HARNESSING ARTIFICIAL INTELLIGENCE: TRANSFORMING CLINICAL TRIALS FOR THE FUTURE

Authors

  • MOHAN KUMAR MAHADEVAPPA Department of Regulatory Affairs, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, India https://orcid.org/0009-0009-3173-8730
  • GONNA NANDI KRISHNAN Department of Regulatory Affairs, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, India
  • VIVEK REDDY MURTHANNAGARI Department of Regulatory Affairs, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, India
  • JANA ARUN Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, India

DOI:

https://doi.org/10.22159/ijap.2025v17i6.54181

Keywords:

AI, Clinical trial, ML, Regulatory compliance, Real-world evidence

Abstract

To evaluate the impact of artificial intelligence (AI) technologies on clinical trial processes, identify quantitative benefits, and determine areas requiring further research. A comprehensive literature review was conducted examining AI applications across clinical trial phases. The study analysed machine learning (ML), natural language processing (NLP), computer vision, reinforcement learning (RL), and other AI technologies as applied to clinical research processes. AI implementations have delivered substantial quantitative benefits across various aspects of clinical trials (CT). International Business Machine (IBM) Watson enabled an 80% increase in patient accrual to breast cancer trials within just 11 mo. In silico medicine’s generative tensorial reinforcement learning (GENTRL) platform accelerated the drug discovery timeline by a factor of 15, reducing it to just 46 days. Saama Technologies' deep learning (DL) approach detected 30% more anomalous data cases compared to traditional methods. Pfizer’s use of AI-driven quantitative systems pharmacology (QSP) models led to a 60% reduction in Phase 2 dose cohorts. AiCure’s AI-powered monitoring system achieved 25% higher medication adherence and completed trials 30% faster. Meanwhile, Unlearn. AI’s digital twin technology enabled a 30% reduction in control group size without compromising statistical power. These outcomes highlight AI’s powerful role in improving the efficiency, speed, and quality of CT. AI is trans formatively enhancing CT through improved recruitment efficiency, protocol optimization, data quality management, and patient monitoring. However, challenges remain in data quality, algorithm interpretability, regulatory compliance, workflow integration, and bias mitigation. Future research should focus on advanced predictive modelling, explainable AI development, federated learning for privacy preservation, AI-human collaboration models, real-world data integration, and standardized validation procedures. Ethical considerations and regulatory frameworks specifically addressing AI in CT require further development to realize the full potential of these technologies.

References

1. Friedman LM, Furberg CD, Demets DL, Reboussin DM, Granger CB. Fundamentals of clinical trials. 5th ed. Berlin: Springer; 2021. p. 477.

2. Friedman LM, Furberg CD, De Mets DL, Reboussin DM, Granger CB. Introduction to clinical trials. In: Fundamentals of clinical trials. Berlin: Springer; 2015. p. 1-23. doi: 10.1007/978-3-319-18539-2_1.

3. Fogel DB. Factors associated with clinical trials that fail and opportunities for improving the likelihood of success: a review. Contemp Clin Trials Commun. 2018;11:156-64. doi: 10.1016/j.conctc.2018.08.001, PMID 30112460.

4. World Health Organization. International Clinical Trials Registry Platform (ICTRP). In: Geneva: World Health Organization. Available form: https://www.who.int/clinical-trials-registry-platform. [Last accessed on 20 Oct 2024].

5. Scannell JW, Blanckley A, Boldon H, Warrington B. Diagnosing the decline in pharmaceutical R&D efficiency. Nat Rev Drug Discov. 2012;11(3):191-200. doi: 10.1038/nrd3681, PMID 22378269.

6. Hutson M. How AI is being used to accelerate clinical trials. Nature. 2024;627(8003):S2-5. doi: 10.1038/d41586-024-00753-x, PMID 38480968.

7. Howard J. Artificial intelligence: implications for the future of work. Am J Ind Med. 2019;62(11):917-26. doi: 10.1002/ajim.23037, PMID 31436850.

8. Jiang F, Jiang Y, Zhi H, Dong Y, Li H, Ma S. Artificial intelligence in healthcare: past present and future. Stroke Vasc Neurol. 2017;2(4):230-43. doi: 10.1136/svn-2017-000101, PMID 29507784.

9. Topol EJ. High performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25(1):44-56. doi: 10.1038/s41591-018-0300-7, PMID 30617339.

10. Dzobo K, Adotey S, Thomford NE, Dzobo W. Integrating artificial and human intelligence: a partnership for responsible innovation in biomedical engineering and medicine. Omics. 2020;24(5):247-63. doi: 10.1089/omi.2019.0038, PMID 31313972.

11. Krajcer Z. Artificial intelligence in cardiovascular medicine: historical overview, current status and future directions. Tex Heart Inst J. 2022;49(2):e207527. doi: 10.14503/THIJ-20-7527, PMID 35481866.

12. Shah P, Kendall F, Khozin S, Goosen R, Hu J, Laramie J. Artificial intelligence and machine learning in clinical development: a translational perspective. NPJ Digit Med. 2019;2:69. doi: 10.1038/s41746-019-0148-3, PMID 31372505.

13. Zhang B, Zhang L, Chen Q, Jin Z, Liu S, Zhang S. Harnessing artificial intelligence to improve clinical trial design. Commun Med (Lond). 2023;3(1):191. doi: 10.1038/s43856-023-00425-3, PMID 38129570.

14. Andreoletti M, Senkalfa B, Blasimme A. Ongoing and planned randomized controlled trials of AI in medicine: an analysis of Clinicaltrials.gov registration data; 2024 Jul 9. medRxiv. doi: 10.1101/2024.07.09.24310133.

15. Hajim WI, Zainudin S, Mohd Daud KM, Alheeti K. Optimized models and deep learning methods for drug response prediction in cancer treatments: a review. Peer J Comput Sci. 2024;10:e1903. doi: 10.7717/peerj-cs.1903, PMID 38660174.

16. Guellil I, Wu J, Pradipta Gema A, Francis F, Berrachedi Y, Chenni N. Natural language processing for detecting adverse drug events: a systematic review protocol. NIHR Open Res. 2023;3:67. doi: 10.3310/nihropenres.13504.3, PMID 39931191.

17. Rojas Carabali W, Agrawal R, Gutierrez Sinisterra L, Baxter SL, Cifuentes Gonzalez C, Wei YC. Natural language processing in medicine and ophthalmology: a review for the 21st-century clinician. Asia Pac J Ophthalmol (Phila). 2024;13(4):100084. doi: 10.1016/j.apjo.2024.100084, PMID 39059557.

18. Bi WL, Hosny A, Schabath MB, Giger ML, Birkbak NJ, Mehrtash A. Artificial intelligence in cancer imaging: clinical challenges and applications. CA Cancer J Clin. 2019;69(2):127-57. doi: 10.3322/caac.21552, PMID 30720861.

19. Bi WL, Hosny A, Schabath MB, Giger ML, Birkbak NJ, Mehrtash A. Artificial intelligence in cancer imaging: clinical challenges and applications. CA Cancer J Clin. 2019;69(2):127-57. doi: 10.3322/caac.21552, PMID 30720861.

20. Metzger A, Laufer J, Feit F, Pohl K. A user study on explainable online reinforcement learning for adaptive systems. ACM Trans Auton Adapt Syst. 2024;19(3):1-44. doi: 10.1145/3666005.

21. Amaratunga T. Understanding large language models. Singapore: Apress; 2023. doi: 10.1007/979-8-8688-0017-7.

22. Amaratunga T. Understanding large language models. Singapore: Apress; 2023. p. 1-7. doi: 10.1007/979-8-8688-0017-7.

23. Marey A, Saad AM, Killeen BD, Gomez C, Tregubova M, Unberath M. Generative artificial intelligence: enhancing patient education in cardiovascular imaging. BJR Open. 2024;6(1):tzae018. doi: 10.1093/bjro/tzae018, PMID 39086557.

24. Lomurno E, Matteucci M. Federated knowledge recycling: privacy preserving synthetic data sharing. Pattern Recognition Letters. 2025;191:124-30. doi: 10.1016/j.patrec.2025.02.030.

25. Tahseen S, Memon MA, Kamran SM, Pathan KT. The ethics of AI in medical research: a call for open and honest discussion. Liaquat Med Res J. 2024;6(2):88-92. doi: 10.38106/LMRJ.2024.6.2-07.

26. Pun FW, Leung GH, Leung HW, Rice J, Schmauck Medina T, Lautrup S. A comprehensive AI driven analysis of large scale omic datasets reveals novel dual-purpose targets for the treatment of cancer and aging. Aging Cell. 2023;22(12):e14017. doi: 10.1111/acel.14017, PMID 37888486.

27. Chinnaiyan K, Mugundhan SL, Narayanasamy D, Mohan M. Revolutionizing healthcare and drug discovery: the impact of artificial intelligence on pharmaceutical development. Curr Drug Ther. 2024 Jul 23;19(7):972-87. doi: 10.2174/0115748855313948240711043701.

28. Jaume G, Peeters T, Song AH, Pettit R, Williamson DF, Oldenburg L. AI driven discovery of morphomolecular signatures in toxicology. bioRxiv. 2024 Jul 23. doi: 10.1101/2024.07.19.604355, PMID 39091765.

29. Moncada Torres A, Van Maaren MC, Hendriks MP, Siesling S, Geleijnse G. Explainable machine learning can outperform cox regression predictions and provide insights in breast cancer survival. Sci Rep. 2021;11(1):6968. doi: 10.1038/s41598-021-86327-7, PMID 33772109.

30. Cassidy JW, Taylor B, editors. Artificial intelligence in oncology drug discovery and development. London: Intech Open; 2020. p. 192. doi: 10.5772/intechopen.88376.

31. Guellil I, Wu J, Pradipta Gema AP, Francis F, Berrachedi Y, Chenni N. Natural language processing for detecting adverse drug events: a systematic review protocol. NIHR Open Res. 2023;3:67. doi: 10.3310/nihropenres.13504.3, PMID 39931191.

32. Gedor M, Desandes E, Chesnel M, Merlin JL, Marchal F, Lambert A. Development of an artificial intelligence system to improve cancer clinical trial eligibility screening. Bull Cancer. 2024;111(5):473-82. doi: 10.1016/j.bulcan.2024.01.010, PMID 38503584.

33. Transformative wearables: how AI and ML are shaping healthcare innovations. Int J Sci Res. Available from: https://www.ijsr.net/getabstract.php?paperid=SR24402055352. [Last accessed on 20 Oct 2024].

34. Bartal A, Jagodnik K, Pliskin N, Seidmann AA. Utilizing AI and social media analytics to discover adverse side effects of GLP-1 receptor agonists; 2024. doi: 10.2139/ssrn.4790676.

35. Franklin JM, Lin KJ, Gatto NM, Rassen JA, Glynn RJ, Schneeweiss S. Real world evidence for assessing pharmaceutical treatments in the context of COVID-19. Clin Pharmacol Ther. 2021;109(4):816-28. doi: 10.1002/cpt.2185, PMID 33529354.

36. Miyasato G, Kasivajjala VC, Misra M, Kumar K, Kadam AS, Friedman HS. AI-driven real time patient identification for randomized controlled trials. J Clin Oncol. 2023;41(16Suppl):e13565. doi: 10.1200/JCO.2023.41.16_suppl.e13565.

37. Shang Z, Li R, Zheng C, Li H, Cui Y. Relative entropy regularized sample-efficient reinforcement learning with continuous actions. IEEE Trans Neural Netw Learn Syst. 2025;36(1):475-85. doi: 10.1109/TNNLS.2023.3329513, PMID 37943648.

38. Bernard Owusu Antwi, Beatrice Oyinkansola Adelakun, Damilola Temitayo Fatogun, Omolara Patricia Olaiya. Enhancing audit accuracy: the role of AI in detecting financial anomalies and fraud. Financ Account Res J. 2024;6(6):1049-68. doi: 10.51594/farj.v6i6.1235.

39. Chan PS, Fang Y, Cheung DH, Zhang Q, Sun F, Mo PK. Effectiveness of chatbots in increasing uptake intention and attitudes related to any type of vaccination: a systematic review and meta-analysis. Appl Psychol Health Well Being. 2024;16(4):2567-97. doi: 10.1111/aphw.12564, PMID 38886054.

40. Khinvasara T, Shankar A, Wong C. Survey of artificial intelligence for automated regulatory compliance tracking. J Eng Res Rep. 2024;26(7):390-406. doi: 10.9734/jerr/2024/v26i71217.

41. Gopeekrishnan A, Arif SA, Liu H. Demo: accelerating patient screening for clinical trials using large language model prompting. In: proceedings of the 2024 IEEE/ACM Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE); 2024. p. 214-5.

42. Zhavoronkov A, Ivanenkov YA, Aliper A, Veselov MS, Aladinskiy VA, Aladinskaya AV. Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nat Biotechnol. 2019;37(9):1038-40. doi: 10.1038/s41587-019-0224-x, PMID 31477924.

43. Sancricca C, Siracusa G, Cappiello C. Enhancing data preparation: insights from a time series case study. J Intell Inf Syst. 2024 Jul 25;62(6):1503-30. doi: 10.1007/s10844-024-00867-8.

44. Nwankwo EI. Google Scholar. Available from: https://scholar.google.com/citations?user=gi0lbyoaaaaj. [Last accessed on 20 Oct 2024].

45. Bain EE, Shafner L, Walling DP, Othman AA, Chuang Stein C, Hinkle J. Use of a novel artificial intelligence platform on mobile devices to assess dosing compliance in a phase 2 clinical trial in subjects with schizophrenia. JMIR Mhealth Uhealth. 2017;5(2):e18. doi: 10.2196/mhealth.7030, PMID 28223265.

46. Barbiero P, Vinas Torne R, Lio P. Graph representation forecasting of patient’s medical conditions: toward a digital twin. Front Genet. 2021;12:652907. doi: 10.3389/fgene.2021.652907, PMID 34603366.

47. Kaissis GA, Makowski MR, Ruckert D, Braren RF. Secure privacy-preserving and federated machine learning in medical imaging. Nat Mach Intelligence. 2020;2(6):305-11. doi: 10.1038/s42256-020-0186-1.

48. Liu X, Cruz Rivera S, Moher D, Calvert MJ, Denniston AK, Spirit AI and Consort-AI Working Group. Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the consort-AI extension. Lancet Digit Health. 2020;2(10):e537-48. doi: 10.1016/S2589-7500(20)30218-1, PMID 33328048.

49. Gichoya JW, Banerjee I, Bhimireddy AR, Burns JL, Celi LA, Chen LC. AI recognition of patient race in medical imaging: a modelling study. Lancet Digit Health. 2022;4(6):e406-14. doi: 10.1016/S2589-7500(22)00063-2, PMID 35568690.

50. Morato De Andrade O, Sousa Alves MA. Using explainable artificial intelligence (XAI) to reduce opacity and address bias in algorithmic models. Rev Thesis Jur. 2024;13(1):3-25. doi: 10.5585/13.2024.26510.

51. Gerke S, Minssen T, Cohen G. Ethical and legal challenges of artificial intelligence-driven healthcare. In: Artificial intelligence in healthcare. London: Elsevier; 2020. p. 295-336. doi: 10.1016/B978-0-12-818438-7.00012-5.

52. U. S. Food and Drug Administration. Digital health innovation action plan. Silver Spring, MD: FDA; 2020.

53. U. S. Food and Drug Administration. FDA releases artificial intelligence/machine learning action plan. In: Silver Spring, MD: FDA. Available from: https://www.fda.gov/news-events/press-announcements/fda-releases-artificial-intelligencemachine-learning-action-plan. [Last accessed on 20 Oct 2024].

54. European Medicines Agency. EMA regulatory science strategy to 2025-draft. Amsterdam: EMA; 2025.

55. Babic B, Gerke S, Evgeniou T, Cohen IG. Beware explanations from AI in health care. Science. 2021;373(6552):284-6. doi: 10.1126/science.abg1834, PMID 34437144.

56. International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human use. ICH Harmonised Guideline Good Clinical Practice (GCP) E6(R3). Geneva: ICH; 2023.

57. Larson DB, Harvey H, Rubin DL, Irani N, Tse JR, Langlotz CP. Regulatory frameworks for development and evaluation of artificial intelligence-based diagnostic imaging algorithms: summary and recommendations. J Am Coll Radiol. 2021;18(3 Pt A):413-24. doi: 10.1016/j.jacr.2020.09.060, PMID 33096088.

58. Kaur I, Ali A. A complete study on machine learning algorithms for medical data analysis. In: Banerjee C, Ghosh A, Chakraborty R, Elngar AA, editors. Fog computing for intelligent cloud IoT systems. Singapore: John Wiley & Sons; 2024. p. 137-72. doi: 10.1002/9781394175345.ch7.

59. Hennekens CH. Issues in the design and conduct of clinical trials. J Natl Cancer Inst. 1984;73(6):1473-6. PMID 6595458.

60. Smith MK, Marshall A. Importance of protocols for simulation studies in clinical drug development. Stat Methods Med Res. 2011;20(6):613-22. doi: 10.1177/0962280210378949, PMID 20688782.

61. Harrison CJ, Sidey Gibbons CJ. Machine learning in medicine: a practical introduction to natural language processing. BMC Med Res Methodol. 2021;21(1):158. doi: 10.1186/s12874-021-01347-1, PMID 34332525.

62. Kingston J. Using artificial intelligence to support compliance with the General Data Protection Regulation. Artif Intell Law. 2017;25(4):429-43. doi: 10.1007/s10506-017-9206-9.

63. Houston L, Probst Y, Yu P, Martin A. Exploring data quality management within clinical trials. Appl Clin Inform. 2018;9(1):72-81. doi: 10.1055/s-0037-1621702, PMID 29388180.

64. Ehsan U, Liao QV, Muller M, Riedl MO, Weisz JD. Expanding explainability: towards social transparency in AI systems. In: Proceedings of the 2021 CHI conference on human factors in computing systems. New York, USA: ACM; 2021. p. 1-19. doi: 10.1145/3411764.3445188.

65. Shah P, Kendall F, Khozin S, Goosen R, Hu J, Laramie J. Artificial intelligence and machine learning in clinical development: a translational perspective. NPJ Digit Med. 2019;2:69. doi: 10.1038/s41746-019-0148-3, PMID 31372505.

66. Liu X, Cruz Rivera S, Moher D, Calvert MJ, Denniston AK, Spirit AI and Consort AI Working Group. Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI extension. Lancet Digit Health. 2020;2(10):e537-48. doi: 10.1016/S2589-7500(20)30218-1, PMID 33328048.

67. Gichoya JW, Banerjee I, Bhimireddy AR, Burns JL, Celi LA, Chen LC. AI recognition of patient race in medical imaging: a modelling study. Lancet Digit Health. 2022;4(6):e406-14. doi: 10.1016/S2589-7500(22)00063-2, PMID 35568690.

68. Woisetschlager H, Isenko A, Wang S, Mayer R, Jacobsen HA. A survey on efficient federated learning methods for foundation model training. In: Proceedings of the 2024 international conference on machine learning; 2024. p. 8317-25.

69. Khozin S, Blumenthal GM, Pazdur R. Real-world data for clinical evidence generation in oncology. J Natl Cancer Inst. 2017;109(11). doi: 10.1093/jnci/djx187, PMID 29059439.

70. Lella L, Licata I, Minati G, Pristipino C, Giulio A, Belvis D. Predictive AI models for the personalized medicine. Rome: Italian National Institute of Health; 2024.

71. Harrer S, Shah P, Antony B, Hu J. Artificial intelligence for clinical trial design. Trends Pharmacol Sci. 2019;40(8):577-91. doi: 10.1016/j.tips.2019.05.005, PMID 31326235.

72. Khanbhai M, Anyadi P, Symons J, Flott K, Darzi A, Mayer E. Applying natural language processing and machine learning techniques to patient experience feedback: a systematic review. BMJ Health Care Inform. 2021;28(1):e100262. doi: 10.1136/bmjhci-2020-100262, PMID 33653690.

73. Ali M, Naeem F, Tariq M, Kaddoum G. Federated learning for privacy preservation in smart healthcare systems: a comprehensive survey. IEEE J Biomed Health Inform. 2023;27(2):778-89. doi: 10.1109/JBHI.2022.3181823, PMID 35696470.

74. Longo L, Goebel R, Lecue F, Kieseberg P, Holzinger A. Explainable artificial intelligence: concepts, applications research challenges and visions. In: Holzinger A, Kieseberg P, Tjoa AM, Weippl E, editors. Machine learning and knowledge extraction. Cham: Springer International Publishing; 2020. p. 1-16. doi: 10.1007/978-3-030-57321-8_1.

75. Holzinger A, Goebel R, Fong R, Moon T, Muller KR, Samek W, editors. Xx AI-beyond explainable AI. Berlin: Springer; 2022.

76. Char DS, Shah NH, Magnus D. Implementing machine learning in health care addressing ethical challenges. N Engl J Med. 2018;378(11):981-3. doi: 10.1056/NEJMp1714229, PMID 29539284.

77. Kokkotou E, Anagnostakis M, Evangelou G, Syrigos NK, Gkiozos I. Real world data and evidence in lung cancer: a review of recent developments. Cancers (Basel). 2024;16(7):1414. doi: 10.3390/cancers16071414, PMID 38611092.

78. Gichoya JW, Banerjee I, Bhimireddy AR, Burns JL, Celi LA, Chen LC. AI recognition of patient race in medical imaging: a modelling study. Lancet Digit Health. 2022;4(6):e406-14. doi: 10.1016/S2589-7500(22)00063-2, PMID 35568690.

79. Shah P, Kendall F, Khozin S, Goosen R, Hu J, Laramie J. Artificial intelligence and machine learning in clinical development: a translational perspective. NPJ Digit Med. 2019;2:69. doi: 10.1038/s41746-019-0148-3, PMID 31372505.

80. Nallamuthu M, Umadevi S, Anandan R. Artificial intelligence powered design of experiments: optimizing abiraterone acetate loaded gelatin nanoparticles for enhanced oral bioavailability of abiraterone acetate. IJAP. 2025;17(4):483-96. doi: 10.22159/ijap.2025v17i4.54437.

Published

07-11-2025

How to Cite

MAHADEVAPPA, M. K., KRISHNAN, G. N., MURTHANNAGARI, V. R., & ARUN, J. (2025). HARNESSING ARTIFICIAL INTELLIGENCE: TRANSFORMING CLINICAL TRIALS FOR THE FUTURE. International Journal of Applied Pharmaceutics, 17(6), 102–110. https://doi.org/10.22159/ijap.2025v17i6.54181

Issue

Section

Review Article(s)

Similar Articles

<< < 98 99 100 101 102 > >> 

You may also start an advanced similarity search for this article.