IMPROVED WOUND HEALING ACTIVITY THROUGH SYNERGISTIC APPROACH OF PUMPKIN SEED OIL AND CURCUMIN LOADED MODEL IN MICROGEL

Authors

  • MARGRET CHANDIRA RAJAPPA Department of Pharmaceutics, Vinayaka Mission’s College of Pharmacy, Vinayaka Mission’s Research Foundation (DU), Ariyanoor, Salem-636308, India https://orcid.org/0000-0001-6364-2340
  • AJITH KANNAN Department of Pharmaceutics, Vinayaka Mission’s College of Pharmacy, Vinayaka Mission’s Research Foundation (DU), Ariyanoor, Salem-636308, India https://orcid.org/0009-0001-7435-5096
  • NAGASUBRAMANIAN VENKATASUBRAMANIAM Department of Pharmaceutics, Vinayaka Mission’s College of Pharmacy, Vinayaka Mission’s Research Foundation (DU), Ariyanoor, Salem-636308, India https://orcid.org/0009-0000-2957-1892
  • LOKESH VENKATACHALAM Department of Pharmaceutics, Vinayaka Mission’s College of Pharmacy, Vinayaka Mission’s Research Foundation (DU), Ariyanoor, Salem-636308, India https://orcid.org/0009-0003-2115-5300
  • SELVARAGAVAN KARNAN Department of Pharmaceutics, Vinayaka Mission’s College of Pharmacy, Vinayaka Mission’s Research Foundation (DU), Ariyanoor, Salem-636308, India https://orcid.org/0009-0009-0113-555X
  • DOMINIC ANTONYSAMY Department of Engineering, Sona College of Technology, Salem-636005, India https://orcid.org/0000-0002-0015-9690

DOI:

https://doi.org/10.22159/ijap.2025v17i5.54322

Keywords:

Curcumin, Wound healing, Lipophilic encapsulation, Microgel, Pumpkin seed oil

Abstract

Objective: This study aimed to develop a curcumin microgel with lipophilic encapsulation using pumpkin seed oil to enhance wound healing.

Methods: Curcumin was analyzed using ultraviolet-visible (UV-Vis) spectrophotometry, and microgels (CP1-CP6) were formulated with pumpkin seed oil encapsulation. Physicochemical tests were performed, and the optimized formulation was selected based on diffusion kinetics. The optimized formulation was subjected to wound healing studies through scratch wound heal assay.

Results: The calibration curve of curcumin showed a correlation coefficient>0.973. Drug-excipient studies revealed excellent compatibility. The optimized formulation, CP5 had the lowest zeta potential and highest viscosity, spreadability, and extrudability. CP5 released 94.59% of curcumin in 8 h, following the Korsmeyer-Peppas model. The minimum effective concentration promoting complete wound healing was 50µg/ml in L6 cell lines. CP5 remained stable for three months at 40±2 °C/75±5% RH.

Conclusion: Pumpkin seed oil effectively encapsulated curcumin, enhancing its wound healing potential. This microgel formulation showed promise for pharmaceutical applications, and future studies can investigate its pharmacodynamics and wound healing mechanisms.

References

1. Cui T, Yu J, Wang CF, Chen S, Li Q, Guo K. Micro‐gel ensembles for accelerated healing of chronic wound via pH regulation. Adv Sci (Weinh). 2022;9(22):e2201254. doi: 10.1002/advs.202201254, PMID 35596608.

2. Ferreira MC, Tuma P, Carvalho VF, Kamamoto F. Complex wounds. Clinics (Sao Paulo). 2006;61(6):571-8. doi: 10.1590/s1807-59322006000600014, PMID 17187095.

3. Guo B, Dong R, Liang Y, Li M. Haemostatic materials for wound healing applications. Nat Rev Chem. 2021;5(11):773-91. doi: 10.1038/s41570-021-00323-z, PMID 37117664.

4. Criollo Mendoza MS, Contreras Angulo LA, Leyva Lopez N, Gutierrez Grijalva EP, Jimenez Ortega LA, Heredia JB. Wound healing properties of natural products: mechanisms of action. Molecules. 2023;28(2):598. doi: 10.3390/molecules28020598, PMID 36677659.

5. Holzer Geissler JC, Schwingenschuh S, Zacharias M, Einsiedler J, Kainz S, Reisenegger P. The impact of prolonged inflammation on wound healing. Biomedicines. 2022;10(4):856. doi: 10.3390/biomedicines10040856, PMID 35453606.

6. Hussain Y, Alam W, Ullah H, Dacrema M, Daglia M, Khan H. Antimicrobial potential of curcumin: therapeutic potential and challenges to clinical applications. Antibiotics (Basel). 2022;11(3):322. doi: 10.3390/antibiotics11030322, PMID 35326785.

7. Olas B. The antioxidant anti-platelet and anti-coagulant properties of phenolic compounds associated with modulation of hemostasis and cardiovascular disease and their possible effect on COVID-19. Nutrients. 2022;14(7):1390. doi: 10.3390/nu14071390, PMID 35406002.

8. Kumari A, Raina N, Wahi A, Goh KW, Sharma P, Nagpal R. Wound healing effects of curcumin and its nanoformulations: a comprehensive review. Pharmaceutics. 2022;14(11):2288. doi: 10.3390/pharmaceutics14112288, PMID 36365107.

9. Bardaa S, Moalla D, Ben Khedir SB, Rebai T, Sahnoun Z. The evaluation of the healing proprieties of pumpkin and linseed oils on deep second degree burns in rats. Pharm Biol. 2016;54(4):581-7. doi: 10.3109/13880209.2015.1067233, PMID 26186459.

10. Reiter E, Jiang Q, Christen S. Anti-inflammatory properties of α-and γ-tocopherol. Mol Aspects Med. 2007 Jan 13;28(5-6):668-91. doi: 10.1016/j.mam.2007.01.003.

11. Liu S, Liu J, He L, Liu L, Cheng B, Zhou F. A comprehensive review on the benefits and problems of curcumin with respect to human health. Molecules. 2022 Jul 8;27(14):4400. doi: 10.3390/molecules27144400, PMID 35889273.

12. Keihanian F, Saeidinia A, Bagheri RK, Johnston TP, Sahebkar A. Curcumin hemostasis thrombosis and coagulation. J Cell Physiol. 2018;233(6):4497-511. doi: 10.1002/jcp.26249, PMID 29052850.

13. Hamilton AE, Gilbert RJ. Curcumin release from biomaterials for enhanced tissue regeneration following injury or disease. Bioengineering (Basel). 2023 Feb 16;10(2):262. doi: 10.3390/bioengineering10020262, PMID 36829756.

14. Bardaa S, Ben Halima N, Aloui F, Ben Mansour R, Jabeur H, Bouaziz M. Oil from pumpkin (Cucurbita pepo L.) seeds: evaluation of its functional properties on wound healing in rats. Lipids Health Dis. 2016 Apr 11;15:73. doi: 10.1186/s12944-016-0237-0, PMID 27068642.

15. Simo G, Fernandez Fernandez E, Vila Crespo J, Ruiperez V, Rodriguez Nogales JM. Research progress in coating techniques of alginate gel polymer for cell encapsulation. Carbohydr Polym. 2017 Aug 15;170:1-14. doi: 10.1016/j.carbpol.2017.04.013, PMID 28521974.

16. Plamper FA, Richtering W. Functional microgels and microgel systems. Acc Chem Res. 2017;50(2):131-40. doi: 10.1021/acs.accounts.6b00544, PMID 28186408.

17. Hu C, Van Bonn P, Demco DE, Bolm C, Pich A. Mechanochemical synthesis of stimuli responsive microgels. Angew Chem Int Ed Engl. 2023;62(34):e202305783. doi: 10.1002/anie.202305783, PMID 37177824.

18. Oberdisse J, Hellweg T. Recent advances in stimuli responsive core shell microgel particles: synthesis characterisation and applications. Colloid Polym Sci. 2020;298(7):921-35. doi: 10.1007/s00396-020-04629-0.

19. Sharma JB, Sherry S, Bhatt S, Saini V, Kumar M. Development and validation of UV-visible spectrophotometric method for the estimation of curcumin and tetrahydrocurcumin in simulated intestinal fluid. Res J Pharm Technol. 2021;14(6):2971-5. doi: 10.52711/0974-360X.2021.00520.

20. Hazra K, Kumar R, Sarkar BK, Chowdary YA, Devgan M, Ramaiah M. UV-visible spectrophotometric estimation of curcumin in nanoformulation. Int J Pharmacogn. 2015;2(3):127-30. doi: 10.13040/IJPSR.0975-8232.IJP.2(3).127-30.

21. Khan MI, Madni MA, Ahmad S, Khan A. ATR-FTIR based pre and post formulation compatibility studies for the design of Niosomal drug delivery system containing nonionic amphiphiles and chondroprotective drug. J Chem Soc Pak. 2015;37(3):527-33.

22. Torres O, Murray B, Sarkar A. Emulsion microgel particles: novel encapsulation strategy for lipophilic molecules. Trends Food Sci Technol. 2016 Sep;55:98-108. doi: 10.1016/j.tifs.2016.07.006.

23. Shukla SK, Sharma AK, Gupta V, Yashavarddhan MH. Pharmacological control of inflammation in wound healing. J Tissue Viability. 2019 Sep 14;28(4):218-22. doi: 10.1016/j.jtv.2019.09.002, PMID 31542301.

24. Petrochenko PE, Pavurala N, Wu Y, Yee Wong S, Parhiz H, Chen K. Analytical considerations for measuring the globule size distribution of cyclosporine ophthalmic emulsions. Int J Pharm. 2018;550(1-2):229-39. doi: 10.1016/j.ijpharm.2018.08.030, PMID 30125649.

25. Echlin P. Handbook of sample preparation for scanning electron microscopy and X-ray microanalysis. 1st ed. Berlin: Springer; 2011. doi: 10.1007/978-0-387-85731-2.

26. Zhang Z, Zhang R, Zou L, Mc Clements DJ. Protein encapsulation in alginate hydrogel beads: effect of pH on microgel stability protein retention and protein release. Food Hydrocoll. 2016 Jul 1;58:308-15. doi: 10.1016/j.foodhyd.2016.03.015.

27. Feng R, Wang L, Zhou P, Luo Z, Li X, Gao L. Development of the pH responsive chitosan alginate based microgel for encapsulation of Jughans regia L. polyphenols under simulated gastrointestinal digestion in vitro. Carbohydr Polym. 2020 Dec;250:116917. doi: 10.1016/j.carbpol.2020.116917, PMID 33049889.

28. Ching SH, Bansal N, Bhandari B. Rheology of emulsion filled alginate microgel suspensions. Food Res Int. 2016 Feb;80:50-60. doi: 10.1016/j.foodres.2015.12.016.

29. Yadav P, Shah S, Tyagi CK. Formulation and evaluation of tinidazole microgel for skin delivery. Res J Top Cosmet Sci. 2021;12(1):43-50. doi: 10.52711/2321-5844.2021.00007.

30. Reddy Hv R, Bhattacharyya S. In vitro evaluation of mucoadhesive in situ nanogel of celecoxib for buccal delivery. Ann Pharm Fr. 2021;79(4):418-30. doi: 10.1016/j.pharma.2021.01.006, PMID 33515589.

31. Bhanja S, Kumar PK, Sudhakar M, Das AK. Formulation and evaluation of diclofenac transdermal gel. J Adv Pharm Educ Res. 2013;3(3):248-59. doi: 10.51847/xNRLNxi.

32. Patel HK, Barot BS, Parejiya PB, Shelat PK, Shukla A. Topical delivery of clobetasol propionate loaded microemulsion based gel for effective treatment of vitiligo: ex vivo permeation and skin irritation studies. Colloids Surf B Biointerfaces. 2013 Feb 1;102:86-94. doi: 10.1016/j.colsurfb.2012.08.011, PMID 23000677.

33. Kamath PP, Rajeevan R, Maity S, Nayak Y, Narayan R, Mehta CH. Development of nanostructured lipid carriers loaded caffeic acid topical cream for prevention of inflammation in Wistar rat model. J App Pharm Sc. 2022 Jan 1;13(1):64-75. doi: 10.7324/JAPS.2023.130106-1.

34. Proksch E. pH in nature humans and skin. J Dermatol. 2018 Jun 4;45(9):1044-52. doi: 10.1111/1346-8138.14489, PMID 29863755.

35. Paarakh MP, Jose PA, Setty CM, Peterchristoper GV. Release kinetics-concepts and applications. Int Res J Pharm Technol. 2018;8(1):12-20. doi: 10.31838/ijprt/08.01.02.

36. Costa P, Sousa Lobo JM. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13(2):123-33. doi: 10.1016/s0928-0987(01)00095-1, PMID 11297896.

37. Patra D, Sleem F. A new method for pH triggered curcumin release by applying poly(l-lysine) mediated nanoparticle congregation. Anal Chim Acta. 2013 Aug 2;795:60-8. doi: 10.1016/j.aca.2013.07.063, PMID 23998538.

38. Sharma M, Inbaraj BS, Dikkala PK, Sridhar K, Mude AN, Narsaiah K. Preparation of curcumin hydrogel beads for the development of functional KULFI: a tailoring delivery system. Foods. 2022 Jan 11;11(2):182. doi: 10.3390/foods11020182, PMID 35053917.

39. Chester D, Kathard R, Nortey J, Nellenbach K, Brown AC. Viscoelastic properties of microgel thin films control fibroblast modes of migration and pro-fibrotic responses. Biomaterials. 2018 Dec;185:371-82. doi: 10.1016/j.biomaterials.2018.09.012, PMID 30292092.

40. Li S, Dou W, Ji W, Li X, Chen N, Ji Y. Tissue adhesive stretchable and compressible physical double crosslinked microgel integrated hydrogels for dynamic wound care. Acta Biomater. 2024 Aug;184:186-200. doi: 10.1016/j.actbio.2024.06.030, PMID 38936752.

41. FZ, RR, KS. A review on stability testing guidelines of pharmaceutical products. Asian J Pharm Clin Res. 2020;13(10):3-9. doi: 10.22159/ajpcr.2020.v13i10.38848.

42. Chandira RM, Pethappachetty P, Venkatasubramaniam N, Antony Samy D. Formulation and comparison of glucomannan metallocomplexes made of cobalt and copper. Asian J Biol Life Sci. 2022;11(2):564-9. doi: 10.5530/ajbls.2022.11.76.

43. Akbik D, Ghadiri M, Chrzanowski W, Rohanizadeh R. Curcumin as a wound healing agent. Life Sci. 2014;116(1):1-7. doi: 10.1016/j.lfs.2014.08.016, PMID 25200875.

44. Jin MJ, Han HK. Improvement of oral bioavailability of curcumin via a novel solid lipid based nanosuspension system. J Drug Deliv Sci Technol. 2010;20:77-81.

45. Zheng B, Mc Clements DJ. Formulation of more efficacious curcumin delivery systems using colloid science: enhanced solubility stability and bioavailability. Molecules. 2020;25(12):2791. doi: 10.3390/molecules25122791, PMID 32560351.

46. Kadam PV, Bhingare CL, Nikam RY, Pawar SA. Development and validation of UV spectrophotometric method for the estimation of curcumin in cream formulation. Pharm Methods. 2013;4(2):43-5. doi: 10.1016/j.phme.2013.08.002.

47. Sharma M, Gulati D, Kamboj A, Arora S. Simultaneous estimation of curcumin and gentamicin by UV-vis spectrometric methods or derivative spectroscopic techniques. Biomed Pharmacol J. 2023;16(4):2283-91. doi: 10.13005/bpj/2804.

48. Mondal S, Ghosh S, Moulik SP. Stability of curcumin in different solvent and solution media: UV-visible and steady state fluorescence spectral study. J Photochem Photobiol B. 2016 May;158:212-8. doi: 10.1016/j.jphotobiol.2016.03.004, PMID 26985735.

49. Gopi S, Amalraj A, Varma K. Curcumin and its formulations: a review of past decade research. Int J Pharm Sci Res. 2020;11(12):5830-45.

50. Ahmed K, Li Y, Mc Clements DJ. Nanoemulsion and emulsion based delivery systems for curcumin: encapsulation and release properties. Food Hydrocoll. 2020;87:104449. doi: 10.1016/j.foodhyd.2018.08.037.

51. Suresh D, Gurudatt NG, Umesh M. Curcumin based formulations: infra-red spectroscopic investigation and in vitro evaluation of their chemopreventive potential. Spectrochim Acta A Mol Biomol Spectrosc. 2020;115:703-7.

52. Sharma RA, Steward WP, Gescher AJ. Pharmacokinetics and pharmacodynamics of curcumin. Adv Exp Med Biol. 2007;595:453-70. doi: 10.1007/978-0-387-46401-5_20, PMID 17569224.

53. Zhang H, Lin R, Zhang Y. Curcumin loaded nanoparticles for enhanced anti-cancer effects and physicochemical stability: ATR-FTIR and DSC studies. Mater Sci Eng C Mater Biol Appl. 2021;120:111774.

54. Anand P, Sundaram C, Jhurani S, Kunnumakkara AB, Aggarwal BB. Curcumin and cancer: an ‘old-age’ disease with an ‘age-old’ solution. Cancer Lett. 2008;267(1):133-64. doi: 10.1016/j.canlet.2008.03.025, PMID 18462866.

55. Torres O, Murray B, Sarkar A. Emulsion microgel particles: novel encapsulation strategy for lipophilic molecules. Trends Food Sci Technol. 2016 Sep;55:98-108. doi: 10.1016/j.tifs.2016.07.006.

56. Yallapu MM, Jaggi M, Chauhan SC. Curcumin nanoformulations: a future nanomedicine for cancer. Drug Discov Today. 2012;17(1-2):71-80. doi: 10.1016/j.drudis.2011.09.009, PMID 21959306.

57. Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev. 2013;65(1):36-48. doi: 10.1016/j.addr.2012.09.037, PMID 23036225.

58. Cerra S, Salamone TA, Sciubba F, Marsotto M, Battocchio C, Nappini S. Study of the interaction mechanism between hydrophilic thiol capped gold nanoparticles and melamine in aqueous medium. Colloids Surf B Biointerfaces. 2021 Jul;203:111727. doi: 10.1016/j.colsurfb.2021.111727, PMID 33819818.

59. Dixit N, Malipeddi VR. Effect of charge on drug encapsulation and release kinetics from microgels. Int J Pharm Sci Res. 2021;12(5):2305-12. doi: 10.1016/j.ijpsr.2021.01.004.

60. Meenach SA, Anderson KW, Hilt JZ. Sustained release drug delivery from thermosensitive microgels. Eur J Pharm Biopharm. 2010;74(2):243-9. doi: 10.1016/j.ejpb.2009.10.010.

61. Kosmulski M, Maczka E. Zeta potential and particle size in dispersions of alumina in 50-50 w/w ethylene glycol-water mixture. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2022 Sep 13;654:130168. doi: 10.1016/j.colsurfa.2022.130168.

62. Wang H, Adeleye AS, Huang Y, Li F, Keller AA. Heteroaggregation of nanoparticles with biocolloids and geocolloids. Adv Colloid Interface Sci. 2015 Jul 22;226(A):24-36. doi: 10.1016/j.cis.2015.07.002, PMID 26233495.

63. Lukic M, Pantelic I, Savic SD. Towards optimal pH of the skin and topical formulations: from the current state of the art to tailored products. Cosmetics. 2021 Aug 4;8(3):69. doi: 10.3390/cosmetics8030069.

64. Das IJ, Bal T. pH factors in chronic wound and pH-responsive polysaccharide based hydrogel dressings. Int J Biol Macromol. 2024 Aug 28;279(1):135118. doi: 10.1016/j.ijbiomac.2024.135118, PMID 39208902.

65. Jones EM, Cochrane CA, Percival SL. The effect of pH on the extracellular matrix and biofilms. Adv Wound Care. 2015;4(7):431-9. doi: 10.1089/wound.2014.0538, PMID 26155386.

66. Safitri FI, Nawangsari D, Febrina D. Overview: application of carbopol 940 in gel. Adv Health Sci Res. 2021 Jan 1;34:80-4. doi: 10.2991/ahsr.k.210127.018.

67. Mijaljica D, Townley JP, Klionsky DJ, Spada F, Lai M. The origin intricate nature and role of the skin surface pH (PHSS) in barrier integrity eczema and psoriasis. Cosmetics. 2025 Feb 3;12(1):24. doi: 10.3390/cosmetics12010024.

68. Nnamani P, Kenechukwu F, Okoye C, Attama A. Surface engineered oral sub-micron particles and topical microgels matrixed with transcutol-HP/Capra hircus composite for amplification of piroxicam delivery and anti-inflammatory activity. Lett Appl Nanobiosci. 2024 Mar 30;13(1):15. doi: 10.33263/LIANBS131.015.

69. Ansel HC, Popovich NG, Allen LV. Pharmaceutical dosage forms and drug delivery systems. 9th ed. Philadelphia: Lippincott Williams & Wilkins; 2011.

70. Manavalan R, Ramasamy C. Physical pharmaceutics. 11th ed. Hyderabad: Pharmamed Press; 2017.

71. PP, MP, KM, Rkkvv S, NT. Formulation and evaluation of tylophora indica extract loaded topical herbal microgel for rheumatoid arthritis. Int J Drug Deliv Technol. 2024 Dec;14(4):1139-47. doi: 10.25258/ijddt.14.4.31.

72. Binder L, Mazal J, Petz R, Klang V, Valenta C. The role of viscosity on skin penetration from cellulose ether based hydrogels. Skin Res Technol. 2019 May 6;25(5):725-34. doi: 10.1111/srt.12709, PMID 31062432.

73. Oliveira R, Almeida IF. Patient centric design of topical dermatological medicines. Pharmaceuticals (Basel). 2023 Apr 19;16(4):617. doi: 10.3390/ph16040617, PMID 37111373.

74. Mu Y, Zhao L, Shen L. Medication adherence and pharmaceutical design strategies for pediatric patients: an overview. Drug Discov Today. 2023 Sep 13;28(11):103766. doi: 10.1016/j.drudis.2023.103766, PMID 37708932.

75. Patil PB, Chaudhari PD. Formulation and evaluation of mucoadhesive microspheres of propranolol hydrochloride using sodium alginate. Int J Pharm Pharm Sci. 2015;7(9):421-6.

76. McClements DJ. Designing biopolymer microgels to encapsulate protect and deliver bioactive components: physicochemical aspects. Adv Colloid Interface Sci. 2017 Feb;240:31-59. doi: 10.1016/j.cis.2016.12.005, PMID 28034309.

77. Heikal LA, Ashour AA, Aboushanab AR, El Kamel AH, Zaki II, El Moslemany RM. Microneedles integrated with atorvastatin loaded pumpkisomes for breast cancer therapy: a localized delivery approach. J Control Release. 2024 Oct 19;376:354-68. doi: 10.1016/j.jconrel.2024.10.013, PMID 39413849.

78. Lacatusu I, Arsenie LV, Badea G, Popa O, Oprea O, Badea N. New cosmetic formulations with broad photoprotective and antioxidative activities designed by amaranth and pumpkin seed oils nanocarriers. Ind Crops Prod. 2018 Jul 17;123:424-33. doi: 10.1016/j.indcrop.2018.06.083.

79. Madhavi BR, Murthy TE, Rani AP. Design and evaluation of controlled release oral matrix tablet formulations of zidovudine using hydrophilic polymers. Int J Pharm Pharm Sci. 2011;3(3):101-6.

80. Jaiswal M, Kumar A, Sharma S. Nanoemulsions loaded carbopol® 934 based gel for intranasal delivery of neuroprotective Centella asiatica extract: in vitro and ex-vivo permeation study. J Pharm Investig. 2016;46(1):79-89. doi: 10.1007/s40005-016-0228-1.

81. Popova EV, Morozova PV, Uspenskaya MV, Radilov AS. Sodium alginate and carbopol microcapsules: preparation polyphenol encapsulation and release efficiency. Russ Chem Bull. 2021;70(7):1335-40. doi: 10.1007/s11172-021-3220-5.

82. Smith PA. Carbon fiber reinforced plastics properties. In: Kelly A, Zweben C, editors. Comprehensive composite materials. Oxford: Elsevier; 2000. p. 107-50. doi: 10.1016/B0-08-042993-9/00072-3.

83. Suhail M, Vu QL, Wu PC. Formulation characterization and in vitro drug release study of Β-cyclodextrin based smart hydrogels. Gels. 2022;8(4):207. doi: 10.3390/gels8040207, PMID 35448108.

84. Singh B, Singh J, Sharma V, Sharma P, Kumar R. Functionalization of bioactive moringa gum for designing hydrogel wound dressings. Hybrid Advances. 2023 Dec;4:100096. doi: 10.1016/j.hybadv.2023.100096.

85. Song Z, Wen Y, Teng F, Wang M, Liu N, Feng R. Carbopol 940 hydrogel containing curcumin loaded micelles for skin delivery and application in inflammation treatment and wound healing. New J Chem. 2022 Jan 1;46(8):3674-86. doi: 10.1039/D1NJ04719A.

86. Ali HH, Hussein AA. Oral nanoemulsions of candesartan cilexetil: formulation characterization and in vitro drug release studies. AAPS Open. 2017 Jun 2;3(1):2-16. doi: 10.1186/s41120-017-0016-7.

87. Gomez Carracedo A, Alvarez Lorenzo C, Gomez Amoza JL, Concheiro A. Glass transitions and viscoelastic properties of Carbopol® and Noveon® compacts. International Journal of Pharmaceutics. 2004;274(1-2):233-43. doi: 10.1016/j.ijpharm.2004.01.023.

88. Varma MV, Kaushal AM, Garg A, Garg S. Factors affecting mechanism and kinetics of drug release from matrix-based oral controlled drug delivery systems. Am J Drug Deliv. 2004 Jan 1;2(1):43-57. doi: 10.2165/00137696-200402010-00003.

89. Kamaly N, Yameen B, Wu J, Farokhzad OC. Degradable controlled release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem Rev. 2016 Feb 8;116(4):2602-63. doi: 10.1021/acs.chemrev.5b00346, PMID 26854975.

90. Kelly SM, Upadhyay AK, Mitra A, Narasimhan B. Analyzing drug release kinetics from water soluble polymers. Ind Eng Chem Res. 2019;58(18):7428-37. doi: 10.1021/acs.iecr.8b05800.

91. Qian F, Zhang F, Tao X, Taylor LS. ATR-FTIR spectroscopy to study amorphous dispersions: polymer interactions and physical stability. J Pharm Sci. 2011;100(7):2800-15.

92. Sinha P, Ubaidulla U, Nayak AK. Okra (Hibiscus esculentus) gum alginate blend mucoadhesive beads for controlled glibenclamide release. Int J Biol Macromol. 2015 Jan;72:1069-75. doi: 10.1016/j.ijbiomac.2014.10.002, PMID 25312603.

93. Singh R, Lillard JW. Nanoparticle based targeted drug delivery. Exp Mol Pathol. 2009 Jan 8;86(3):215-23. doi: 10.1016/j.yexmp.2008.12.004, PMID 19186176.

94. Ortiz AC, Yanez O, Salas Huenuleo E, Morales JO. Development of a nanostructured lipid carrier (NLC) by a low energy method comparison of release kinetics and molecular dynamics simulation. Pharmaceutics. 2021 Apr 10;13(4):531. doi: 10.3390/pharmaceutics13040531, PMID 33920242.

95. Arkhipov VP, Arkhipov RV, Petrova EV, Filippov A. Abnormal diffusion behavior and aggregation of oxyethylated alkylphenols in aqueous solutions near their cloud point. J Mol Liq. 2022 Apr 22;358:119203. doi: 10.1016/j.molliq.2022.119203.

96. Reis R, Sipahi H, Dinc O, Kavaz T, Charehsaz M, Dimoglo A. Toxicity mutagenicity and stability assessment of simply produced electrolyzed water as a wound healing agent in vitro. Hum Exp Toxicol. 2021;40(3):452-63. doi: 10.1177/0960327120952151, PMID 32909829.

97. Sun Q, Rabbani P, Takeo M, Lee SH, Lim CH, Noel ES. Dissecting Wnt signaling for melanocyte regulation during wound healing. J Invest Dermatol. 2018 Feb 8;138(7):1591-600. doi: 10.1016/j.jid.2018.01.030, PMID 29428355.

98. Gupta R, Priya A, Chowdhary M, Batra VV, Jyotsna N, Nagarajan P. Pigmented skin exhibits accelerated wound healing compared to the nonpigmented skin in guinea pig model. iScience. 2023 Oct 7;26(11):108159. doi: 10.1016/j.isci.2023.108159, PMID 37927554.

99. Shin J, Yang SJ, Lim Y. Gamma tocopherol supplementation ameliorated hyper-inflammatory response during the early cutaneous wound healing in alloxan-induced diabetic mice. Exp Biol Med (Maywood). 2017;242(5):505-15. doi: 10.1177/1535370216683836, PMID 28211759.

100. Dai X, Liu J, Zheng H, Wichmann J, Hopfner U, Sudhop S. Nano-formulated curcumin accelerates acute wound healing through Dkk-1-mediated fibroblast mobilization and MCP-1-mediated anti-inflammation. NPG Asia Mater. 2017;9(3):e368. doi: 10.1038/am.2017.31.

Published

07-09-2025

How to Cite

RAJAPPA, M. C., KANNAN, A., VENKATASUBRAMANIAM, N., VENKATACHALAM, L., KARNAN, S., & ANTONYSAMY, D. (2025). IMPROVED WOUND HEALING ACTIVITY THROUGH SYNERGISTIC APPROACH OF PUMPKIN SEED OIL AND CURCUMIN LOADED MODEL IN MICROGEL. International Journal of Applied Pharmaceutics, 17(5), 238–252. https://doi.org/10.22159/ijap.2025v17i5.54322

Issue

Section

Original Article(s)

Similar Articles

<< < 78 79 80 81 82 > >> 

You may also start an advanced similarity search for this article.