IY. Nanocarriers targeting dendritic cells for pulmonary vaccine delivery. Pharm Res. 2013 Feb;30(2):325-41. doi: 10.1007/s11095-012-0891-5, PMID 23054093.

30. Lecaroz C, Blanco Prieto MJ, Burrell MA, Gamazo C. Intracellular killing of Brucella melitensis in human macrophages with microsphere encapsulated gentamicin. J Antimicrob Chemother. 2006 Sep;58(3):549-56. doi: 10.1093/jac/dkl257, PMID 16799160.

31. Mahajan SD, Roy I, Xu G, Yong KT, Ding H, Aalinkeel R. Enhancing the delivery of anti-retroviral drug “saquinavir” across the blood brain barrier using nanoparticles. Curr HIV Res. 2010 Jul;8(5):396-404. doi: 10.2174/157016210791330356, PMID 20426757, PMCID PMC2904057.

32. Dhakal S, Renu S, Ghimire S, Shaan Lakshmanappa Y, Hogshead BT, Feliciano Ruiz N. Mucosal immunity and protective efficacy of intranasal inactivated influenza vaccine is improved by chitosan nanoparticle delivery in pigs. Front Immunol. 2018 May 2;9:934. doi: 10.3389/fimmu.2018.00934, PMID 29770135, PMCID PMC5940749.

33. Muthu MS, Feng SS. Pharmaceutical stability aspects of nanomedicines. Nanomedicine (Lond). 2009 Dec;4(8):857-60. doi: 10.2217/nnm.09.75, PMID 19958220.

34. US Food and Drug Administration. Drug products, including biological products that contain nanomaterials: guidance for industry. Retrieved from FDA Website; 2017.

35. European Medicines Agency. Reflection paper on the data requirements for intravenous liposomal products developed with reference to an innovator liposomal product. EMA/CHMP/806058/2009/Rev. Vol. 02; 2013.

36. Paediatric research equity act of 2003. Pub. L. Stat. 1936;117:108-55.

37. European Parliament and Council of the European Union. Regulation (EC) no 1901/2006 on medicinal products for paediatric use; 2006.

38. Sainz V, Conniot J, Matos AI, Peres C, Zupancic E, Moura L. Regulatory aspects on nanomedicines. Biochem Biophys Res Commun. 2015 Dec 18;468(3):504-10. doi: 10.1016/j.bbrc.2015.08.023, PMID 26260323.

39. Tinkle S, McNeil SE, Muhlebach S, Bawa R, Borchard G, Barenholz YC. Nanomedicines: addressing the scientific and regulatory gap. Ann N Y Acad Sci. 2014 Apr;1313:35-56. doi: 10.1111/nyas.12403, PMID 24673240.

40. Riehemann K, Schneider SW, Luger TA, Godin B, Ferrari M, Fuchs H. Nanomedicine challenge and perspectives. Angew Chem Int Ed Engl. 2009;48(5):872-97. doi: 10.1002/anie.200802585, PMID 19142939, PMCID PMC4175737.

41. International Council for Harmonisation. Clinical investigation of medicinal products in the paediatric population. Vol. E11. Retrieved from ICH website; 2000.

42. Nanotechnology task force report. US Food and Drug Administration; 2007.

43. European technology platform on nanomedicine. Contributing to the innovation of nanomedicine; 2019.

44. Organization for Economic Co-operation and Development. Safety of manufactured nanomaterials. Retrieved from OECD website; 2019.

45. Suk JS, Xu Q, Kim N, Hanes J, Ensign LM. PEGylation as a strategy for improving nanoparticle based drug and gene delivery. Adv Drug Deliv Rev. 2016 Apr 1;99(A):28-51. doi: 10.1016/j.addr.2015.09.012, PMID 26456916, PMCID PMC4798869.

46. Teng C, Jiang C, Gao S, Liu X, Zhai S. Fetotoxicity of nanoparticles: causes and mechanisms. Nanomaterials (Basel). 2021 Mar 19;11(3):791. doi: 10.3390/nano11030791, PMID 33808794, PMCID PMC8003602.

47. Boyd WA, Smith MV, Co CA, Pirone JR, Rice JR, Shockley KR. Developmental effects of the ToxCast™ phase I and phase II chemicals in Caenorhabditis elegans and corresponding responses in zebrafish rats and rabbits. Environ Health Perspect. 2016 May;124(5):586-93. doi: 10.1289/ehp.1409645, PMID 26496690, PMCID PMC4858399.

48. Patra JK, Das G, Fraceto LF, Campos EV, Rodriguez Torres MD, Acosta Torres LS. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology. 2018 Sep 19;16(1):71. doi: 10.1186/s12951-018-0392-8, PMID 30231877, PMCID PMC6145203.

49. Vanhoorne V, Vervaet C. Recent progress in continuous manufacturing of oral solid dosage forms. Int J Pharm. 2020 Apr 15;579:119194. doi: 10.1016/j.ijpharm.2020.119194, PMID 32135231.

50. Lopez FL, Ernest TB, Tuleu C, Gul MO. Formulation approaches to pediatric oral drug delivery: benefits and limitations of current platforms. Expert Opin Drug Deliv. 2015;12(11):1727-40. doi: 10.1517/17425247.2015.1060218, PMID 26165848, PMCID PMC4673516.

51. Preis M, Woertz C, Kleinebudde P, Breitkreutz J. Oromucosal film preparations: classification and characterization methods. Expert Opin Drug Deliv. 2013 Sep;10(9):1303-17. doi: 10.1517/17425247.2013.804058, PMID 23768198.

52. Rieder M, Hawcutt D. Design and conduct of early phase drug studies in children: challenges and opportunities. Br J Clin Pharmacol. 2016 Nov;82(5):1308-14. doi: 10.1111/bcp.13058, PMID 27353241, PMCID PMC5061783.

53. Hampson LV, Herold R, Posch M, Saperia J, Whitehead A. Bridging the gap: a review of dose investigations in paediatric investigation plans. Br J Clin Pharmacol. 2014 Oct;78(4):898-907. doi: 10.1111/bcp.12402, PMID 24720849, PMCID PMC4239983.

54. Egusquiaguirre SP, Igartua M, Hernandez RM, Pedraz JL. Nanoparticle delivery systems for cancer therapy: advances in clinical and preclinical research. Clin Transl Oncol. 2012 Feb;14(2):83-93. doi: 10.1007/s12094-012-0766-6, PMID 22301396.

55. Gu Z, Dang TT, Ma M, Tang BC, Cheng H, Jiang S. Glucose responsive microgels integrated with enzyme nanocapsules for closed loop insulin delivery. ACS Nano. 2013 Aug 27;7(8):6758-66. doi: 10.1021/nn401617u, PMID 23834678.

56. Singh JK, Simoes BM, Clarke RB, Bundred NJ. Targeting IL-8 signalling to inhibit breast cancer stem cell activity. Expert Opin Ther Targets. 2013 Nov;17(11):1235-41. doi: 10.1517/14728222.2013.835398, PMID 24032691.

57. Baetke SC, Lammers T, Kiessling F. Applications of nanoparticles for diagnosis and therapy of cancer. Br J Radiol. 2015 Oct;88(1054):20150207. doi: 10.1259/bjr.20150207, PMID 25969868, PMCID PMC4630860.

58. Patra JK, Das G, Fraceto LF, Campos EV, Rodriguez Torres MD, Acosta Torres LS. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology. 2018 Sep 19;16(1):71. doi: 10.1186/s12951-018-0392-8, PMID 30231877, PMCID PMC6145203.

59. Sainz V, Conniot J, Matos AI, Peres C, Zupancic E, Moura L. Regulatory aspects on nanomedicines. Biochem Biophys Res Commun. 2015 Dec 18;468(3):504-10. doi: 10.1016/j.bbrc.2015.08.023, PMID 26260323.

60. Rieder M, Hawcutt D. Design and conduct of early phase drug studies in children: challenges and opportunities. Br J Clin Pharmacol. 2016 Nov;82(5):1308-14. doi: 10.1111/bcp.13058, PMID 27353241, PMCID PMC5061783.

61. Chauhan AS. Dendrimers for drug delivery. Molecules. 2018 Apr 18;23(4):938. doi: 10.3390/molecules23040938, PMID 29670005, PMCID PMC6017392.

62. Jain A, Bhardwaj K, Bansal M. Polymeric micelles as drug delivery system recent advances approaches applications and patents. Curr Drug Saf. 2024;19(2):163-71. doi: 10.2174/1574886318666230605120433, PMID 37282644.

63. Chauhan M, Mazumder R, Rani A, Mishra R, Pal RS. Preparations applications patents and marketed formulations of nanoemulsions a comprehensive review. Pharm Nanotechnol. 2024 Sep 27. doi: 10.2174/0122117385325186240912110731, PMID 39350420.

64. Sivanathan G, Rajagopal S, Mahadevaswamy G, Angamuthu G, Dhandapani NV. Pharmaceutical nanocrystals: an extensive overview. Int J Appl Pharm. 2024 Nov 7;16(6):1-9. doi: 10.22159/ijap.2024v16i6.52257.

Published

07-11-2025

How to Cite

ANGAMUTHU, G., MAHADEVSAMY, G., SIVANATHAN, G., RAJAGOPAL, S., & DHANDAPANI, N. V. (2025). NANOTECHNOLOGY IN PAEDIATRIC DRUG DELIVERY: ADVANCES, CHALLENGES, AND REGULATORY CONSIDERATIONS-A REVIEW. International Journal of Applied Pharmaceutics, 17(6), 49–56. https://doi.org/10.22159/ijap.2025v17i6.54077

Issue

Section

Review Article(s)

Similar Articles

<< < 3 4 5 6 7 > >> 

You may also start an advanced similarity search for this article.