MOLECULAR DOCKING AND ADMET PROPERTIES OF NOVEL 5-METHYL-6AH-BENZO [4, 5] OXAZOLO [3,2-A]QUINOLIN-2-OL DERIVATIVES FOR THEIR ANTI-CANCER ACTIVITY

Authors

  • SIMPI MEHTA DPG Institute of Technology and Management, Gurgaon-122004, India
  • POONAM KASWAN AISSMS Institute of Information Technology, Pune, India https://orcid.org/0000-0001-5138-7194
  • POOJA RANJAN Department of Chemistry, Hindu Girls College, Sonipat-131001, India
  • SUDESH Department of Chemistry, Research Scholar, Baba Mast Nath University, Rohtak-124001, India

DOI:

https://doi.org/10.22159/ijap.2025v17i5.54488

Keywords:

Benzo [4, 5]oxazolo[3,2-a]Quinolin-2-ol amine oxidase (AO), Molecular docking, Anticancer agents, Glide score, 2v5z, π–π stacking interactions, Hydrogen bonding, ADMET prediction, In silico drug design, Deprenyl, Biogenic amine deamination, Structure-based drug design (SBDD), Tumor progression, Pharmacokinetics

Abstract

Objective: This study aimed to design and evaluate a series of novel 5-Methyl-6aH-benzo [4,5]oxazolo [3,2-a]quinolin-2-ol derivatives as potential anticancer agents targeting the human amine oxidase (AO) enzyme.

Methods: Seventeen oxazole-based ligands were designed and subjected to molecular docking simulations using the crystallographic structure of human AO (PDB ID: 2v5z). GlideScore was used to assess binding affinity, and key molecular interactions were analyzed. Additionally, ADME-Toxicity properties were predicted to evaluate pharmacokinetic and safety profiles.

Results: Among the ligands, compounds 8 and 10 demonstrated the highest binding affinities, with GlideScores of –10.219 and –10.461 kcal/mol, respectively, significantly better than the reference drug R-(–)-Deprenyl (–6.205 kcal/mol). These ligands exhibited strong hydrophobic and π–π stacking interactions with active site residues PHE168, TRP119, and TYR435, indicating stable binding. ADME-Toxicity analysis revealed that all designed ligands had favorable pharmacokinetic profiles, including high oral absorption, low predicted toxicity, and acceptable blood-brain barrier permeability.

Conclusion: The results highlight the therapeutic potential of oxazole derivatives as effective scaffolds for developing new anticancer agents targeting amine oxidase, with compounds 8 and 10 emerging as promising lead candidates.

References

1. Knieper M, Viehhauser A, Dietz KJ. Oxylipins and reactive carbonyls as regulators of the plant redox and reactive oxygen species network under stress. Antioxidants (Basel). 2023;12(4):814. doi: 10.3390/antiox12040814, PMID 37107189.

2. Gogoi K, Gogoi H, Borgohain M, Saikia R, Chikkaputtaiah C, Hiremath S. The molecular dynamics between reactive oxygen species (ROS), reactive nitrogen species (RNS) and phytohormones in plants response to biotic stress. Plant Cell Rep. 2024;43(11):263. doi: 10.1007/s00299-024-03343-3, PMID 39412663.

3. Lilay GH, Thiebaut N, Du Mee D, Assuncao AG, Schjoerring JK, Husted S. Linking the key physiological functions of essential micronutrients to their deficiency symptoms in plants. New Phytol. 2024;242(3):881-902. doi: 10.1111/nph.19645, PMID 38433319.

4. Lee KP, Kim C. Photosynthetic ROS and retrograde signaling pathways. New Phytol. 2024;244(4):1183-98. doi: 10.1111/nph.20134, PMID 39286853.

5. Muro P, Zhang L, Li S, Zhao Z, Jin T, Mao F. The emerging role of oxidative stress in inflammatory bowel disease. Front Endocrinol (Lausanne). 2024;15:1390351. doi: 10.3389/fendo.2024.1390351, PMID 39076514.

6. Sharma R, Kumarasamy M, Parihar VK, Ravichandiran V, Kumar N. Monoamine oxidase: a potential link in papez circuit to generalized anxiety disorders. CNS Neurol Disord Drug Targets. 2024;23(5):638-55. doi: 10.2174/1871527322666230412105711, PMID 37055898.

7. Kaswan P, Oswal P, Kumar A, Mohan Srivastava C, Vaya D, Rawat V. SNS donors as mimic to enzymes, chemosensors and imaging agents. Inorg Chem Commun. 2022 Feb;136:109140. doi: 10.1016/j.inoche.2021.109140.

8. Srivastava P, Sudevan ST, Thennavan A, Mathew B, Kanthlal SK. Inhibiting monoamine oxidase in CNS and CVS would be a promising approach to mitigating cardiovascular complications in neurodegenerative disorders. CNS Neurol Disord Drug Targets. 2024;23(3):331-41. doi: 10.2174/1871527322666230303115236, PMID 36872357.

9. Moreira J, Machado M, Dias Teixeira M, Ferraz R, Delerue Matos C, Grosso C. The neuroprotective effect of traditional Chinese medicinal plants a critical review. Acta Pharm Sin B. 2023;13(8):3208-37. doi: 10.1016/j.apsb.2023.06.009, PMID 37655317.

10. Fatima Shad K. Serotonin neurotransmitter and hormone of brain bowels and blood: Norderstedt Germany: BoD--Books on Demand; 2024 Jun 19. doi: 10.5772/intechopen.1000435.

11. Patel SS, Acharya A, Ray RS, Agrawal R, Raghuwanshi R, Jain P. Cellular and molecular mechanisms of curcumin in prevention and treatment of disease. Crit Rev Food Sci Nutr. 2020;60(6):887-939. doi: 10.1080/10408398.2018.1552244, PMID 30632782.

12. Verma C, Kumar A, Thakur A, editors. Phytochemistry in corrosion science: plant extracts and phytochemicals as corrosion inhibitors. Boca Raton, FL: CRC Press; 2024. doi: 10.1201/9781003394631.

13. Parga JA, Rodriguez Perez AI, Garcia Garrote M, Rodriguez Pallares J, Labandeira Garcia JL. NRF2 activation and downstream effects: focus on parkinsons disease and brain angiotensin. Antioxidants (Basel). 2021;10(11):1649. doi: 10.3390/antiox10111649, PMID 34829520.

14. Jurcau MC, Andronie Cioara FL, Jurcau A, Marcu F, Tit DM, Pascalau N. The link between oxidative stress, mitochondrial dysfunction and neuroinflammation in the pathophysiology of alzheimers disease: therapeutic implications and future perspectives. Antioxidants (Basel). 2022;11(11):2167. doi: 10.3390/antiox11112167, PMID 36358538.

15. Santin Y, Resta J, Parini A, Mialet Perez J. Monoamine oxidases in age-associated diseases: new perspectives for old enzymes. Ageing Res Rev. 2021 Mar;66:101256. doi: 10.1016/j.arr.2021.101256, PMID 33434685.

16. Hillman P. Molecular mechanisms of JNKs in anxiety and depression; 2024.

17. Acero VP, Cribas ES, Browne KD, Rivellini O, Burrell JC, O Donnell JC. Bedside to bench: the outlook for psychedelic research. Front Pharmacol. 2023 Oct 2;14:1240295. doi: 10.3389/fphar.2023.1240295, PMID 37869749.

18. Labbe M, Hoey C, Ray J, Potiron V, Supiot S, Liu SK. MicroRNAs identified in prostate cancer: correlative studies on response to ionizing radiation. Mol Cancer. 2020;19(1):63. doi: 10.1186/s12943-020-01186-6, PMID 32293453.

19. Ghosh S, Hazra J, Pal K, Nelson VK, Pal M. Prostate cancer: therapeutic prospect with herbal medicine. Curr Res Pharmacol Drug Discov. 2021 Jul 8;2:100034. doi: 10.1016/j.crphar.2021.100034, PMID 34909665.

20. Ci Q, Yang H, Bian Y, Li Z, Liu J, Wei J. An in situ fluorescent copolymer dots-based kit for the specific detection of monoamine oxidase a in cell/tissue/human prostate cancer. Sens Actuators B. 2023;397:134655. doi: 10.1016/j.snb.2023.134655.

21. Wang YY, Zhou YQ, Xie JX, Zhang X, Wang SC, Li Q. MAOA suppresses the growth of gastric cancer by interacting with NDRG1 and regulating the Warburg effect through the PI3K/AKT/MTOR pathway. Cell Oncol (Dordr). 2023;46(5):1429-44. doi: 10.1007/s13402-023-00821-w, PMID 37249744.

22. Han Y, Chang Y, Wang J, Li N, Yu Y, Yang Z. A study predicting long-term survival capacity in postoperative advanced gastric cancer patients based on MAOA and subcutaneous muscle fat characteristics. World J Surg Oncol. 2024;22(1):184. doi: 10.1186/s12957-024-03466-7, PMID 39010072.

23. Wei J, Wu BJ. Targeting monoamine oxidases in cancer: advances and opportunities. Trends Mol Med. 2025;31(5):479-91. doi: 10.1016/j.molmed.2024.09.010, PMID 39438199.

24. Chen CH, Wu BJ. Monoamine oxidase: an emerging therapeutic target in prostate cancer. Front Oncol. 2023 Feb 13;13:1137050. doi: 10.3389/fonc.2023.1137050, PMID 36860320.

25. Han H, Li H, Ma Y, Zhao Z, An Q, Zhao J. Monoamine oxidase a (MAOA): a promising target for prostate cancer therapy. Cancer Lett. 2023;563:216188. doi: 10.1016/j.canlet.2023.216188, PMID 37076041.

26. Lyu F, Shang SY, Gao XS, Ma MW, Xie M, Ren XY. Uncovering the secrets of prostate cancers radiotherapy resistance: advances in mechanism research. Biomedicines. 2023;11(6):1628. doi: 10.3390/biomedicines11061628, PMID 37371723.

27. Kornicka A, Balewski L, Lahutta M, Kokoszka J. Umbelliferone and its synthetic derivatives as suitable molecules for the development of agents with biological activities: a review of their pharmacological and therapeutic potential. Pharmaceuticals (Basel). 2023;16(12):1732. doi: 10.3390/ph16121732, PMID 38139858.

28. Zhang T, Li J, Dai J, Yuan F, Yuan G, Chen H. Identification of a novel stemness-related signature with appealing implications in discriminating the prognosis and therapy responses for prostate cancer. Cancer Genet. 2023 Aug;276-277:48-59. doi: 10.1016/j.cancergen.2023.07.005, PMID 37487324.

29. Kosalge SB, Fursule RA. Investigation of in vitro anthelmintic activity of thespesia lampas (Cav.). Asian J Pharm Clin Res. 2009;2(2):69-71.

30. Zhou S, Wang S, Xiang J, Han Z, Wang W, Zhang S. Diagnostic performance of MRI for residual or recurrent hepatocellular carcinoma after locoregional treatment according to contrast agent type: a systematic review and meta-analysis. Abdom Radiol (NY). 2024;49(2):471-83. doi: 10.1007/s00261-023-04143-1, PMID 38200213.

31. Al Ageeli E. Dual roles of microRNA-122 in hepatocellular carcinoma and breast cancer progression and metastasis: a comprehensive review. Curr Issues Mol Biol. 2024;46(11):11975-92. doi: 10.3390/cimb46110711, PMID 39590305.

32. Minakshi KP, Singh K, Devi SR, Yadav N, Yadav M. Recent advances in di-, tri-substituted mono-thiazoles and bis-thiazoles: factors affecting biological activities, future aspects and challenges. Curr Top Med Chem. 2025 Mar 28. doi: 10.2174/0115680266334873250316102556.

33. Wang X, Xiao K, Liu Z, Wang L, Dong Z, Wang H. Unveiling disulfidptosis-related genes in HBV-associated hepatocellular carcinoma: an integrated study incorporating transcriptome and Mendelian randomization analyses. J Cancer. 2024;15(17):5540-56. doi: 10.7150/jca.93194, PMID 39308675.

34. Li S, Kang Y, Zeng Y. Targeting tumor and bone microenvironment: novel therapeutic opportunities for castration resistant prostate cancer patients with bone metastasis. Biochim Biophys Acta Rev Cancer. 2024;1879(1):189033. doi: 10.1016/j.bbcan.2023.189033, PMID 38040267.

35. Chen L, Xiong W, Qi L, He W. High monoamine oxidase a expression predicts poor prognosis for prostate cancer patients. BMC Urol. 2023;23(1):112. doi: 10.1186/s12894-023-01285-8, PMID 37403079.

36. Ma Y, Chen H, Li H, Zhao Z, An Q, Shi C. Targeting monoamine oxidase a: a strategy for inhibiting tumor growth with both immune checkpoint inhibitors and immune modulators. Cancer Immunol Immunother. 2024;73(3):48. doi: 10.1007/s00262-023-03622-0, PMID 38349393.

37. Moura C, Vale N. The role of dopamine in repurposing drugs for oncology. Biomedicines. 2023;11(7):1917. doi: 10.3390/biomedicines11071917, PMID 37509555.

38. Zirbesegger K, Reyes L, Paolino A, Dapueto R, Arredondo F, Gambini JP. Molecular imaging of monoamine oxidase a expression in highly aggressive prostate cancer: synthesis and preclinical evaluation of positron emission tomography tracers. ACS Pharmacol Transl Sci. 2023;6(11):1734-44. doi: 10.1021/acsptsci.3c00175, PMID 37982127.

39. Mishra S, Gupta A, Jain S, Vaidya A. Anticancer mechanisms of β-carbolines. Chem Biol Drug Des. 2024;103(4):e14521. doi: 10.1111/cbdd.14521, PMID 38653576.

40. Spirtovic Halilovic S, Salihovic M, Osmanovic A, Veljovic E, Rahic O, Mahmutovic E. In silico study of microbiologically active benzoxazole derivatives. Indian J Pharm Sci. 2023;85(3):767-77. doi: 10.36468/pharmaceutical-sciences.1143.

41. Abdullahi A, Yeong KY. Targeting disease with benzoxazoles: a comprehensive review of recent developments. Med Chem Res. 2024;33(3):406-38. doi: 10.1007/s00044-024-03190-7.

42. Kaswan P. Natural resources as cancer-treating material. S Afr J Bot. 2023 Jul;158:369-92. doi: 10.1016/j.sajb.2023.05.028.

43. Han D, Lu J, Fan B, Lu W, Xue Y, Wang M. Lysine-specific demethylase 1 inhibitors: a comprehensive review utilizing computer-aided drug design technologies. Molecules. 2024;29(2):550. doi: 10.3390/molecules29020550, PMID 38276629.

44. Li X, Yujuan Sun, Zhu X. Preparation of chiral carbon quantum dots and its application. J Fluoresc. 2024;34(1):1-13. doi: 10.1007/s10895-023-03262-8, PMID 37199894.

45. Badgujar ND, Dsouza MD, Nagargoje GR, Kadam PD, Momin KI, Bondge AS. Recent advances in medicinal chemistry with benzothiazole-based compounds: an in-depth review. J Chem Res. 2024;6(2):202-36. doi: 10.48309/jcr.2024.436111.1290.

46. Sun K, Zhi Y, Ren W, Li S, Zheng J, Gao L. Crosstalk between O-GlcNAcylation and ubiquitination: a novel strategy for overcoming cancer therapeutic resistance. Exp Hematol Oncol. 2024;13(1):107. doi: 10.1186/s40164-024-00569-5, PMID 39487556.

47. Atole DM, Rajput HH. Ultraviolet spectroscopy and its pharmaceutical applications a brief review. Asian J Pharm Clin Res. 2018;11(2):59-66. doi: 10.22159/ajpcr.2018.v11i2.21361.

48. Hwang KW, Yun JW, Kim HS. Unveiling the molecular landscape of FOXA1 mutant prostate cancer: insights and prospects for targeted therapeutic strategies. Int J Mol Sci. 2023;24(21):15823. doi: 10.3390/ijms242115823, PMID 37958805.

49. Kaswan P. Chalcogenated schiff base ligands utilized for metal ion detection. Inorg Chim Acta. 2023 Oct 1;556:2023.121610. doi: 10.1016/j.ica.2023.121610.

50. Ebenezer O, Jordaan MA, Carena G, Bono T, Shapi M, Tuszynski JA. An overview of the biological evaluation of selected nitrogen containing heterocycle medicinal chemistry compounds. Int J Mol Sci. 2022;23(15):8117. doi: 10.3390/ijms23158117, PMID 35897691.

51. Kerru N, Gummidi L, Maddila S, Gangu KK, Jonnalagadda SB. A review on recent advances in nitrogen-containing molecules and their biological applications. Molecules. 2020;25(8):1909. doi: 10.3390/molecules25081909, PMID 32326131.

52. Alam R, Samad A, Ahammad F, Nur SM, Alsaiari AA, Imon RR. In silico formulation of a next-generation multiepitope vaccine for use as a prophylactic candidate against Crimean-Congo hemorrhagic fever. BMC Med. 2023;21(1):36. doi: 10.1186/s12916-023-02750-9, PMID 36726141.

53. Mohan Kumar R, Anantapur R, Peter A, HC. Computational investigation of phytoalexins as potential antiviral RAP-1 and RAP-2 (replication-associated proteins) inhibitor for the management of cucumber mosaic virus (CMV): a molecular modeling in silico docking and MM-GBSA study. J Biomol Struct Dyn. 2022;40(22):12165-83. doi: 10.1080/07391102.2021.1968500, PMID 34463218.

54. Murakawa T, Suzuki M, Fukui K, Masuda T, Sugahara M, Tono K. Serial femtosecond X-ray crystallography of an anaerobically formed catalytic intermediate of copper amine oxidase. Acta Crystallogr D Struct Biol. 2022;78(12):1428-38. doi: 10.1107/S2059798322010385, PMID 36458614.

55. Ekstrom F, Gottinger A, Forsgren N, Catto M, Iacovino LG, Pisani L. Dual reversible coumarin inhibitors mutually bound to monoamine oxidase B and acetylcholinesterase crystal structures. ACS Med Chem Lett. 2022;13(3):499-506. doi: 10.1021/acsmedchemlett.2c00001, PMID 35300078.

56. Mohanty M, Mohanty PS. Molecular docking in organic, inorganic and hybrid systems: a tutorial review. Monatsh Chem. 2023;154(7):1-25. doi: 10.1007/s00706-023-03076-1, PMID 37361694.

57. Guareschi R, Lukac I, Gilbert IH, Zuccotto F. SophosQM: accurate binding affinity prediction in compound optimization. ACS Omega. 2023;8(17):15083-98. doi: 10.1021/acsomega.2c08132, PMID 37151542.

58. Padroni G, Patwardhan NN, Schapira M, Hargrove AE. Systematic analysis of the interactions driving small molecule-RNA recognition. RSC Med Chem. 2020;11(7):802-13. doi: 10.1039/d0md00167h, PMID 33479676.

59. Tu Y. Artemisinin a gift from traditional Chinese medicine to the world (nobel lecture). Angew Chem Int Ed Engl. 2016;55(35):10210-26. doi: 10.1002/anie.201601967, PMID 27488942.

60. Liu X, Cao J, Huang G, Zhao Q, Shen J. Biological activities of artemisinin derivatives beyond malaria. Curr Top Med Chem. 2019;19(3):205-22. doi: 10.2174/1568026619666190122144217, PMID 30674260.

61. Zhang B. Artemisinin-derived dimers as potential anticancer agents: current developments action mechanisms and structure activity relationships. Arch Pharm (Weinheim). 2020;353(2):e1900240. doi: 10.1002/ardp.201900240, PMID 31797422.

62. Zhang X, Liu J, Li Y, Li Y, Zhao Y, He J. Synthesis and evaluation of coumarin artemisinine hybrids as potent anticancer agents. Chem Eur J. 2015;21(49):17415-21.

63. Rani D, Verma R, Saroha B, Kumar V. Synthesis and anticancer evaluation of novel coumarin azole hybrids. Anti-Cancer Agents Med Chem. 2021;21(16):1957-76.

Published

07-09-2025

How to Cite

MEHTA, S., KASWAN, P., RANJAN, P., & SUDESH. (2025). MOLECULAR DOCKING AND ADMET PROPERTIES OF NOVEL 5-METHYL-6AH-BENZO [4, 5] OXAZOLO [3,2-A]QUINOLIN-2-OL DERIVATIVES FOR THEIR ANTI-CANCER ACTIVITY. International Journal of Applied Pharmaceutics, 17(5), 436–443. https://doi.org/10.22159/ijap.2025v17i5.54488

Issue

Section

Original Article(s)

Similar Articles

<< < 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.