RECENT ADVANCES IN NANOCARRIERS FOR TARGETED CANCER THERAPY

Authors

  • MAYUR R. DANDEKAR Department of Pharmaceutical Quality Assurances, Datta Meghe College of Pharmacy DMIHER (Deemed to be University), Wardha, Maharashtra-442001, India
  • UMESH B. TELRANDHE Department of Pharmaceutical Quality Assurances, Datta Meghe College of Pharmacy DMIHER (Deemed to be University), Wardha, Maharashtra-442001, India
  • YASH SALVE Department of Pharmaceutical Quality Assurances, Datta Meghe College of Pharmacy DMIHER (Deemed to be University), Wardha, Maharashtra-442001, India https://orcid.org/0009-0003-7015-5219
  • ISHA MIRZAPURE Department of Pharmaceutical Quality Assurances, Datta Meghe College of Pharmacy DMIHER (Deemed to be University), Wardha, Maharashtra-442001, India

DOI:

https://doi.org/10.22159/ijap.2025v17i6.54347

Keywords:

Nanocarriers, Cancer therapy, Drug delivery, Targeted Therapy, Clinical advances, Future perspectives

Abstract

One treatment option is detailed re-evaluating cancer for a very innovative and efficacious form of therapy. Nanocarrier-based delivery systems have offered an impetus in the form of targeted cancer drug delivery under better drug solubility, controlled release, and selective accumulation in tumour tissue. This review intends to address the major advances in applying nanocarrier-based cancer treatment, such as liposomes, polymeric nanoparticles, dendrimers, micelles, and carbon-and inorganic nanoparticle-based medication. Every type of nanocarrier has very clear and peculiar features that determine the increase in bioavailability and tumour targeting through passive (enhanced permeability retention effect) and active targeting (ligand-receptor interactions, pH-sensitive mechanisms, and stimuli-responsive drug release). Nanocarriers, including liposomes, polymeric nanoparticles, dendrimers, and micelles, have shown significant promise in targeted cancer therapy due to their ability to improve drug solubility, prolong circulation time, and enhance site-specific delivery while minimising systemic toxicity. Among the various platforms discussed, polymeric nanoparticles-particularly those utilising biodegradable polymers like PLGA-emerged as the most promising due to their tunable surface properties, sustained drug release profiles, and favorable biocompatibility. Despite their advantages, challenges such as biological heterogeneity, off-target accumulation, and regulatory barriers hinder clinical translation. Future efforts should focus on developing smart nanocarriers capable of stimuli-responsive release and patient-specific adaptability to overcome these limitations. The future of cancer therapy can, therefore, be expected to see a fantastic horizon in patient outcomes with the integration of such innovative platforms coming from nanocarrier with personalized medicine approaches.

References

1. Sahin U, Tureci O. Personalized vaccines for cancer immunotherapy. Science. 2018;359(6382):1355-60. doi: 10.1126/science.aar7112, PMID 29567706.

2. Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev. 2002 Aug 29;54(5):631-51. doi: 10.1016/s0169-409x(02)00044-3, PMID 12204596.

3. Ferrari M. Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer. 2005 Mar;5(3):161-71. doi: 10.1038/nrc1566, PMID 15738981.

4. Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: progress challenges and opportunities. Nat Rev Cancer. 2017 Jan;17(1):20-37. doi: 10.1038/nrc.2016.108, PMID 27834398.

5. Alexis F, Pridgen E, Molnar LK, Farokhzad OC. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm. 2008 Jul-Aug;5(4):505-15. doi: 10.1021/mp800051m, PMID 18672949.

6. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release. 2000 Mar 1;65(1-2):271-84. doi: 10.1016/s0168-3659(99)00248-5, PMID 10699287.

7. Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov. 2005 Feb;4(2):145-60. doi: 10.1038/nrd1632, PMID 15688077.

8. Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev. 2013 Jan;65(1):36-48. doi: 10.1016/j.addr.2012.09.037, PMID 23036225.

9. Wang AZ, Langer R, Farokhzad OC. Nanoparticle delivery of cancer drugs. Annu Rev Med. 2012;63:185-98. doi: 10.1146/annurev-med-040210-162544, PMID 21888516.

10. Petros RA, De Simone JM. Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov. 2010 Aug;9(8):615-27. doi: 10.1038/nrd2591, PMID 20616808.

11. Dhar S, Gu FX, Langer R, Farokhzad OC, Lippard SJ. Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA-PEG nanoparticles. Proc Natl Acad Sci USA. 2008 Nov 11;105(45):17356-61. doi: 10.1073/pnas.0809154105, PMID 18978032.

12. Tran S, De Giovanni PJ, Piel B, Rai P. Cancer nanomedicine: a review of recent success and perspectives. Cancer Nanotechnol. 2017;8(1):5. doi: 10.1186/s40169‑017‑0175‑0.

13. Hare JI, Lammers T, Ashford MB, Puri S, Storm G, Barry ST. Challenges and strategies in anti-cancer nanomedicine development: an industry perspective. Adv Drug Deliv Rev. 2017 Jul;108:25-38. doi: 10.1016/j.addr.2016.04.025, PMID 27137110.

14. Fang J, Nakamura H, Maeda H. The EPR effect: unique features of tumor blood vessels for drug delivery factors involved and limitations and augmentation of the effect. Adv Drug Deliv Rev. 2011 Mar;63(3):136-51. doi: 10.1016/j.addr.2010.04.009, PMID 20441782.

15. Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015 Sep;33(9):941-51. doi: 10.1038/nbt.3330, PMID 26348965.

16. Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent SMANCS. Cancer Res. 1986 Dec 1;46(12 Pt 1):6387-92. PMID 2946403.

17. Choi KY, Swierczewska M, Lee S, Chen X. Protease activated drug development. Theranostics. 2012;2(2):156-78. doi: 10.7150/thno.4068, PMID 22400063.

18. Min Y, Caster JM, Eblan MJ, Wang AZ. Clinical translation of nanomedicine. Chem Rev. 2015 Oct 14;115(19):11147-90. doi: 10.1021/acs.chemrev.5b00116, PMID 26088284.

19. Shi J, Votruba AR, Farokhzad OC, Langer R. Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano Lett. 2010 Sep 8;10(9):3223-30. doi: 10.1021/nl102184c, PMID 20726522.

20. Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. Nanoparticle based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res. 2016 Oct;33(10):2373-87. doi: 10.1007/s11095-016-1958-5, PMID 27299311.

21. Kunjachan S, Ehling J, Storm G, Kiessling F, Lammers T. Noninvasive imaging of nanomedicines and nanotheranostics: principles progress and prospects. Chem Rev. 2015 Oct 14;115(19):10907-37. doi: 10.1021/cr500314d, PMID 26166537.

22. Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev. 2014 Apr;66:2-25. doi: 10.1016/j.addr.2013.11.009, PMID 24270007.

23. Wilhelm S, Tavares AJ, Dai Q, Ohta S, Audet J, Dvorak HF. Analysis of nanoparticle delivery to tumours. Nat Rev Mater. 2016 May 3;1(5):16014. doi: 10.1038/natrevmats.2016.14.

24. Sanna V, Pala N, Sechi M. Targeted therapy using nanotechnology: focus on cancer. Int J Nanomedicine. 2014;9:467-83. doi: 10.2147/IJN.S36654, PMID 24531078.

25. Wicki A, Witzigmann D, Balasubramanian V, Huwyler J. Nanomedicine in cancer therapy: challenges opportunities and clinical applications. J Control Release. 2015 Jul 28;200:138-57. doi: 10.1016/j.jconrel.2014.12.030, PMID 25545217.

26. Jain RK, Stylianopoulos T. Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol. 2010 Nov;7(11):653-64. doi: 10.1038/nrclinonc.2010.139, PMID 20838415.

27. Bae YH, Park K. Targeted drug delivery to tumors: myths reality and possibility. J Control Release. 2011 Apr 10;153(3):198-205. doi: 10.1016/j.jconrel.2011.06.001, PMID 21663778.

28. Kamaly N, Yameen B, Wu J, Farokhzad OC. Degradable controlled release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem Rev. 2016 Jan 13;116(4):2602-63. doi: 10.1021/acs.chemrev.5b00346, PMID 26854975.

29. Dai L, Zhou R, Zhang J, Wang Q, Meng M, Jin G. Redox responsive polymeric nanomedicine for cancer therapy. Front Chem. 2021 Jan 22;8:746.

30. Luo YL, Shiao YS, Huang YF. Release of photoactivatable drugs from plasmonic nanoparticles for targeted cancer therapy. ACS Nano. 2011 Nov 22;5(10):7796-804. doi: 10.1021/nn201592s, PMID 21942498.

31. Karimi M, Sahandi Zangabad P, Baghaee Ravari S, Ghazadeh M, Mirshekari H, Hamblin MR. Smart nanostructures for cargo delivery: uncaging and activating by light. J Am Chem Soc. 2017 Mar 29;139(13):4584-610. doi: 10.1021/jacs.6b08313, PMID 28192672.

32. Wang X, Niu D, Li P, Wu Q, Bo X, Hou Y. Multifunctional mesoporous silica nanocomposites for magnetic targeted and pH-sensitive drug delivery. J Mater Chem B. 2015;3(22):4691-703.

33. Agrawal U, Gupta M, Vyas SP. Cancer nanotechnology: barriers challenges and misconceptions. Ther Deliv. 2011 Dec;2(12):1515-34.

34. Ma X, Yao M, Gao Y, Yue Y, Li Y, Zhang T. Functional immune cell derived exosomes engineered for the trilogy of radiotherapy sensitization. Adv Sci (Weinh). 2022;9(23):e2106031. doi: 10.1002/advs.202106031, PMID 35715382.

35. Ghosh PS, Kim CK, Han G, Forbes NS, Rotello VM. Efficient gene delivery vectors by tuning the surface charge density of amino acid functionalized gold nanoparticles. ACS Nano. 2008 Nov 25;2(11):2213-8. doi: 10.1021/nn800507t, PMID 19206385.

36. Blanco E, Kessinger CW, Sumer BD, Gao J. Multifunctional micellar nanocarriers for tumour-targeted drug delivery. Expert Opin Drug Deliv. 2009 Mar;6(3):343-54. doi: 10.3181/0808-MR-250.

37. Farokhzad OC, Jon S, Khademhosseini A, Tran TN, Lavan DA, Langer R. Nanoparticle aptamer bioconjugates: a new approach for targeting prostate cancer cells. Cancer Res. 2004 Aug 1;64(21):7668-72. doi: 10.1158/0008-5472.CAN-04-2550, PMID 15520166.

38. Ruan S, Xie R, Qin L, Yu M, Xiao W, Hu C. Aggregable nanoparticles enabled chemotherapy and autophagy inhibition combined with anti-PD-L1 antibody for improved glioma treatment. Nano Lett. 2019 Feb 13;19(11):8318-32. doi: 10.1021/acs.nanolett.9b03968, PMID 31610656.

39. Zhang RX, Wong HL, Xue HY, Eoh JY, Wu XY. Nanomedicine of synergistic drug combinations for cancer therapy strategies and perspectives. J Control Release. 2016 Jan 28;240:489-503. doi: 10.1016/j.jconrel.2016.06.012, PMID 27287891.

40. Xu X, Ho W, Zhang X, Bertrand N, Farokhzad OC. Cancer nanomedicine: from targeted delivery to combination therapy. Trends Mol Med. 2015 Apr;21(4):223-32. doi: 10.1016/j.molmed.2015.01.001, PMID 25656384.

41. Zhuang J, Young AP, Xiong MP. Development of anticancer peptide drug conjugates for targeted drug delivery. Ther Deliv. 2016 Jan;7(1):9-26.

42. Kim JY, Choi WI, Kim M, Tae G. Tumour homing size tunable clustered nanoparticles for anticancer therapeutics. ACS Nano. 2014 Jan 28;8(1):935-45.

43. Lammers T, Aime S, Hennink WE, Storm G, Kiessling F. Theranostic nanomedicine. Acc Chem Res. 2011 Oct 18;44(10):1029-38. doi: 10.1021/ar200019c, PMID 21545096.

44. Kelkar SS, Reineke TM. Theranostics: combining imaging and therapy. Bioconjug Chem. 2011 Oct 19;22(10):1879-903. doi: 10.1021/bc200151q, PMID 21830812.

45. Fan W, Yung B, Huang P, Chen X. Nanotechnology for multimodal synergistic cancer therapy. Chem Rev. 2017 Jan 11;117(22):13566-638. doi: 10.1021/acs.chemrev.7b00258, PMID 29048884.

46. Conde J, Dias JT, Grazu V, Moros M, Baptista PV, De La Fuente JM. Revisiting 30 years of biofunctionalization and surface chemistry of inorganic nanoparticles for nanomedicine. Front Chem. 2014 Apr 28;2:48. doi: 10.3389/fchem.2014.00048, PMID 25077142.

47. Park J, Choi Y, Chang H, Um W, Ryu JH, Kwon IC. Alliance with EPR effect: combined strategies to improve the EPR effect in the tumor microenvironment. Theranostics. 2019;9(26):8073-90. doi: 10.7150/thno.37198, PMID 31754382.

48. Albanese A, Tang PS, Chan WC. The effect of nanoparticle size shape and surface chemistry on biological systems. Annu Rev Biomed Eng. 2012 Aug 15;14:1-16. doi: 10.1146/annurev-bioeng-071811-150124, PMID 22524388.

49. Li SD, Huang L. Pharmacokinetics and biodistribution of nanoparticles. Mol Pharm. 2008 May-Jun;5(4):496-504. doi: 10.1021/mp800049w, PMID 18611037.

50. Harris JM, Chess RB. Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov. 2003 Mar;2(3):214-21. doi: 10.1038/nrd1033, PMID 12612647.

51. Ventola CL. The nanomedicine revolution: part 1: Emerging concepts. PT. 2012 Oct;37(9):512-25. PMID 23066345.

52. Parveen S, Misra R, Sahoo SK. Nanoparticles: a boon to drug delivery therapeutics diagnostics and imaging. Nanomedicine. 2012 Jan;8(2):147-66. doi: 10.1016/j.nano.2011.05.016, PMID 21703993.

53. Wang Y, Kohane DS, Langer R. Smart and multifunctional nanocarriers for precision oncology. Nat Rev Drug Discov. 2022;21(7):524-47. doi: 10.1038/s41573-022-00403-y.

54. Riehemann K, Schneider SW, Luger TA, Godin B, Ferrari M, Fuchs H. Nanomedicine challenge and perspectives. Angew Chem Int Ed Engl. 2009;48(5):872-97. doi: 10.1002/anie.200802585, PMID 19142939.

55. Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC. Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther. 2008 May;83(5):761-9. doi: 10.1038/sj.clpt.6100400, PMID 17957183.

56. Ferrari M. Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer. 2005 Mar;5(3):161-71. doi: 10.1038/nrc1566, PMID 15738981.

57. Brannon Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev. 2004;56(11):1649-59. doi: 10.1016/j.addr.2004.02.014, PMID 15350294.

58. Chen G, Roy I, Yang C, Prasad PN. Theranostic nanomedicine for cancer. Nat Biomed Eng. 2023;7(2):113-28. doi: 10.1038/s41551-022-00963-2.

59. Davis ME, Chen ZG, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov. 2008 Sep;7(9):771-82. doi: 10.1038/nrd2614, PMID 18758474.

60. Duncan R, Gaspar R. Nanomedicine(s) under the microscope. Mol Pharm. 2011 Oct 3;8(6):2101-41. doi: 10.1021/mp200394t, PMID 21974749.

61. Farokhzad OC, Langer R. Impact of nanotechnology on drug delivery. ACS Nano. 2009 Jan 27;3(1):16-20. doi: 10.1021/nn900002m, PMID 19206243.

62. Cheng CJ, Tietjen GT, Saucier Sawyer JK, Saltzman WM. A holistic approach to targeting disease with polymeric nanoparticles. Nat Rev Drug Discov. 2015 Apr;14(4):239-47. doi: 10.1038/nrd4503, PMID 25598505.

63. Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015 Sep;33(9):941-51. doi: 10.1038/nbt.3330, PMID 26348965.

64. Zhang L, Chan JM, Gu FX, Rhee JW, Wang AZ, Radovic Moreno AF. Self-assembled lipid polymer hybrid nanoparticles: a robust drug delivery platform. ACS Nano. 2008 Aug 26;2(8):1696-702. doi: 10.1021/nn800275r, PMID 19206374.

65. Park K. Facing the truth about nanotechnology in drug delivery. ACS Nano. 2013 Sep 24;7(9):7442-7. doi: 10.1021/nn404501g, PMID 24490875.

66. Petros RA, DeSimone JM. Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov. 2010 Aug;9(8):615-27. doi: 10.1038/nrd2591, PMID 20616808.

67. Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. Nanoparticle based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res. 2016 Oct;33(10):2373-87. doi: 10.1007/s11095-016-1958-5, PMID 27299311.

68. Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev. 2003 Feb 10;55(3):329-47. doi: 10.1016/s0169-409x(02)00228-4, PMID 12628320.

69. Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev. 2013 Dec;65(1):36-48. doi: 10.1016/j.addr.2012.09.037, PMID 23036225.

70. Immordino ML, Dosio F, Cattel L. Stealth liposomes: review of the basic science rationale and clinical applications existing and potential. Int J Nanomedicine. 2006;1(3):297-315. PMID 17717971.

71. Zhang Y, Chan HF, Leong KW. Advanced materials and processing for drug delivery: the past and the future. Adv Drug Deliv Rev. 2013 Dec;65(1):104-20. doi: 10.1016/j.addr.2012.10.003, PMID 23088863.

72. Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov. 2005 Feb;4(2):145-60. doi: 10.1038/nrd1632, PMID 15688077.

73. Mehnert W, Mader K. Solid lipid nanoparticles: production characterization and applications. Adv Drug Deliv Rev. 2001 Apr 23;47(2-3):165-96. doi: 10.1016/s0169-409x(01)00105-3, PMID 11311991.

74. Dontha S. A review on antioxidant methods. Asian J Pharm Clin Res. 2016 Oct;9(2):14-32. doi: 10.22159/ajpcr.2016.v9s2.13092.

75. Kumar A, Kumar B, Singh SK, Kaur B, Singh S. A review on phytosomes: novel approach for herbal phytochemicals. Asian J Pharm Clin Res. 2017 Oct 1;10(10):41-7. doi: 10.22159/ajpcr.2017.v10i10.20424.

Published

07-11-2025

How to Cite

DANDEKAR, M. R., TELRANDHE, U. B., SALVE, Y., & MIRZAPURE, I. (2025). RECENT ADVANCES IN NANOCARRIERS FOR TARGETED CANCER THERAPY. International Journal of Applied Pharmaceutics, 17(6), 78–89. https://doi.org/10.22159/ijap.2025v17i6.54347

Issue

Section

Review Article(s)

Similar Articles

<< < 3 4 5 6 7 > >> 

You may also start an advanced similarity search for this article.