TECH-DRIVEN TRUST: THE ROLE OF AI AND EMERGING TECHNOLOGIES IN PHARMACEUTICAL QUALITY ASSURANCE

`

Authors

  • PAVALAN KRISHNAN Department of Pharmaceutical analysis, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Nilgiris, Tamil Nadu, India https://orcid.org/0009-0001-4795-8588
  • NAGARAJAN JANAKI SANKARACHARI KRISHNAN Department of Pharmaceutical analysis, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Nilgiris, Tamil Nadu, India https://orcid.org/0000-0003-4569-1071
  • ANAMIKA DEY Department of Pharmaceutical analysis, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Nilgiris, Tamil Nadu, India
  • SHENTHILNATHAN SIVAKUMAR Department of Pharmaceutical analysis, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Nilgiris, Tamil Nadu, India
  • SARVESH RAVICHANDRAN Department of Pharmaceutical analysis, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Nilgiris, Tamil Nadu, India
  • MULLAIADHAVAN BHARATHI Department of Pharmaceutical analysis, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Nilgiris, Tamil Nadu, India

DOI:

https://doi.org/10.22159/ijap.2025v17i5.54474

Keywords:

Artificial intelligence, Blockchain technology, Internet of things, Machine learning, Pharmaceutical quality assurance, Regulatory compliance, Technology integration

Abstract

The pharmaceutical manufacturing sector plays a crucial role in global healthcare through the production of life-saving medicines, necessitating stringent innovation, safety, and accuracy in its operations. This systematic review explores how advanced technologies, including artificial intelligence (AI), internet of things (IoT), blockchain, and automated laboratories can be integrated into pharmaceutical quality assurance processes to enhance product integrity and patient safety. Recent implementations demonstrate significant improvements: AI-powered visual inspection systems have reduced defect detection time by 60% while increasing accuracy by 25% compared to manual processes; IoT sensor networks in Pfizer's COVID-19 vaccine cold chain reduced temperature excursions by 87%; blockchain implementations by MediLedger reduced counterfeit drug incidents by 35% in pilot programs; and automated laboratory systems decreased testing turnaround times by 40% while reducing human error rates by 67%. Despite these benefits, implementation challenges persist, including regulatory compliance requirements, data privacy concerns, integration with legacy systems, and workforce retraining needs. This review uniquely examines the interdisciplinary synergies between these technologies, proposing an integrated framework that combines AI analytics with blockchain verification and IoT monitoring to create end-to-end pharmaceutical quality assurance systems with unprecedented levels of transparency and reliability.

References

1. Gonesh C, Saha GC, Lima N, Parida P. Artificial intelligence in pharmaceutical manufacturing: enhancing quality control and decision making. J Pharm Ind Res. 2023;41(4):218-31.

2. Heinemann L, Krell K, Bertele Harms RM, Schmidt K, Kleist P. Risk-based inspection planning for pharmaceutical manufacturing using machine learning and multivariate data analysis. Pharm Res. 2021;38(8):1600-14.

3. Wang X, Huang J, Duan Z, Xu Y, Yao Y. Randomness analysis of end-to-end delay in random forwarding networks. Peer J Comput Sci. 2022 Apr;8(6):e942. doi: 10.7717/peerj-cs.942, PMID 35494857.

4. Naem MS, Koudil M, Ouldimam Z. Product quality assessment in the internet of things: a consumer-oriented approach. Sensors (Basel). 2022;22(6):2215. doi: 10.3390/s22062215, PMID 35336386.

5. Somareddy HK, Palamattathkuttiyil TG, Thirumaleshwar S, Gowrav MP. Impact of automation in pharmaceutical industry on roles and responsibilities of quality assurance: a review. Int J Pharm Qual Assur. 2021;11(1):166-72. doi: 10.25258/ijpqa.11.1.26.

6. Mundhra S, Kadiri SK, Tiwari P. Harnessing AI and machine learning in pharmaceutical quality assurance. J Pharm Qual Assur Qual Control. 2024;5(1):19-29.

7. Vaghela MC, Rathi S, Shirole RL, Verma J, Shaheen, Panigrahi S. Leveraging AI and machine learning in six-sigma documentation for pharmaceutical quality assurance. Zhongguo Ying Yong Sheng Li Xue Za Zhi. 2024 Jul 18;40:e20240005. doi: 10.62958/j.cjap.2024.005, PMID 39019923.

8. Patel P. Impact of AI on manufacturing and quality assurance in medical device and pharmaceuticals industry. IJITEE. 2024;13(9):9-21. doi: 10.35940/ijitee.I9949.13090824.

9. Inamdar S, Kedar T, Gujar H, Tanpure P, Sapkal S. Harnessing AI and machine learning in pharmaceutical quality assurance. Int J Sci R Tech. 2024;1(11):45-59.

10. Patil RS, Kulkarni SB, Gaikwad VL. Artificial intelligence in pharmaceutical regulatory affairs. Drug Discov Today. 2023;28(9):103700. doi: 10.1016/j.drudis.2023.103700, PMID 37442291.

11. Patil P, Kumar Nrip N, Hajare A, Hajare D, K Patil M, Kanthe R. Artificial intelligence and tools in pharmaceuticals: an overview. Res J Pharm Technol. 2023;16(4):2075-82. doi: 10.52711/0974-360X.2023.00341.

12. Paul D, Sanap G, Shenoy S, Kalyane D, Kalia K, Tekade RK. Artificial intelligence in drug discovery and development. Drug Discov Today. 2021;26(1):80-93. doi: 10.1016/j.drudis.2020.10.010, PMID 33099022.

13. Khan IR, Grover V, Fatima I, Alam M, Ahmad N. The application of AI in drug discovery. In: Grover V, Balusamy B, MK N, Anand V, Milanova M, editors. Analyzing explainable AI in healthcare and the pharmaceutical industry. IGI Global; 2024. p. 181-98. doi: 10.4018/979-8-3693-5468-1.ch010.

14. Tshehla Nkuna M, Sukdeo N, Mukwakungu SC, Mbohwa C. Exploring the impact of advanced manufacturing technologies in South Africa’s pharmaceutical industry. In: Int Conf Artif Intell Comput Data Sci Appl (ACDSA). New York: IEEE; 2024. p. 1-6. doi: 10.1109/ACDSA59508.2024.10467315.

15. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O. Highly accurate protein structure prediction with alpha fold. Nature. 2021;596(7873):583-9. doi: 10.1038/s41586-021-03819-2, PMID 34265844.

16. V Kalayil NV, D Souza SS, Khan SY, Paul P. Artificial intelligence in pharmacy drug design. Asian J Pharm Clin Res. 2022 Apr;15(4):21-7. doi: 10.22159/ajpcr.2022.v15i4.43890.

17. Zhavoronkov A, Ivanenkov YA, Aliper A, Veselov MS, Aladinskiy VA, Aladinskaya AV. Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nat Biotechnol. 2019;37(9):1038-40. doi: 10.1038/s41587-019-0224-x, PMID 31477924.

18. Lin A, Shen J, Kasembeli MM, Zheng S. Advancing predictive toxicology using AI: atomwise’s deep learning approaches to in silico screening. Toxicol Sci. 2022;186(2):145-58.

19. Fisher CK, Smith AM, Walsh JR. Digital twins for clinical trial optimization. Nat Rev Drug Discov. 2022;21(6):460-1.

20. Stebbing J, Krishnan V, De Bono S, Parikh N, Glassman A, Zelek WM. Mechanism of action of artificial intelligence in protein-protein interaction networks: applications in target identification. Nat Rev Drug Discov. 2023;22(1):29-44.

21. Huang K, Fu T, Glass LM, Zitnik M, Xiao C, Sun J. Deep purpose: a deep learning library for drug target interaction prediction. Bioinformatics. 2021;36(22-23):5545-7. doi: 10.1093/bioinformatics/btaa1005, PMID 33275143.

22. Bakal G, Talari P, Kakani EV, Kavuluru R. Exploring deep learning approaches for complex biological networks. IEEE ACM Trans Comput Biol Bioinform. 2022;19(3):1385-98.

23. Chen H, Engkvist O, Wang Y, Olivecrona M, Blaschke T. The rise of deep learning in drug discovery. Drug Discov Today. 2018;23(6):1241-50. doi: 10.1016/j.drudis.2018.01.039, PMID 29366762.

24. Vamathevan J, Clark D, Czodrowski P, Dunham I, Ferran E, Lee G. Applications of machine learning in drug discovery and development. Nat Rev Drug Discov. 2019;18(6):463-77. doi: 10.1038/s41573-019-0024-5, PMID 30976107.

25. Schneider P, Walters WP, Plowright AT, Sieroka N, Listgarten J, Goodnow RA. Rethinking drug design in the artificial intelligence era. Nat Rev Drug Discov. 2020;19(5):353-64. doi: 10.1038/s41573-019-0050-3, PMID 31801986.

26. Fleming N. How artificial intelligence is changing drug discovery. Nature. 2018;557(7707):S55-7. doi: 10.1038/d41586-018-05267-x, PMID 29849160.

27. Wong CH, Siah KW, Lo AW. Estimation of clinical trial success rates and related parameters. Biostatistics. 2019;20(2):273-86. doi: 10.1093/biostatistics/kxx069, PMID 29394327.

28. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542(7639):115-8. doi: 10.1038/nature21056, PMID 28117445.

29. Harrer S, Shah P, Antony B, Hu J. Artificial intelligence for clinical trial design. Trends Pharmacol Sci. 2019;40(8):577-91. doi: 10.1016/j.tips.2019.05.005, PMID 31326235.

30. Thorlund K, Haggstrom J, Park JJ, Mills EJ. Key design considerations for adaptive clinical trials: a primer for clinicians. BMJ. 2018 Mar 8;360:k698. doi: 10.1136/bmj.k698, PMID 29519932.

31. Artemov AV, Putin E, Vanhaelen Q, Aliper A, Ozerov IV, Zhavoronkov A. Integrated deep learned transcriptomic and structure-based predictor of clinical trials outcomes. bioRxiv. 2016 Dec 29:1-21. doi: 10.1101/095653.

32. Shah P, Kendall F, Khozin S, Goosen R, Hu J, Laramie J. Artificial intelligence and machine learning in clinical development: a translational perspective. NPJ Digit Med. 2019;2:69. doi: 10.1038/s41746-019-0148-3, PMID 31372505.

33. Cramer RD, Bunce JD, Patterson DE, Frank IE. Cross-validation bootstrapping and partial least squares compared with multiple regression in conventional QSAR studies. Quant Struct Act Relat. 1988;7(1):18-25. doi: 10.1002/qsar.19880070105.

34. Davenport T, Kalakota R. The potential for artificial intelligence in healthcare. Future Healthc J. 2019;6(2):94-8. doi: 10.7861/futurehosp.6-2-94, PMID 31363513.

35. Lotsch J, Ultsch A. Machine learning in pain research. Pain. 2018;159(4):623-30. doi: 10.1097/j.pain.0000000000001118, PMID 29194126.

36. Wang P, Fan E, Wang P. Comparative analysis of image classification algorithms based on traditional machine learning and deep learning. Pattern Recognit Lett. 2021 Jan;141:61-7. doi: 10.1016/j.patrec.2020.07.042.

37. Johnson KW, Torres Soto J, Glicksberg BS, Shameer K, Miotto R, Ali M. Artificial intelligence in cardiology. J Am Coll Cardiol. 2018;71(23):2668-79. doi: 10.1016/j.jacc.2018.03.521, PMID 29880128.

38. Chen C, Seff A, Kornhauser A, Xiao J. Deep driving: learning affordance for direct perception in autonomous driving. In: 2015 IEEE International Conference on Computer Vision (ICCV). New York: IEEE; 2015. p. 2722-30. doi: 10.1109/ICCV.2015.312.

39. Bender A, Cortes Ciriano I. Artificial intelligence in drug discovery: what is realistic, what are illusions? Part 1: Ways to make an impact, and why we are not there yet. Drug Discov Today. 2021;26(2):511-24. doi: 10.1016/j.drudis.2020.12.009, PMID 33346134.

40. Hessler G, Baringhaus KH. Artificial intelligence in drug design. Molecules. 2018;23(10):2520. doi: 10.3390/molecules23102520, PMID 30279331.

41. Jimenez Luna J, Grisoni F, Weskamp N, Schneider G. Artificial intelligence in drug discovery: recent advances and future perspectives. Expert Opin Drug Discov. 2021;16(9):949-59. doi: 10.1080/17460441.2021.1909567, PMID 33779453.

42. Mak KK, Pichika MR. Artificial intelligence in drug development: present status and future prospects. Drug Discov Today. 2019;24(3):773-80. doi: 10.1016/j.drudis.2018.11.014, PMID 30472429.

43. Reker D, Barbosa AJ. Navigating chemical space by interfacing generative artificial intelligence and molecular docking. J Chem Inf Model. 2020;60(3):1203-10.

44. Cherkasov A, Muratov EN, Fourches D, Varnek A, Baskin II, Cronin M. QSAR modeling: where have you been? Where are you going to? J Med Chem. 2014;57(12):4977-5010. doi: 10.1021/jm4004285, PMID 24351051.

45. Filipp FV. Opportunities for artificial intelligence in advancing precision medicine. Curr Genet Med Rep. 2019;7(4):208-13. doi: 10.1007/s40142-019-00177-4, PMID 31871830.

46. Aliper A, Plis S, Artemov A, Ulloa A, Mamoshina P, Zhavoronkov A. Deep learning applications for predicting pharmacological properties of drugs and drug repurposing using transcriptomic data. Mol Pharm. 2016;13(7):2524-30. doi: 10.1021/acs.molpharmaceut.6b00248, PMID 27200455.

47. Segler MH, Preuss M, Waller MP. Planning chemical syntheses with deep neural networks and symbolic AI. Nature. 2018;555(7698):604-10. doi: 10.1038/nature25978, PMID 29595767.

48. Yang X, Wang Y, Byrne R, Schneider G, Yang S. Concepts of artificial intelligence for computer-assisted drug discovery. Chem Rev. 2019;119(18):10520-94. doi: 10.1021/acs.chemrev.8b00728, PMID 31294972.

49. Tran PT, Bender A, Ho TT. Recent advances in artificial intelligence applications for drug discovery. Curr Opin Struct Biol. 2022;72:29-38.

50. Gayvert KM, Madhukar NS, Elemento O. A data-driven approach to predicting successes and failures of clinical trials. Cell Chem Biol. 2016;23(10):1294-301. doi: 10.1016/j.chembiol.2016.07.023, PMID 27642066.

51. Poongodi T, Lucia Agnesbeena TL, Janarthanan S, Balusamy B. Accelerating data acquisition process in the pharmaceutical industry using internet of things. An Industrial IoT Approach for Pharmaceutical Industry Growth. Amsterdam: Elsevier; 2020. p. 117-52. doi: 10.1016/B978-0-12-821326-1.00005-X.

52. Singh M, Sachan S, Singh A, Singh KK. Internet of Things in pharma industry: possibilities and challenges. In: Emergence of pharmaceutical industry growth with industrial IoT approach. Amsterdam: Elsevier; 2020. p. 195-216. doi: 10.1016/B978-0-12-819593-2.00007-8.

53. Alagarsamy S, Kandasamy R, Subbiah L, Palanisamy S. Applications of internet of things in pharmaceutical industry. SSRN Journal. 2019 Aug 23:14. doi: 10.2139/ssrn.3441099.

54. Sharma A, Kaur J, Singh I. Internet of things (IoT) in pharmaceutical manufacturing warehousing and supply chain management. SN Comput Sci. 2020;1(4):212.

55. Mishra S, Dash A, Mishra BK. An insight of internet of things applications in pharmaceutical domain. In: Emergence of pharmaceutical industry growth with industrial IoT approach. Elsevier; 2020. p. 245-73. doi: 10.1016/B978-0-12-819593-2.00009-1.

56. Ogbuagu OO, Mbata AO, Balogun OD, Oladapo O, Ojo OO, Muonde M. Quality assurance in pharmaceutical manufacturing: bridging the gap between regulations supply chain and innovations. IJMRGE. 2023;4(1):823-31. doi: 10.54660/.IJMRGE.2023.4.1-823-831.

57. Kodumuru R, Sarkar S, Parepally V, Chandarana J. Artificial intelligence and internet of things integration in pharmaceutical manufacturing: a smart synergy. Pharmaceutics. 2025;17(3):290. doi: 10.3390/pharmaceutics17030290, PMID 40142954.

58. Rakshit P, Srivastava PK. Cutting edge IoT technology for smart Indian pharma. In: Int Conf Adv Comput Innov Technol Eng (ICACITE). New York: IEEE; 2021. doi: 10.1109/ICACITE51222.2021.9404627.

59. Sharma DK, Gupta P, Priety. Internet of things: the new Rx for pharmaceutical manufacturing and supply chains. In: an industrial IoT approach for pharmaceutical industry growth. Amsterdam: Elsevier; 2020. p. 257-88. doi: 10.1016/B978-0-12-821326-1.00010-3.

60. Shakhatreh M. Safeguarding pharmaceutical shipments using internet of things. Internet Things. 2020;12:100300.

61. Ng EH, Nepal B, Schott E, Keathley H. Internet of things: opportunities and applications in pharmaceutical manufacturing and logistics. Proceedings of the am Soc Eng Manage. 2018;5(1):1-10.

62. De Silva PY, Samarasinghe G. The impact of the internet of things on the efficiency of healthcare service delivery: a systematic review. J Med Internet Res. 2022;24(11):e39641.

63. Ding B. Pharma industry 4.0: literature review and research opportunities in sustainable pharmaceutical supply chains. Process Saf Environ Prot. 2018 Oct;119:115-30. doi: 10.1016/j.psep.2018.06.031.

64. Kaitin KI. Deconstructing the drug development process: the new face of innovation. Clin Pharmacol Ther. 2010;87(3):356-61. doi: 10.1038/clpt.2009.293, PMID 20130565.

65. Bader F, Rahimifard S. Challenges for industrial robot applications in food manufacturing. In: proceedings of the 2nd international symposium on computer science and intelligent control. New York, USA: ACM; 2018. p. 1-8. doi: 10.1145/3284557.3284723.

66. Calabrese GS, Pissavini S. From batch to continuous flow processing in chemicals manufacturing. AIChE J. 2011;57(4):828-34. doi: 10.1002/aic.12598.

67. Jagtap S, Bhatt C, Thik J, Rahimifard S. Monitoring potato waste in food manufacturing using image processing and internet of things approach. Sustainability. 2019;11(11):3173. doi: 10.3390/su11113173.

68. Lee J, Bagheri B, Kao HA. A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manuf Lett. 2015 Jan;3:18-23. doi: 10.1016/j.mfglet.2014.12.001.

69. Lee WS, Grosh DL, Tillman FA, Lie CH. Fault tree analysis methods and applications: a review. IEEE Trans Reliab. 1985;34(3):194-203. doi: 10.1109/TR.1985.5222114.

70. Jalal Ali HS, Hamdan A. The impact of blockchain in tracking the pharmaceuticals. Contrib Manag Sci. 2023 Oct 29:757-67. doi: 10.1007/978-981-99-6101-6_56.

71. Mudasir Malla A, Banka AA. Pharma blocks. In: blockchain-based internet of things. Boca Raton: Chapman and Hall/CRC; 2024. p. 87-108. doi: 10.1201/9781003407096-6.

72. Sahoo S. Blockchain-enabled traceability systems for supply chain quality management: empirical insights from pharmaceutical manufacturers. Int J Qual Reliab Manag. 2025;42(5):1381-410. doi: 10.1108/IJQRM-03-2024-0091.

73. Cai X, Xu X, Li Q. Pharmaceutical cold chain logistics traceability system based on blockchain technology. In: Int Conf Distrib Comput Electr Circuits Electron (ICDCECE). New York: IEEE; 2023. p. 1-6. doi: 10.1109/ICDCECE57866.2023.10150534.

74. Asha K, Anil George KA. Reducing counterfeit medicine through blockchain. In: Blockchain technology for IoE. New York: CRC Press; 2023. p. 239-59. doi: 10.1201/9781003366010-14.

75. Akram W, Joshi R, Haider T, Sharma P, Jain V, Garud N. Blockchain technology: a potential tool for the management of pharma supply chain. Res Social Adm Pharm. 2024;20(6):156-64. doi: 10.1016/j.sapharm.2024.02.014, PMID 38423927.

76. Ahmad RW, Al Khader W, Jayaraman R, Salah K, Antony J, Swarnakar V. Integrating lean six sigma with blockchain technology for quality management a scoping review of current trends and future prospects. TQM J. 2023;35(7):1609-31. doi: 10.1108/TQM-06-2022-0181.

77. Ullagaddi P. Digital transformation in the pharmaceutical industry: enhancing quality management systems and regulatory compliance. Int J Health Sci. 2024;12(1):31-43. doi: 10.15640/ijhs.v12n1a4.

78. Yik MH, Wong VC, Wong TH, Shaw PC. Herbchain, a blockchain based informative platform for quality assurance and quality control of herbal products. J Tradit Complement Med. 2021;11(6):598-600. doi: 10.1016/j.jtcme.2021.07.005, PMID 34765524.

79. Haq I, Muselemu O. Blockchain technology in pharmaceutical industry to prevent counterfeit drugs. IJCA. 2018;180(25):8-12. doi: 10.5120/ijca2018916579.

80. Tseng JH, Liao YC, Chong B, Liao SW. Governance on the drug supply chain via Gcoin blockchain. Int J Environ Res Public Health. 2018;15(6):1055. doi: 10.3390/ijerph15061055, PMID 29882861.

81. Casino F, Dasaklis TK, Patsakis C. A systematic literature review of blockchain-based applications: current status, classification and open issues. Telemat Inform. 2019;36:55-81. doi: 10.1016/j.tele.2018.11.006.

82. Sharma A, Kumar R, Chavali P. A framework for the application of blockchain in pharmaceutical supply chain. J Glob Oper Strateg Sourc. 2022;15(3):412-35.

83. Seyedghorban Z, Tahernejad H, Meriton R, Graham G. Supply chain digitalization: past, present and future. Prod Plan Control. 2020;31(2-3):96-114. doi: 10.1080/09537287.2019.1631461.

84. Korpela K, Hallikas J, Dahlberg T. Digital supply chain transformation toward blockchain integration. Proceedings of the Annual Hawaii International Conference on System Sciences. 2017:4182-91. doi: 10.24251/HICSS.2017.506.

85. Beck R, Muller Bloch C, King JL. Governance in the blockchain economy: a framework and research agenda. J Assoc Inf Syst. 2018;19(10):1020-34. doi: 10.17705/1jais.00518.

86. Chang SE, Chen YC, Wu TC. Exploring blockchain technology in international trade: business process re-engineering for letter of credit. Ind Manag Data Syst. 2019;119(8):1712-33. doi: 10.1108/IMDS-12-2018-0568.

87. Zhang Y, Kasahara S, Shen Y, Jiang X, Wan J. Smart contract-based access control for the internet of things. IEEE Internet Things J. 2019;6(2):1594-605. doi: 10.1109/JIOT.2018.2847705.

88. Salah K, Nizamuddin N, Jayaraman R, Omar M. Blockchain based soybean traceability in agricultural supply chain. IEEE Access. 2019;7:73295-305. doi: 10.1109/ACCESS.2019.2918000.

89. Pal K, Yasar AU. Internet of things and blockchain technology in apparel manufacturing supply chain data management. Procedia Comput Sci. 2020;170:450-7. doi: 10.1016/j.procs.2020.03.088.

90. Hsu CC, Sandford BA. The delphi technique: making sense of consensus. Pract Assess Res Eval. 2007;12(10):1-8. doi: 10.7275/pdz9-th90.

91. Liao DY, Wang X. Applications of blockchain technology to logistics management in integrated casinos and entertainment. Informatics. 2018;5(4):44. doi: 10.3390/informatics5040044.

92. Li Z, Kang J, Yu R, Ye D, Deng Q, Zhang Y. Consortium blockchain for secure energy trading in industrial internet of things. IEEE Trans Ind Inf. 2017;14(8):3690-700. doi: 10.1109/TII.2017.2786307.

93. World Health Organization. WHO global surveillance and monitoring system for substandard and falsified medical products. Geneva: World Health Organization; 2017.

94. Alzahrani N, Bulusu N. Block supply chain: a new anti-counterfeiting supply chain using NFC and blockchain. In: Proceedings of the 1st workshop on cryptocurrencies and blockchains for distributed systems. New York, USA: ACM; 2018. p. 30-5. doi: 10.1145/3211933.3211939.

95. Chakraborty S, Aich S, Kim HC. A secure healthcare system design framework using blockchain technology. In: 21st International Conference on Advanced Communication Technology (ICACT). IEEE; 2019. p. 260-4. doi: 10.23919/ICACT.2019.8701983.

96. Jamil F, Iqbal N, Imran S, Ahmad S, Kim D. Peer-to-peer energy trading mechanism based on blockchain and machine learning for sustainable electrical power supply in smart grid. IEEE Access. 2021;9:39193-217. doi: 10.1109/ACCESS.2021.3060457.

97. Azzi R, Chamoun RK, Sokhn M. The power of a blockchain-based supply chain. Comput Ind Eng. 2019;135:582-92. doi: 10.1016/j.cie.2019.06.042.

98. Gualandris J, Klassen RD, Vachon S, Kalchschmidt M. Sustainable evaluation and verification in supply chains: aligning and leveraging accountability to stakeholders. J Oper Manag. 2015;38(1):1-13. doi: 10.1016/j.jom.2015.06.002.

99. Kamath R. Food traceability on blockchain: WalMart’s pork and mango pilots with IBM. The JBBA. 2018;1(1):1-12. doi: 10.31585/jbba-1-1-(10)2018.

100. Angraal S, Krumholz HM, Schulz WL. Blockchain technology: applications in health care. Circ Cardiovasc Qual Outcomes. 2017;10(9):e003800. doi: 10.1161/CIRCOUTCOMES.117.003800, PMID 28912202.

101. Clauson KA, Breeden EA, Davidson C, Mackey TK. Leveraging blockchain technology to enhance supply chain management in healthcare. Blockchain Healthc Today. 2018;1:1-12. doi: 10.30953/bhty.v1.20.

102. Jamil F, Ahmad S, Iqbal N, Kim DH. Towards a remote monitoring of patient vital signs based on IoT-based blockchain integrity management platforms in smart hospitals. Sensors (Basel). 2020;20(8):2195. doi: 10.3390/s20082195, PMID 32294989.

103. Kumar A, Liu R, Shan Z. Is blockchain a silver bullet for supply chain management? Technical challenges and research opportunities. Decis Sci. 2020;51(1):8-37. doi: 10.1111/deci.12396.

104. Lacity MC. Addressing key challenges to making enterprise blockchain applications a reality. MIS Q Exec. 2018;17(3):201-22.

105. Zheng Z, Xie S, Dai HN, Chen X, Wang H. Blockchain challenges and opportunities: a survey. Int J Web Grid Serv. 2018;14(4):352-75. doi: 10.1504/IJWGS.2018.095647.

106. Yeung K. Regulation by blockchain: the emerging battle for supremacy between the code of law and code as law. Mod Law Rev. 2019;82(2):207-39. doi: 10.1111/1468-2230.12399.

107. Tonnissen S, Teuteberg F. Analysing the impact of blockchain technology for operations and supply chain management: an explanatory model drawn from multiple case studies. Int J Inf Manag. 2020;52:101953. doi: 10.1016/j.ijinfomgt.2019.05.009.

108. Carson B, Romanelli G, Walsh P, Zhumaev A. Blockchain beyond the hype: what is the strategic business value? McKinsey and Company; 2018.

109. Jennings S, Ha K, Both D. Cetus 840®: a new paradigm for a modernized fully automated dissolution system. J Pharm Innov. 2009;4(3):107-14. doi: 10.1007/s12247-009-9062-6.

110. Keller SH, Svarer C, Sibomana M. Attenuation correction for the HRRT PET-scanner using transmission scatter correction and total variation regularization. IEEE Trans Med Imaging. 2013;32(9):1611-21. doi: 10.1109/TMI.2013.2261313, PMID 23661313.

111. Theanponkrang S, Suginta W, Weingart H, Winterhalter M, Schulte A. Robotic voltammetry with carbon nanotube-based sensors: a superb blend for convenient high-quality antimicrobial trace analysis. Int J Nanomedicine. 2015;10:859-68. doi: 10.2147/IJN.S75237, PMID 25670899.

112. Brown AS, Badrick T. The next wave of innovation in laboratory automation: systems for auto-verification, quality control and specimen quality assurance. Clin Chem Lab Med. 2023;61(1):37-43. doi: 10.1515/cclm-2022-0409, PMID 36282956.

113. Coito T, Martins MS, Firme B, Figueiredo J, Vieira SM, Sousa JM. Assessing the impact of automation in pharmaceutical quality control labs using a digital twin. J Manuf Syst. 2022;62:270-85. doi: 10.1016/j.jmsy.2021.11.014.

114. Nunavath RS, Nagappan K. Future of pharmaceutical industry: role of artificial intelligence automation and robotics. J Pharmacol Pharmacother. 2024;15(2):85-94.

115. Han Y, Makarova E, Ringel M, Telpis V. Digitization automation and online testing: the future of pharma quality control [McKinsey and Company report]; 2019.

116. Alahmri MN, Alshehri AM, Gazwani HA, Alsemari SA. The role of automation in modern clinical laboratories. Tec Empresarial. 2024;6(2):762-73.

117. Kamaraj A, Puranik S. Automation in pharmaceutical industry and global regulatory compliance. J Curr Pharm Res. 2023;17(4):13-25.

118. Koido K, Watanabe D, Akiyama Y, Fukui K. A fully automated dissolution testing system with online HPLC analysis for dissolution studies of controlled release tablets. Pharmazie. 2022;77(9):350-6.

119. Kumar S, Paruchuri S, Ketkar A, Kumar A. Facilitating clinical laboratory automation through robotics and artificial intelligence. J Lab Med. 2022;46(1):11-23.

120. Kuila D, Bandyopadhyay D, Layek M, Besra K. Automating pharmaceutical quality control and assurance processes: benefits and challenges. Int J Pharm Sci Rev Res. 2023;78(2):135-42.

121. Grebner C, Malmerberg E, Shewmaker A, Batista J, Nicholls A, Sadowski J. Virtual screening in the cloud: how big is big enough? J Chem Inf Model. 2020;60(9):4274-82. doi: 10.1021/acs.jcim.9b00779, PMID 31682421.

122. Barkley WE, Callas D, Doshi S, Hyman R. Pharmaceutical laboratory automation adoption: current trends and future considerations. J Autom Methods Manag Chem. 2022;4(1):23-31.

123. Narayana M, Lakshmana RS, Timmayya S, Rajesh R. Digital transformation in pharmaceutical quality control: from manual to automated workflows. J Pharm Anal. 2023;13(4):301-11.

124. Schneider G. Automating drug discovery. Nat Rev Drug Discov. 2018;17(2):97-113. doi: 10.1038/nrd.2017.232, PMID 29242609.

125. Bhagwat AM, Goswami S, Patel S, Prasad G. Impact of laboratory automation on pharmaceutical quality control: a meta-analysis of productivity and error rates. J Lab Autom. 2023;28(6):482-91.

126. Brindle E, Nishizono T, Masci P, Rae C, Butler R, Sohoni P. Automation of analytical methods for pharmaceutical quality control and assurance. J Flow Chem. 2021;11(2):113-27.

127. Patel RD, Sharma KH, Mehta TR, Lakshminarayana D. Statistical analysis of measurement uncertainty in pharmaceutical analysis: impact of automation on analytical variability. J Pharm Biomed Anal. 2023;218:114973.

128. Rooney TM, Erickson JA, Hahn K, Joshi V, Hoener B, Havel J. Development and validation of an automated microsampling LC-MS/MS method for the quantitation of ledipasvir in human plasma. Bioanalysis. 2017;9(14):1067-78.

129. Mullen M, Dieguez G, Liang M, Graham JB. Laboratory automation and digital transformation: impact on contract research organization laboratory efficiency. Pharm Technol. 2022;46(11):22-8.

130. DiMasi JA, Grabowski HG, Hansen RW. Innovation in the pharmaceutical industry: new estimates of R & D costs. J Health Econ. 2016;47:20-33. doi: 10.1016/j.jhealeco.2016.01.012, PMID 26928437.

131. Abuhelwa AY, Foster DJ, Mudge S, Hayes D, Upton RN. Population pharmacokinetic modeling of itraconazole and hydroxyitraconazole for oral SUBA-itraconazole and sporanox capsule formulations in healthy subjects in fed and fasted states. Antimicrob Agents Chemother. 2015;59(9):5681-96. doi: 10.1128/AAC.00973-15, PMID 26149987.

132. Alomar MJ. Factors affecting the development of adverse drug reactions (Review article). Saudi Pharm J. 2014;22(2):83-94. doi: 10.1016/j.jsps.2013.02.003, PMID 24648818.

133. Allison JJ, Wall TC, Spettell CM, Calhoun J, Fargason CA, Kobylinski RW. The art and science of chart review. Jt Comm J Qual Improv. 2000;26(3):115-36. doi: 10.1016/s1070-3241(00)26009-4, PMID 10709146.

134. Bateman DN, Carroll R, Pettie J, Yamamoto T, Elamin ME, Peart L. Effect of the UK’s revised paracetamol poisoning management guidelines on admissions, adverse reactions and costs of treatment. Br J Clin Pharmacol. 2014;78(3):610-8. doi: 10.1111/bcp.12362, PMID 24666324.

135. Cho I, Park H, Choi YJ, Hwang MH, Bates DW. Understanding the nature of medication errors in an ICU with a computerized physician order entry system. PLOS One. 2014;9(12):e114243. doi: 10.1371/journal.pone.0114243, PMID 25526059.

136. Ahmed SP, Unnikrishnan MK, Sharma N. Pharmacoeconomics in Indian pharmaceutical education system: challenges and opportunities. Indian J Pharm Educ Res. 2022;56(3):686-92.

137. McDowall RD. Validation of computerized analytical and networked systems. J Pharm Biomed Anal. 2023;26(3):507-15.

138. Bhamra SK, Desai A, Imani Asrai R, Wolfram P. Blockchain in pharmaceutical supply chain: current applications, challenges and opportunities. Int J Pharm. 2022;621:121727.

139. Chiarello RJ, McMahon WW. Delegated prescription privileges: expanded opportunities for the profession of pharmacy. Soc Sci Med. 2007;36(11):1491-8.

140. Davis T, Hounkpe Ahissou Y, Mensah KA, Sanvee GM. Current status of laboratory automation in pharmaceutical industry: a systematic review. J Lab Autom. 2022;27(5):391-406.

141. Dougherty AP, Young S, Suen M, Grosser ST. Laboratory automation strategies: A survey of pharmaceutical quality control laboratory directors. Pharm Technol. 2023;47(1):36-43.

Published

07-09-2025

How to Cite

KRISHNAN, P., KRISHNAN, N. J. S., DEY, A., SIVAKUMAR, S., RAVICHANDRAN, S., & BHARATHI, M. (2025). TECH-DRIVEN TRUST: THE ROLE OF AI AND EMERGING TECHNOLOGIES IN PHARMACEUTICAL QUALITY ASSURANCE: `. International Journal of Applied Pharmaceutics, 17(5), 122–131. https://doi.org/10.22159/ijap.2025v17i5.54474

Issue

Section

Review Article(s)

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.