3D PRINTING TECHNOLOGIES IN THE DEVELOPMENT OF A BIORELEVANT IN VITRO MODEL OF THE NASAL CAVITY: NEW STEP OF INTRANASAL DRUGS QUALITY ASSESSMENT

Authors

  • IOSIF MIKHEL Department of Pharmaceutical Technology A. P. Nelyubin Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia https://orcid.org/0000-0002-2866-0049
  • ELENA BAKHRUSHINA Department of Pharmaceutical Technology A. P. Nelyubin Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia https://orcid.org/0000-0001-8695-0346
  • SALMA ABUELEZ I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
  • KSENIYA EREMEEVA Department for Ear, Nose and Throat Diseases N. V. Sklifosovskiy Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia https://orcid.org/0000-0001-7071-2415
  • XI YANG Department for Ear, Nose and Throat Diseases N. V. Sklifosovskiy Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia https://orcid.org/0009-0006-2630-7045
  • VALERIY SVISTUSHKIN Department for Ear, Nose and Throat Diseases N. V. Sklifosovskiy Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
  • OLGA I. STEPANOVA Department of Pharmacology A. P. Nelyubin Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
  • IVAN I. KRASNYUK JR. Head of Department of Analytical, Physical and Colloidal Chemistry A. P. Nelyubin Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
  • GLEB ZHEMERIKIN Department of Faculty Surgery No.1 N. V. Sklifosovskiy Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
  • IVAN I. KRASNYUK Head of Department of Pharmaceutical Technology, A. P. Nelyubin Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia

DOI:

https://doi.org/10.22159/ijap.2025v17i4.54101

Keywords:

3D printing technology, Biorelevant model, Nasal cavity, in vitro studies, Biomedical Application, 3D model, Nasal airflow

Abstract

The intranasal route has been a subject of exploration for the delivery of active pharmaceutical ingredients across a wide range of chemical classes and pharmacological categories. Notwithstanding its therapeutic potential, the anatomical intricacy and physiological variability of the nasal cavity pose significant challenges to the precise evaluation of drug delivery. To address these challenges, in vitro studies employing anatomically and functionally relevant 3D models have become imperative. Advances in 3D printing technologies have enabled the creation of precise and reproducible nasal cavity replicas, which can support drug characterization, particularly in evaluating drug deposition patterns and predicting bioavailability.

This review aims to provide a comprehensive overview of the current state-of-the-art methods and materials employed in 3D printing of nasal cavity models. Presently, the Koken LM-005 remains the sole commercially available model, underscoring the pressing need for more advanced and customizable alternatives. Experimental models are under development; however, they vary widely in anatomical fidelity and clinical applicability. The analysis emphasizes the necessity of incorporating anatomical accuracy and physiological relevance–such as airflow dynamics and mucosal properties–into the design of nasal cavity models for pharmaceutical testing.

The findings underscore the real-world utility of additive manufacturing in pharmaceutical research. The utilization of 3D printed models holds considerable promise in enhancing the quality assessment of intranasal dosage forms and can serve as valuable tools in both preclinical development and personalized medicine. As the technology advances, it holds the potential to reduce reliance on animal testing, streamline formulation development, and ultimately enhance therapeutic outcomes.

References

Kim H, Lin Y, Tseng TL. A review on quality control in additive manufacturing. Rapid Prototyp J. 2018;24(3):645-69. doi: 10.1108/RPJ-03-2017-0048.

Laffleur F, Bauer B. Progress in nasal drug delivery systems. Int J Pharm. 2021 Sep;607:120994. doi: 10.1016/j.ijpharm.2021.120994, PMID 34390810.

Williams G, Suman JD. In vitro anatomical models for nasal drug delivery. Pharmaceutics. 2022 Jun 26;14(7):1353. doi: 10.3390/pharmaceutics14071353, PMID 35890249.

Barnabas W. Drug targeting strategies into the brain for treating neurological diseases. J Neurosci Methods. 2019 Jan 1;311:133-46. doi: 10.1016/j.jneumeth.2018.10.015, PMID 30336221.

Surkova EV, Derkach KV, Bespalov AI, Shpakov AO. Prospects of intranasal insulin for correction of cognitive impairments in particular those associated with diabetes mellitus. Probl Endokrinol (Mosk). 2019 Feb;65(1):57-65. doi: 10.14341/probl9755.

Gizurarson S, Thorvaldsson T, Sigurdsson P, Gunnarsson E. Selective delivery of insulin into the brain: intraolfactory absorption. International Journal of Pharmaceutics. 1997 Jan;146(1):135-41. doi: 10.1016/S0378-5173(97)97185-4.

Roque P, Nakadate Y, Sato H, Sato T, Wykes L, Kawakami A. Intranasal administration of 40 and 80 units of insulin does not cause hypoglycemia during cardiac surgery: a randomized controlled trial. Can J Anesth. 2021 Jul 15;68(7):991-9. doi: 10.1007/s12630-021-01969-5.

Rutvik K, Meshva P, Dinal P, Mansi D. The nasal route advanced drug delivery systems and evaluation: a review. Egypt J Chest Dis Tuberc. 2023 Feb;72(4):471-7. doi: 10.4103/ecdt.ecdt_122_22.

Lewis CR, Vo HT, Fishman M. Intranasal naloxone and related strategies for opioid overdose intervention by nonmedical personnel: a review. Subst Abuse Rehabil. 2017 Oct;8:79-95. doi: 10.2147/SAR.S101700, PMID 29066940.

Snyder MB, Bregmen DB. SPRIX (ketorolac tromethamine) nasal spray: a novel nonopioid alternative for managing moderate to moderately severe dental pain. Compend Contin Educ Dent. 2012 Feb;33(1):2-11. PMID 22428363.

Oskoui M, Pringsheim T, Holler Managan Y, Potrebic S, Billinghurst L, Gloss D. Practice guideline update summary: acute treatment of migraine in children and adolescents: report of the guideline development, dissemination, and implementation subcommittee of the american academy of neurology and the american headache society. Neurology. 2019 Sep 10;93(11):487-99. doi: 10.1212/WNL.0000000000008095, PMID 31413171.

Marmura MJ, Silberstein SD, Schwedt TJ. The acute treatment of migraine in adults: the American Headache Society evidence assessment of migraine pharmacotherapies. Headache. 2015 Jan 20;55(1):3-20. doi: 10.1111/head.12499.

Kalebar RV, Gajare P, SN, Kalebar VU, Aladakatti RH. Synergistic drug compatibility of sumatriptan succinate and metoclopramide hydrochloride (in situ gel formulations) for nasal drug release optimization. Asian J Pharm Clin Res. 2024 Mar 7;17(3):132-8. doi: 10.22159/ajpcr.2024v17i3.48485.

Keller LA, Merkel O, Popp A. Intranasal drug delivery: opportunities and toxicologic challenges during drug development. Drug Deliv Transl Res. 2022 Apr 25;12(4):735-57. doi: 10.1007/s13346-020-00891-5, PMID 33491126.

Merkus FW, Verhoef JC, Schipper NG, Marttin E. Nasal mucociliary clearance as a factor in nasal drug delivery. Adv Drug Deliv Rev. 1998 Jan;29(1-2):13-38. doi: 10.1016/s0169-409x(97)00059-8, PMID 10837578.

Casettari L, Illum L. Chitosan in nasal delivery systems for therapeutic drugs. J Control Release. 2014 Sep 28;190:189-200. doi: 10.1016/j.jconrel.2014.05.003, PMID 24818769.

Alnasser S. A review on nasal drug delivery system and its contribution in therapeutic management. Asian J Pharm Clin Res. 2019 Jan 7;12(1):40. doi: 10.22159/ajpcr.2018.v12i1.29443.

Jaiswal PL, Darekar AB, Saudagar RB. A recent review on nasal microemulsion for treatment of cns disorder. Int J Curr Pharm Res. 2017 Jul 14;9(4):5. doi: 10.22159/ijcpr.2017v9i4.20963.

Cecen A, Bayraktar C, Ozgur A, Akgul G, Gunal O. Evaluation of nasal mucociliary clearance time in COVID-19 patients. J Craniofac Surg. 2021 Nov;32(8):e702-5. doi: 10.1097/SCS.0000000000007699, PMID 33935140.

Stringer SP, Stiles W, Slattery WH, Krumerman J, Parsons JT, Mendenhall WM. Nasal mucociliary clearance after radiation therapy. Laryngoscope. 1995 Apr 4;105:380-2. doi: 10.1288/00005537-199504000-00008, PMID 7715382.

Mikhel I, Bakhrushina E, Stepanova O, Prilepskaya S, Kosenkov D, Belyatskaya A. Ribavirin in modern antitumor therapy: prospects for intranasal administration. Curr Drug Deliv. 2024 Aug 26;22(5):510-21. doi: 10.2174/0115672018305548240614113451, PMID 39192644.

Bakhrushina EO, Mikhel JB, Kondratieva VM, Demina NB, Grebennikova TV. In situ gels as a modern method of intranasal vaccine delivery. Vopr Virusol. 2022 Nov 19;67(5):395-402. doi: 10.36233/0507-4088-139, PMID 36515285.

Mikhel IB, Bakhrushina EO, Petrusevich DA, Nedorubov AA, Appolonova SA, Moskaleva NE. Development of an intranasal in situ system for ribavirin delivery: in vitro and in vivo evaluation. Pharmaceutics. 2024 Aug 26;16(9):1125. doi: 10.3390/pharmaceutics16091125, PMID 39339163.

Kelly JT, Asgharian B, Kimbell JS, Wong BA. Particle deposition in human nasal airway replicas manufactured by different methods. Part I: Inertial regime particles. Aerosol Sci Technol. 2004 Nov;38(11):1063-71. doi: 10.1080/027868290883360.

Shang Y, Inthavong K, Qiu D, Singh N, He F, Tu J. Prediction of nasal spray drug absorption influenced by mucociliary clearance. PLOS One. 2021 Jan 28;16(1):e0246007. doi: 10.1371/journal.pone.0246007, PMID 33507973.

Wong CY, Baldelli A, Tietz O, Van Der Hoven J, Suman J, Ong HX. An overview of in vitro and in vivo techniques for characterization of intranasal protein and peptide formulations for brain targeting. Int J Pharm. 2024 Apr;654:123922. doi: 10.1016/j.ijpharm.2024.123922, PMID 38401871.

Deruyver L, Rigaut C, Lambert P, Haut B, Goole J. The importance of pre-formulation studies and of 3D-printed nasal casts in the success of a pharmaceutical product intended for nose-to-brain delivery. Adv Drug Deliv Rev. 2021 Aug;175:113826. doi: 10.1016/j.addr.2021.113826, PMID 34119575.

Bakhrushina EO, Demina NB, Shumkova MM, Rodyuk PS, Shulikina DS, Krasnyuk II. In situ intranasal delivery systems: application prospects and main pharmaceutical aspects of development. Drug Dev Regist. 2021 Nov 25;10(4):54-63. doi: 10.33380/2305-2066-2021-10-4-54-63.

Bakhrushina EO, Shulikina DS, Mikhel IB, Demina NB, Krasnyuk II. Development and aprobation of in vitro model of nasal cavity for stanadartisation of in situ drug delivery systems. Proceedings of the Voronezh State University. 2023;4:83-91.

Valtonen O, Ormiskangas J, Kivekas I, Rantanen V, Dean M, Poe D. Three-dimensional printing of the nasal cavities for clinical experiments. Sci Rep. 2020 Jan 16;10(1):502. doi: 10.1038/s41598-020-57537-2, PMID 31949270.

Butler J, Hens B, Vertzoni M, Brouwers J, Berben P, Dressman J. In vitro models for the prediction of in vivo performance of oral dosage forms: recent progress from partnership through the IMI OrBiTo collaboration. Eur J Pharm Biopharm. 2019 Mar;136:70-83. doi: 10.1016/j.ejpb.2018.12.010, PMID 30579851.

Andreas CJ, Chen YC, Markopoulos C, Reppas C, Dressman J. In vitro biorelevant models for evaluating modified-release mesalamine products to forecast the effect of formulation and meal intake on drug release. Eur J Pharm Biopharm. 2015 Nov;97(A):39-50. doi: 10.1016/j.ejpb.2015.09.002, PMID 26391972.

Sobiesk JL, Munakomi S. Anatomy head and neck nasal cavity. StatPearls; 2025.

Ogle OE, Weinstock RJ, Friedman E. Surgical anatomy of the nasal cavity and paranasal sinuses. Oral Maxillofac Surg Clin North Am. 2012 May;24(2):155-66. doi: 10.1016/j.coms.2012.01.011, PMID 22386856.

Butaric LN, Nicholas CL, Kravchuk K, Maddux SD. Ontogenetic variation in human nasal morphology. Anat Rec (Hoboken). 2022 Aug 22;305(8):1910-37. doi: 10.1002/ar.24760, PMID 34549897.

Hamilton GS. The external nasal valve. Facial Plast Surg Clin North Am. 2017 May;25(2):179-94. doi: 10.1016/j.fsc.2016.12.010, PMID 28340649.

Van Valkenburgh B, Smith TD, Craven BA. Tour of a labyrinth: exploring the vertebrate nose. Anat Rec (Hoboken). 2014 Nov 14;297(11):1975-84. doi: 10.1002/ar.23021, PMID 25312359.

Patki A, Frank Ito DO. Characterizing human nasal airflow physiologic variables by nasal index. Respir Physiol Neurobiol. 2016 Oct;232:66-74. doi: 10.1016/j.resp.2016.07.004, PMID 27431449.

Taylor DJ, Doorly DJ, Schroter RC. Airflow in the human nasal cavity: an inter-subject comparison. In: Proceedings of the ASME summer bioengineering conference, SBC2009; 2009. doi: 10.1115/SBC2009-206459.

Tian L, Dong J, Shang Y, Tu J. Detailed comparison of anatomy and airflow dynamics in human and cynomolgus monkey nasal cavity. Comput Biol Med. 2022 Feb;141:105150. doi: 10.1016/j.compbiomed.2021.105150, PMID 34942396.

Salade L, Wauthoz N, Goole J, Amighi K. How to characterize a nasal product. The state of the art of in vitro and ex vivo specific methods. Int J Pharm. 2019 Apr;561:47-65. doi: 10.1016/j.ijpharm.2019.02.026, PMID 30822505.

Rabinowicz AL, Carrazana E, Maggio ET. Improvement of intranasal drug delivery with intravail® alkylsaccharide excipient as a mucosal absorption enhancer aiding in the treatment of conditions of the central nervous system. Drugs RD. 2021 Dec 25;21(4):361-9. doi: 10.1007/s40268-021-00360-5, PMID 34435339.

Ho M, Goldfarb J, Moayer R, Nwagu U, Ganti R, Krein H. Design and printing of a low cost 3D-printed nasal osteotomy training model: development and feasibility study. JMIR Med Educ. 2020 Nov 17;6(2):e19792. doi: 10.2196/19792, PMID 33200998.

Godec D, Gonzalez Gutierrez J, Nordin A, Pei E, Urena J. A guide to additive manufacturing. Springer Tracts in Additive Manufacturing; 2022. doi: 10.1007/978-3-031-05863-9.

Subramaniam Ravi P, Richardson Regina B, Kevin MT, Kimbell Julia S, Guilmette Raymond A. Computational fluid dynamics simulations of inspiratory airflow in the human nose and nasopharynx. Inhal Toxicol. 1998 Jan;10(2):91-120.

Shubber S, Vllasaliu D, Rauch C, Jordan F, Illum L, Stolnik S. Mechanism of mucosal permeability enhancement of criticalsorb® (Solutol® HS15) investigated in vitro in cell cultures. Pharm Res. 2015 Feb 5;32(2):516-27. doi: 10.1007/s11095-014-1481-5, PMID 25190006.

Ladel S, Schlossbauer P, Flamm J, Luksch H, Mizaikoff B, Schindowski K. Improved in vitro model for intranasal mucosal drug delivery: primary olfactory and respiratory epithelial cells compared with the permanent nasal cell line RPMI 2650. Pharmaceutics. 2019 Aug 1;11(8):367. doi: 10.3390/pharmaceutics11080367, PMID 31374872.

Thakkar SG, Warnken ZN, Alzhrani RF, Valdes SA, Aldayel AM, Xu H. Intranasal immunization with aluminum salt-adjuvanted dry powder vaccine. J Control Release. 2018 Dec;292:111-8. doi: 10.1016/j.jconrel.2018.10.020, PMID 30339906.

Sawant N, Donovan MD. In vitro assessment of spray deposition patterns in a pediatric (12 y old) nasal cavity model. Pharm Res. 2018 May 26;35(5):108. doi: 10.1007/s11095-018-2385-6, PMID 29582159.

Porfiryeva NN, Zlotver I, Davidovich Pinhas M, Sosnik A. Mucus mimicking mucin-based hydrogels by tandem chemical and physical crosslinking. Macromol Biosci. 2024 Jul 28;24(7):e2400028. doi: 10.1002/mabi.202400028, PMID 38511568.

Eshel Green T, Eliyahu S, Avidan Shlomovich S, Bianco Peled H. PEGDA hydrogels as a replacement for animal tissues in mucoadhesion testing. Int J Pharm. 2016 Jun;506(1-2):25-34. doi: 10.1016/j.ijpharm.2016.04.019, PMID 27084292.

Hall DJ, Khutoryanskaya OV, Khutoryanskiy VV. Developing synthetic mucosa mimetic hydrogels to replace animal experimentation in the characterisation of mucoadhesive drug delivery systems. Soft Matter. 2011;7(20):9620. doi: 10.1039/c1sm05929g.

Su J, Liu Y, Sun H, Naeem A, Xu H, Qu Y. Visualization of nasal powder distribution using biomimetic human nasal cavity model. Acta Pharm Sin B. 2024 Jan;14(1):392-404. doi: 10.1016/j.apsb.2023.06.007, PMID 38261815.

Hartigan DR, Adelfio M, Shutt ME, Jones SM, Patel S, Marchand JT. In vitro nasal tissue model for the validation of nasopharyngeal and midturbinate swabs for SARS-CoV-2 testing. ACS Omega. 2022 Apr 12;7(14):12193-201. doi: 10.1021/acsomega.2c00587, PMID 35449955.

Konta AA, Garcia Pina M, Serrano DR. Personalised 3D printed medicines: which techniques and polymers are more successful? Bioengineering (Basel). 2017 Sep 22;4(4):79. doi: 10.3390/bioengineering4040079, PMID 28952558.

Sastri V. Other polymers: styrenics silicones thermoplastic elastomers biopolymers and thermosets; 2022. p. 287-342.

Yu W, Sun L, Li M, Li M, Lei W, Wei C. FDM 3D printing and properties of PBS/PLA blends. Polymers (Basel). 2023 Nov 2;15(21):4305. doi: 10.3390/polym15214305, PMID 37959985.

Tyler B, Gullotti D, Mangraviti A, Utsuki T, Brem H. Polylactic acid (PLA) controlled delivery carriers for biomedical applications. Adv Drug Deliv Rev. 2016 Dec;107:163-75. doi: 10.1016/j.addr.2016.06.018, PMID 27426411.

Ligon SC, Liska R, Stampfl J, Gurr M, Mulhaupt R. Polymers for 3D printing and customized additive manufacturing. Chem Rev. 2017 Aug 9;117(15):10212-90. doi: 10.1021/acs.chemrev.7b00074, PMID 28756658.

Ulery BD, Nair LS, Laurencin CT. Biomedical applications of biodegradable polymers. J Polym Sci B Polym Phys. 2011 Jun 15;49(12):832-64. doi: 10.1002/polb.22259, PMID 21769165.

Naydenova I, Nazarova D, Babeva T, editors. Holographic materials and optical systems. InTech; 2017.

Peerzada M, Abbasi S, Lau KT, Hameed N. Additive manufacturing of epoxy resins: materials methods and latest trends. Ind Eng Chem Res. 2020 Feb;59(14):6375-90. doi: 10.1021/acs.iecr.9b06870.

Kim GB, Lee S, Kim H, Yang DH, Kim YH, Kyung YS. Three-dimensional printing: basic principles and applications in medicine and radiology. Korean J Radiol. 2016 Feb;17(2):182-97. doi: 10.3348/kjr.2016.17.2.182, PMID 26957903.

Salmi M. Additive manufacturing processes in medical applications. Materials (Basel). 2021 Jan 3;14(1):191. doi: 10.3390/ma14010191, PMID 33401601.

Martinez Garcia A, Monzon M, Paz Hernandez R. Standards for additive manufacturing technologies; 2021. p. 395-408.

Mwema F, Akinlabi E. Basics of fused deposition modelling (FDM); 2020. p. 1-15.

Grivet Brancot A, Boffito M, Ciardelli G. Use of polyesters in fused deposition modeling for biomedical applications. Macromol Biosci. 2022 Oct 22;22(10):e2200039. doi: 10.1002/mabi.202200039, PMID 35488769.

Warnken ZN, Smyth HD, Davis DA, Weitman S, Kuhn JG, Williams RO. Personalized medicine in nasal delivery: the use of patient-specific administration parameters to improve nasal drug targeting using 3D-printed nasal replica casts. Mol Pharm. 2018 Apr 2;15(4):1392-402. doi: 10.1021/acs.molpharmaceut.7b00702, PMID 29485888.

Deshmane S, Kendre P, Mahajan H, Jain S. Stereolithography 3D printing technology in pharmaceuticals: a review. Drug Dev Ind Pharm. 2021 Sep 2;47(9):1362-72. doi: 10.1080/03639045.2021.1994990, PMID 34663145.

Kumar H, Kim K. Stereolithography 3D bioprinting. Methods Mol Biol. 2020;2140:93-108. doi: 10.1007/978-1-0716-0520-2_6, PMID 32207107.

Charoo NA, Barakh Ali SF, Mohamed EM, Kuttolamadom MA, Ozkan T, Khan MA. Selective laser sintering 3D printing an overview of the technology and pharmaceutical applications. Drug Dev Ind Pharm. 2020 Jun 2;46(6):869-77. doi: 10.1080/03639045.2020.1764027, PMID 32364418.

Gao B, Zhao H, Peng L, Sun Z. A review of research progress in selective laser melting (SLM). Micromachines (Basel). 2022 Dec 25;14(1):57. doi: 10.3390/mi14010057, PMID 36677118.

Laverty DP, Thomas MB, Clark P, Addy LD. The use of 3D metal printing (direct metal laser sintering) in removable prosthodontics. Dent Update. 2016 Nov 2;43(9):826-35. doi: 10.12968/denu.2016.43.9.826, PMID 29152953.

Gokuldoss PK, Kolla S, Eckert J. Additive manufacturing processes: selective laser melting electron beam melting and binder jetting selection guidelines. Materials (Basel). 2017 Jun 19;10(6):672. doi: 10.3390/ma10060672, PMID 28773031.

Raz K, Chval Z, Thomann S. Minimizing deformations during HP MJF 3D printing. Materials (Basel). 2023 Nov 28;16(23):7389. doi: 10.3390/ma16237389, PMID 38068133.

Awad A, Fina F, Goyanes A, Gaisford S, Basit AW. Advances in powder bed fusion 3D printing in drug delivery and healthcare. Adv Drug Deliv Rev. 2021 Jul;174:406-24. doi: 10.1016/j.addr.2021.04.025, PMID 33951489.

Kusoglu IM, Donate Buendia C, Barcikowski S, Gokce B. Laser powder bed fusion of polymers: quantitative research direction indices. Materials (Basel). 2021 Mar 2;14(5):1169. doi: 10.3390/ma14051169, PMID 33801512.

Taczala J, Czepulkowska W, Konieczny B, Sokolowski J, Kozakiewicz M, Szymor P. Comparison of 3D printing MJP and FDM technology in dentistry. Arch Mater Sci Eng. 2020 Feb;1(101):32-40. doi: 10.5604/01.3001.0013.9504.

Kundoor V, Dalby RN. Assessment of nasal spray deposition pattern in a silicone human nose model using a color based method. Pharm Res. 2010 Jan 10;27(1):30-6. doi: 10.1007/s11095-009-0002-4, PMID 19902337.

Nizic Nodilo L, Perkusic M, Ugrina I, Spoljaric D, Jakobusic Brala C, Amidzic Klaric D. In situ gelling nanosuspension as an advanced platform for fluticasone propionate nasal delivery. Eur J Pharm Biopharm. 2022 Jun;175:27-42. doi: 10.1016/j.ejpb.2022.04.009, PMID 35489667.

Castile J, Cheng YH, Simmons B, Perelman M, Smith A, Watts P. Development of in vitro models to demonstrate the ability of PecSys®, an in situ nasal gelling technology, to reduce nasal run-off and drip. Drug Dev Ind Pharm. 2013 May 17;39(5):816-24. doi: 10.3109/03639045.2012.707210, PMID 22803832.

Djupesland PG, Messina JC, Mahmoud RA. Role of nasal casts for in vitro evaluation of nasal drug delivery and quantitative evaluation of various nasal casts. Ther Deliv. 2020 Aug 30;11(8):485-95. doi: 10.4155/tde-2020-0054, PMID 32727298.

Nizic L, Potas J, Winnicka K, Szekalska M, Erak I, Gretic M. Development characterisation and nasal deposition of melatonin loaded pectin/hypromellose microspheres. Eur J Pharm Sci. 2020 Jan;141:105115. doi: 10.1016/j.ejps.2019.105115, PMID 31654755.

Le Guellec S, Le Pennec D, Gatier S, Leclerc L, Cabrera M, Pourchez J. Validation of anatomical models to study aerosol deposition in human nasal cavities. Pharm Res. 2014 Jan 25;31(1):228-37. doi: 10.1007/s11095-013-1157-6, PMID 24065586.

Sartoretti T, Mannil M, Biendl S, Froehlich JM, Alkadhi H, Zadory M. In vitro qualitative and quantitative CT assessment of iodinated aerosol nasal deposition using a 3D-printed nasal replica. Eur Radiol Exp. 2019 Dec 21;3(1):32. doi: 10.1186/s41747-019-0113-6, PMID 31432300.

Le Guellec S, Ehrmann S, Vecellio L. In vitro in vivo correlation of intranasal drug deposition. Adv Drug Deliv Rev. 2021 Mar;170:340-52. doi: 10.1016/j.addr.2020.09.002, PMID 32918968.

Shang Y, Inthavong K, Tu J. Development of a computational fluid dynamics model for mucociliary clearance in the nasal cavity. J Biomech. 2019 Mar;85:74-83. doi: 10.1016/j.jbiomech.2019.01.015, PMID 30685195.

Iliopoulos F, Caspers PJ, Puppels GJ, Lane ME. Franz cell diffusion testing and quantitative confocal raman spectroscopy: in vitro in vivo correlation. Pharmaceutics. 2020 Sep 18;12(9):887. doi: 10.3390/pharmaceutics12090887, PMID 32961857.

Ingber DE. Human organs on chips for disease modelling drug development and personalized medicine. Nat Rev Genet. 2022 Aug 25;23(8):467-91. doi: 10.1038/s41576-022-00466-9, PMID 35338360.

Izadifar Z, Sontheimer Phelps A, Lubamba BA, Bai H, Fadel C, Stejskalova A. Modeling mucus physiology and pathophysiology in human organs-on-chips. Adv Drug Deliv Rev. 2022 Dec;191:114542. doi: 10.1016/j.addr.2022.114542, PMID 36179916.

Nalayanda DD, Puleo C, Fulton WB, Sharpe LM, Wang TH, Abdullah F. An open access microfluidic model for lung-specific functional studies at an air-liquid interface. Biomed Microdevices. 2009 Oct 30;11(5):1081-9. doi: 10.1007/s10544-009-9325-5, PMID 19484389.

Lee SA, No DY, Kang E, Ju J, Kim DS, Lee SH. Spheroid-based three-dimensional liver-on-a-chip to investigate hepatocyte hepatic stellate cell interactions and flow effects. Lab Chip. 2013;13(18):3529-37. doi: 10.1039/c3lc50197c, PMID 23657720.

Yoon No D, Lee KH, Lee J, Lee SH. 3D liver models on a microplatform: well-defined culture engineering of liver tissue and liver-on-a-chip. Lab Chip. 2015;15(19):3822-37. doi: 10.1039/c5lc00611b, PMID 26279012.

Bavli D, Prill S, Ezra E, Levy G, Cohen M, Vinken M. Real-time monitoring of metabolic function in liver-on-chip microdevices tracks the dynamics of mitochondrial dysfunction. Proc Natl Acad Sci USA. 2016 Apr 19;113(16):E2231-40. doi: 10.1073/pnas.1522556113, PMID 27044092.

Gunther A, Yasotharan S, Vagaon A, Lochovsky C, Pinto S, Yang J. A microfluidic platform for probing small artery structure and function. Lab Chip. 2010;10(18):2341-9. doi: 10.1039/c004675b, PMID 20603685.

Cheng W, Klauke N, Sedgwick H, Smith GL, Cooper JM. Metabolic monitoring of the electrically stimulated single heart cell within a microfluidic platform. Lab Chip. 2006;6(11):1424-31. doi: 10.1039/b608202e, PMID 17066165.

Sin A, Chin KC, Jamil MF, Kostov Y, Rao G, Shuler ML. The design and fabrication of three-chamber microscale cell culture analog devices with integrated dissolved oxygen sensors. Biotechnol Prog. 2004;20(1):338-45. doi: 10.1021/bp034077d, PMID 14763861.

Afonicheva PK, Bulyanitsa AL, Evstrapov AA. Organ-on-a-chip materials and methods of creation. NP. 2019;29(4):3-18. doi: 10.18358/np-29-4-i318.

Derman ID, Yeo M, Castaneda DC, Callender M, Horvath M, Mo Z. High throughput bioprinting of the nasal epithelium using patient-derived nasal epithelial cells. bioRxiv. 2023 Aug 14;15(4):2023.03.29.534723. doi: 10.1101/2023.03.29.534723, PMID 37034627.

Chiesa Estomba CM, Aiastui A, Gonzalez Fernandez I, Hernaez Moya R, Rodino C, Delgado A. Three-dimensional bioprinting scaffolding for nasal cartilage defects: a systematic review. Tissue Eng Regen Med. 2021 Jun 17;18(3):343-53. doi: 10.1007/s13770-021-00331-6, PMID 33864626.

Corda JV, Shenoy BS, Ahmad KA, Lewis L, KP, Khader SM. Nasal airflow comparison in neonates infant and adult nasal cavities using computational fluid dynamics. Comput Methods Programs Biomed. 2022 Feb;214:106538. doi: 10.1016/j.cmpb.2021.106538, PMID 34848078.

Tan J, Han D, Wang J, Liu T, Wang T, Zang H. Numerical simulation of normal nasal cavity airflow in Chinese adult: a computational flow dynamics model. Eur Arch Otorhinolaryngol. 2012 Mar 22;269(3):881-9. doi: 10.1007/s00405-011-1771-z, PMID 21938528.

Wang T, Chen D, Wang PH, Chen J, Deng J. Investigation on the nasal airflow characteristics of anterior nasal cavity stenosis. Braz J Med Biol Res. 2016;49(9):e5182. doi: 10.1590/1414-431X20165182, PMID 27533764.

Published

07-07-2025

How to Cite

MIKHEL, I., BAKHRUSHINA, E., ABUELEZ, S., EREMEEVA, K., YANG, X., SVISTUSHKIN, V., … KRASNYUK, I. I. (2025). 3D PRINTING TECHNOLOGIES IN THE DEVELOPMENT OF A BIORELEVANT IN VITRO MODEL OF THE NASAL CAVITY: NEW STEP OF INTRANASAL DRUGS QUALITY ASSESSMENT. International Journal of Applied Pharmaceutics, 17(4), 66–76. https://doi.org/10.22159/ijap.2025v17i4.54101

Issue

Section

Review Article(s)