NANOTECHNOLOGY REVOLUTION IN TREATING VULVOVAGINAL CANDIDIASIS: A BREAKTHROUGH BEYOND CONVENTIONAL THERAPIES

Authors

  • DEVANTH D. GOWDA Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru-570015, Karnataka, India
  • SHARANYA PARAMSHETTI Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru-570015, Karnataka, India https://orcid.org/0000-0002-1449-2101
  • MOHIT ANGOLKAR Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru-570015, Karnataka, India https://orcid.org/0000-0001-5005-8399
  • DARSHAN PATIL Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru-570015, Karnataka, India
  • ASHA SPANDANA K. M. Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru-570015, Karnataka, India https://orcid.org/0000-0003-2541-1896

DOI:

https://doi.org/10.22159/ijap.2025v17i6.54550

Keywords:

Vulvovaginal candidiasis (VVC), Nanotechnology, Nano-drugs, Candida species, Drug resistance, Toxicity, Targeted drug delivery

Abstract

Vulvovaginal candidiasis is an extremely common infection; millions of women all over the world are affected. The main etiologic agent responsible for its development is Candida albicans. It is characterize by burning, itching and the presence of a thick and white discharge. VVC may be divided into two categories: simple and complex. Recurring forms of the disease pose difficult challenges to clinical management. An ability to form Candida biofilms on vaginal mucosa may be one of the reasons for the development of resistant infections, further increasing resistance towards treatment. The complications in managing infection due to the constantly rising resistance of Candida to commonly used antifungal drugs call for alternative therapies. The conventional methods of treatments, which include topical and oral antifungals, too often result in limited success with recurrence or side effects against such resistant strains. Nanotechnology therefore presents a promising alternative, as Nano-drug delivery systems enhance localized drug delivery by allowing more precise targeting of fungal cells. It can, therefore, overcome the resistance and deficiencies of the conventional mode of therapy. Various studies continue in nano medicine to develop better therapies in order to handle VVC with better outcome and management.

References

1. Teixeira AD, Quaresma ADV, Branquinho RT, Santos SLEN, Magalhaes JTD, Silva FHRD, Marques MBDF, Moura SALD, Barboza APM, Araujo MGDF, Silva GRD. Miconazole-loaded nanoparticles coated with hyaluronic acid to treat vulvovaginal candidiasis. European Journal of Pharmaceutical Sciences. 2023 Sep 1;188:106508. doi: 10.1016/j.ejps.2023.106508.

2. Felix TC, De Brito Roder DV, Dos Santos Pedroso R. Alternative and complementary therapies for vulvovaginal candidiasis. Folia Microbiol. 2019;64(2):133-41. doi: 10.1007/s12223-018-0652-x, PMID 30269301.

3. Otoo Annan E, Senoo Dogbey VE. Recurrent vulvovaginal candidiasis: assessing the relationship between feminine/vaginal washes and other factors among Ghanaian women. BMC Public Health. 2024 Jan 5;24(1):100. doi: 10.1186/s12889-024-17668-x, PMID 38183091.

4. Blostein F, Levin Sparenberg E, Wagner J, Foxman B. Recurrent vulvovaginal candidiasis. Ann Epidemiol. 2017 Sep;27(9):575-582.e3. doi: 10.1016/j.annepidem.2017.08.010, PMID 28927765.

5. Zahra Javanmard, Maryam Pourhajibagher, Abbas Bahador. Advancing anti-biofilm strategies: innovations to combat biofilm-related challenges and enhance efficacy. Journal of Basic Microbiology. 2024 Oct;64(12):e2400271. doi: 10.1002/jobm.202400271.

6. Bhattacharya S, Sae Tia S, Fries BC. Candidiasis and mechanisms of antifungal resistance. Antibiotics (Basel). 2020 Jun 9;9(6):312. doi: 10.3390/antibiotics9060312, PMID 32526921.

7. Sarpong AK, Odoi H, Boakye YD, Boamah VE, Agyare C. Resistant Candida albicans implicated in recurrent vulvovaginal candidiasis (RVVC) among women in a tertiary healthcare facility in Kumasi, Ghana. BMC Womens Health. 2024 Jul 19;24(1):412. doi: 10.1186/s12905-024-03217-6, PMID 39030542.

8. Le PH, Linklater DP, Medina AA, Mac Laughlin S, Crawford RJ, Ivanova EP. Impact of multiscale surface topography characteristics on Candida albicans biofilm formation: from cell repellence to fungicidal activity. Acta Biomater. 2024 Mar 15;177:20-36. doi: 10.1016/j.actbio.2024.02.006, PMID 38342192.

9. Alvarez L, Kumaran KS, Nitha B, Sivasubramani K. Evaluation of biofilm formation and antimicrobial susceptibility (drug resistance) of Candida albicans isolates. Braz J Microbiol. 2025 Mar 1;56(1):353-64. doi: 10.1007/s42770-024-01558-w, PMID 39500825.

10. Workowski KA, Bolan GA. Sexually transmitted diseases treatment guidelines, 2015. MMWR Recomm Rep. 2015 Jun 5;64(3):1-137. PMID 26042815.

11. Nyirjesy P, Brookhart C, Lazenby G, Schwebke J, Sobel JD. Vulvovaginal candidiasis: a review of the evidence for the 2021 centers for disease control and prevention of sexually transmitted infections treatment guidelines. Clin Infect Dis. 2022 Apr 13;74Suppl 2:S162-8. doi: 10.1093/cid/ciab1057, PMID 35416967.

12. Centers for Disease Control and Prevention, CDC. Available from: https://www.cdc.gov/index.html. [Last accessed on 12 Mar 2025].

13. Matsubara VH, Wang Y, Bandara HM, Mayer MP, Samaranayake LP. Probiotic lactobacilli inhibit early stages of Candida albicans biofilm development by reducing their growth cell adhesion and filamentation. Appl Microbiol Biotechnol. 2016 Jul;100(14):6415-26. doi: 10.1007/s00253-016-7527-3, PMID 27087525.

14. Stabile G, Gentile RM, Carlucci S, Restaino S, De Seta F. A new therapy for uncomplicated vulvovaginal candidiasis and its impact on vaginal flora. Healthcare (Basel). 2021 Nov 16;9(11):1555. doi: 10.3390/healthcare9111555, PMID 34828601.

15. Marrazzo JM, Dombrowski JC, Wierzbicki MR, Perlowski C, Pontius A, Dithmer D. Safety and efficacy of a novel vaginal anti-infective, TOL-463, in the treatment of bacterial vaginosis and vulvovaginal candidiasis: a randomized single blind phase 2, controlled trial. Clin Infect Dis. 2019 Feb 15;68(5):803-9. doi: 10.1093/cid/ciy554, PMID 30184181.

16. Fernandes Costa A, Evangelista Araujo D, Santos Cabral M, Teles Brito I, Borges De Menezes Leite L, Pereira M. Development characterization and in vitro in vivo evaluation of polymeric nanoparticles containing miconazole and farnesol for treatment of vulvovaginal candidiasis. Med Mycol. 2019 Jan 1;57(1):52-62. doi: 10.1093/mmy/myx155, PMID 29361177.

17. Phillips AJ. Treatment of non-albicans Candida vaginitis with amphotericin B vaginal suppositories. Am J Obstet Gynecol. 2005 Jun 1;192(6):2009-12. doi: 10.1016/j.ajog.2005.03.034, PMID 15970877.

18. Farr A, Effendy I, Frey Tirri B, Hof H, Mayser P, Petricevic L. Guideline: Vulvovaginal candidosis (AWMF 015/072, level S2k). Mycoses. 2021 Jun;64(6):583-602. doi: 10.1111/myc.13248, PMID 33529414.

19. Donders G, Sziller IO, Paavonen J, Hay P, De Seta F, Bohbot JM. Management of recurrent vulvovaginal candidosis: narrative review of the literature and European expert panel opinion. Front Cell Infect Microbiol. 2022;12:934353. doi: 10.3389/fcimb.2022.934353, PMID 36159646.

20. Anne Edwards, Riina Rautemaa Richardson, Caroline Owen, Bavithra Nathan. British association for sexual health and HIV national guideline for the management of vulvovaginal candidiasis (2019). Int J STD AIDS. 2020;31(12):1124-44. doi: 10.1177/0956462420943034, PMID 32883171.

21. AIDS Info A. Guidelines for the prevention and treatment of opportunistic infections in adults and adolescents with HIV. In: United States Department of Health and Human Services; 2019. Available from: https://www.pededose[ch]/de/file/show?filename=Opportunistic_Infections_Adult_Adolescents_online_202011. [Last accessed on 12 Mar 2025].

22. Warrilow AG, Hull CM, Parker JE, Garvey EP, Hoekstra WJ, Moore WR. The clinical candidate VT-1161 is a highly potent inhibitor of Candida albicans CYP51 but fails to bind the human enzyme. Antimicrob Agents Chemother. 2014 Dec;58(12):7121-7. doi: 10.1128/AAC.03707-14, PMID 25224009.

23. Brand SR, Sobel JD, Nyirjesy P, Ghannoum MA, Schotzinger RJ, Degenhardt TP. A randomized phase 2 study of VT-1161 for the treatment of acute vulvovaginal candidiasis. Clin Infect Dis. 2021 Oct 5;73(7):e1518-24. doi: 10.1093/cid/ciaa1204, PMID 32818963.

24. Martens MG, Maximos B, Degenhardt T, Person K, Curelop S, Ghannoum M. Phase 3 study evaluating the safety and efficacy of oteseconazole in the treatment of recurrent vulvovaginal candidiasis and acute vulvovaginal candidiasis infections. Am J Obstet Gynecol. 2022 Dec;227(6):880.e1-880.e11. doi: 10.1016/j.ajog.2022.07.023, PMID 35863457.

25. Denning DW, Kneale M, Sobel JD, Rautemaa Richardson R. Global burden of recurrent vulvovaginal candidiasis: a systematic review. Lancet Infect Dis. 2018 Nov;18(11):e339-47. doi: 10.1016/S1473-3099(18)30103-8, PMID 30078662.

26. Lirio J, Giraldo PC, Amaral RL, Sarmento AC, Costa AP, Gonçalves AK. Antifungal (oral and vaginal) therapy for recurrent vulvovaginal candidiasis: a systematic review protocol. BMJ Open. 2019 May 22;9(5):e027489. doi: 10.1136/bmjopen-2018-027489, PMID 31122991.

27. Philips N, Burchill D, O Donoghue D, Keller T, Gonzalez S. Identification of benzene metabolites in dermal fibroblasts as nonphenolic: regulation of cell viability, apoptosis lipid peroxidation and expression of matrix metalloproteinase 1 and elastin by benzene metabolites. Skin Pharmacol Physiol. 2004;17(3):147-52. doi: 10.1159/000077242, PMID 15087594.

28. Grant LM, Orenstein R. Treatment of recurrent vulvovaginal candidiasis with ibrexafungerp. J Investig Med High Impact Case Rep. 2022 Sep 3;10:23247096221123144. doi: 10.1177/23247096221123144, PMID 36059275.

29. Schwebke JR, Sobel R, Gersten JK, Sussman SA, Lederman SN, Jacobs MA. Ibrexafungerp versus placebo for vulvovaginal candidiasis treatment: a phase 3, randomized controlled superiority trial (VANISH 303). Clin Infect Dis. 2022;74(11):1979-85. doi: 10.1093/cid/ciab750, PMID 34467969.

30. Neal CM, Martens MG. Clinical challenges in diagnosis and treatment of recurrent vulvovaginal candidiasis. Sage Open Med. 2022;10:20503121221115201. doi: 10.1177/20503121221115201, PMID 36105548.

31. Lauryn Nsenga, Felix Bongomin. Recurrent candida vulvovaginitis. Venereology. 2022 May;1(1):114-23. doi: 10.3390/venereology1010008.

32. Neda Taghinejadi, Monique I Andersson, Emily Lord. Recurrent vulvovaginal candidiasis with Candida glabrata a management conundrum. 2022 Sep;33(10):939-42. doi: 10.1177/09564624221118739.

33. Re AC, Martins JF, Cunha Filho M, Gelfuso GM, Aires CP, Gratieri T. New perspectives on the topical management of recurrent candidiasis. Drug Deliv Transl Res. 2021 Aug 1;11(4):1568-85. doi: 10.1007/s13346-021-00901-0, PMID 33469892.

34. Kaur S, Kaur S. Recent advances in vaginal delivery for the treatment of vulvovaginal candidiasis. Curr Mol Pharmacol. 2021;14(3):281-91. doi: 10.2174/1573405616666200621200047, PMID 32564767.

35. Sato MR, Oshiro Junior JA, Rodero CF, Boni FI, Araujo VH, Bauab TM. Photodynamic therapy mediated hypericin-loaded nanostructured lipid carriers against vulvovaginal candidiasis. J Mycol Med. 2022 Nov;32(4):101296. doi: 10.1016/j.mycmed.2022.101296, PMID 35660541.

36. Chindamo G, Sapino S, Peira E, Chirio D, Gallarate M. Recent advances in nanosystems and strategies for vaginal delivery of antimicrobials. Nanomaterials (Basel). 2021 Jan 26;11(2):311. doi: 10.3390/nano11020311, PMID 33530510.

37. Carvalho GC, Marena GD, Leonardi GR, Sabio RM, Correa I, Chorilli M. Lycopene mesoporous silica nanoparticles and their association: a possible alternative against vulvovaginal candidiasis? Molecules. 2022;27(23):8558. doi: 10.3390/molecules27238558, PMID 36500650.

38. Yang M, Cao Y, Zhang Z, Guo J, Hu C, Wang Z. Low intensity ultrasound-mediated drug-loaded nanoparticles intravaginal drug delivery: an effective synergistic therapy scheme for treatment of vulvovaginal candidiasis. J Nanobiotechnology. BioMed Central. 2023;21(1):53. doi: 10.1186/s12951-023-01800-x, PMID 36782198.

39. Dos Santos Ramos MA, Da Silva PB, Sposito L, De Toledo LG, Bonifacio BV, Rodero CF. Nanotechnology-based drug delivery systems for control of microbial biofilms: a review. Int J Nanomedicine. 2018;13:1179-213. doi: 10.2147/IJN.S146195, PMID 29520143.

40. Prashant V, Kamat. Photophysical photochemical and photocatalytic aspects of metal nanoparticles. The Journal of Physical Chemistry B. 2002;106(32):7729-44. doi: 10.1021/jp0209289.

41. Weir E, Lawlor A, Whelan A, Regan F. The use of nanoparticles in anti-microbial materials and their characterization. Analyst. 2008 Jul;133(7):835-45. doi: 10.1039/b715532h, PMID 18575632.

42. Tokeer Ahmad, Irshad A Wani, Irfan H Lone, Aparna Ganguly. Antifungal activity of gold nanoparticles prepared by solvothermal method. Materials Research Bulletin. 2013;48(1):12-20. doi: 10.1016/j.materresbull.2012.09.069.

43. Kumar M, Varshney L, Francis S. Radiolytic formation of Ag clusters in aqueous polyvinyl alcohol solution and hydrogel matrix. Radiation Physics and Chemistry. 2005 May 1;73(1):21-7. doi: 10.1016/j.radphyschem.2004.06.006.

44. Austin LA, Mackey MA, Dreaden EC, El Sayed MA. The optical photothermal and facile surface chemical properties of gold and silver nanoparticles in biodiagnostics therapy and drug delivery. Arch Toxicol. 2014 Jul;88(7):1391-417. doi: 10.1007/s00204-014-1245-3, PMID 24894431.

45. Da Silva PB, Machado RT, Pironi AM, Alves RC, De Araujo PR, Dragalzew AC. Recent advances in the use of metallic nanoparticles with antitumoral action review. Curr Med Chem. 2019;26(12):2108-46. doi: 10.2174/0929867325666180214102918, PMID 29446728.

46. Rahimi H, Roudbarmohammadi S, Delavari H HH, Roudbary M. Antifungal effects of indolicidin conjugated gold nanoparticles against fluconazole-resistant strains of Candida albicans isolated from patients with burn infection. Int J Nanomedicine. 2019 Jul 17;14:5323-38. doi: 10.2147/IJN.S207527, PMID 31409990.

47. Baygar T, Sarac N, Ugur A, Karaca IR. Antimicrobial characteristics and biocompatibility of the surgical sutures coated with biosynthesized silver nanoparticles. Bioorg Chem. 2019 May;86:254-8. doi: 10.1016/j.bioorg.2018.12.034, PMID 30716622.

48. Alimehr S, Shekari Ebrahim Abad H, Shahverdi A, Hashemi J, Zomorodian K, Moazeni M. Comparison of difference between fluconazole and silver nanoparticles in antimicrobial effect on fluconazole-resistant Candida albicans strains. Arch Pediatr Infect Dis. 2015;3(2):e21481. doi: 10.5812/pedinfect.21481.

49. Aftab Ahmad, Yun Wei, Fatima Syed, Kamran Tahir, Raheela Taj, Arif Ullah Khan. Amphotericin B-conjugated biogenic silver nanoparticles as an innovative strategy for fungal infections. Microb Pathog. 2016 Oct:99:271-81. doi: 10.1016/j.micpath.2016.08.031.

50. Sirelkhatim A, Mahmud S, Seeni A, Kaus NH, Ann LC, Bakhori SK. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nanomicro Lett. 2015;7(3):219-42. doi: 10.1007/s40820-015-0040-x, PMID 30464967.

51. Lewis MA, Williams DW. Diagnosis and management of oral candidosis. Br Dent J. 2017 Nov 10;223(9):675-81. doi: 10.1038/sj.bdj.2017.886, PMID 29123282.

52. Shah CP, McKey J, Spirn MJ, Maguire J. Ocular candidiasis: a review. Br J Ophthalmol. 2008 Apr;92(4):466-8. doi: 10.1136/bjo.2007.133405, PMID 18369061.

53. Hajjar TH, Jebali A, Hekmati Moghaddam S. The inhibition of Candida albicans secreted aspartyl proteinase by triangular gold nanoparticles. Nanomed J. 2015;2(1):54-9. doi: 10.7508/NMJ.2015.01.006.

54. Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev. 2013 Jan;65(1):36-48. doi: 10.1016/j.addr.2012.09.037, PMID 23036225.

55. Klaus Strebhardt, Axel Ullrich. Paul ehrlichs magic bullet concept: 100 y of progress. Nat Rev Cancer. 2008 Jun;8(6):473-80. doi: 10.1038/nrc2394.

56. Deshpande PP, Biswas S, Torchilin VP. Current trends in the use of liposomes for tumor targeting. Nanomedicine (Lond). 2013 Sep;8(9):1509-28. doi: 10.2217/nnm.13.118, PMID 23914966.

57. Lopez Berestein G, Hopfer RL, Mehta R, Mehta K, Hersh EM, Juliano RL. Liposome-encapsulated amphotericin B for treatment of disseminated candidiasis in neutropenic mice. J Infect Dis. 1984 Aug;150(2):278-83. doi: 10.1093/infdis/150.2.278, PMID 6470530.

58. Pardeshi C, Rajput P, Belgamwar V, Tekade A, Patil G, Chaudhary K. Solid lipid-based nanocarriers: an overview. Acta Pharm. 2012 Dec;62(4):433-72. doi: 10.2478/v10007-012-0040-z, PMID 23333884.

59. Doktorovova S, Souto EB, Silva AM. Nanotoxicology applied to solid lipid nanoparticles and nanostructured lipid carriers a systematic review of in vitro data. Eur J Pharm Biopharm. 2014 May;87(1):1-18. doi: 10.1016/j.ejpb.2014.02.005, PMID 24530885.

60. Wong HL, Bendayan R, Rauth AM, Li Y, Wu XY. Chemotherapy with anticancer drugs encapsulated in solid lipid nanoparticles. Adv Drug Deliv Rev. 2007 Jul 10;59(6):491-504. doi: 10.1016/j.addr.2007.04.008, PMID 17532091.

61. Iqbal MA, Md S, Sahni JK, Baboota S, Dang S, Ali J. Nanostructured lipid carriers system: recent advances in drug delivery. J Drug Target. 2012 Dec;20(10):813-30. doi: 10.3109/1061186X.2012.716845, PMID 22931500.

62. Seh Hyon Song, Kyung Min Lee, Jong Boo Kang, Sang Gon Lee, Myung Joo Kang, Young Wook Choi. Improved skin delivery of voriconazole with a nanostructured lipid carrier-based hydrogel formulation. Chem Pharm Bull (Tokyo). 2014;62(8):793-8. doi: 10.1248/cpb.c14-00202.

63. Tian B, Yan Q, Wang J, Ding C, Sai S. Enhanced antifungal activity of voriconazole-loaded nanostructured lipid carriers against Candida albicans with a dimorphic switching model. Int J Nanomedicine. 2017 Sep 26;12:7131-41. doi: 10.2147/IJN.S145695.

64. Gordillo Galeano A, Mora Huertas CE. Solid lipid nanoparticles and nanostructured lipid carriers: a review emphasizing on particle structure and drug release. Eur J Pharm Biopharm. 2018 Dec;133:285-308. doi: 10.1016/j.ejpb.2018.10.017, PMID 30463794.

65. Huynh NT, Passirani C, Saulnier P, Benoit JP. Lipid nanocapsules: a new platform for nanomedicine. Int J Pharm. 2009 Sep 11;379(2):201-9. doi: 10.1016/j.ijpharm.2009.04.026, PMID 19409468.

66. Quintanar Guerrero D, Allemann E, Doelker E, Fessi H. Preparation and characterization of nanocapsules from preformed polymers by a new process based on emulsification diffusion technique. Pharm Res. 1998;15(7):1056-62. doi: 10.1023/a:1011934328471, PMID 9688060.

67. Santos SS, Lorenzoni A, Ferreira LM, Mattiazzi J, Adams AI, Denardi LB. Clotrimazole-loaded Eudragit® RS100 nanocapsules: preparation, characterization and in vitro evaluation of antifungal activity against Candida species. Mater Sci Eng C Mater Biol Appl. 2013 Apr 1;33(3):1389-94. doi: 10.1016/j.msec.2012.12.040, PMID 23827586.

68. Domingues Bianchin M, Borowicz SM, Da Rosa Monte Machado G, Pippi B, Staniscuaski Guterres S, Raffin Pohlmann A, Meneghello Fuentefria A, Clemes Kulkamp Guerreiro I. Lipid core nanoparticles as a broad strategy to reverse fluconazole resistance in multiple Candida species. Colloids Surf B Biointerfaces. 2019 Mar 1;175:523–9. doi: 10.1016/j.colsurfb.2018.12.011.

69. Giordani B, Basnet P, Mishchenko E, Luppi B, Skalko Basnet N. Utilizing liposomal quercetin and gallic acid in localized treatment of vaginal candida infections. Pharmaceutics. 2019 Dec 20;12(1):9. doi: 10.3390/pharmaceutics12010009, PMID 31861805.

70. Dos Santos MK, Kreutz T, Danielli LJ, De Marchi JG, Pippi B, Koester LS. A chitosan hydrogel thickened nanoemulsion containing Pelargonium graveolens essential oil for treatment of vaginal candidiasis. J Drug Deliv Sci Technol. 2020 Apr 1;56:101527. doi: 10.1016/j.jddst.2020.101527.

71. Carbone C, Fuochi V, Zielinska A, Musumeci T, Souto EB, Bonaccorso A. Dual drugs delivery in solid lipid nanoparticles for the treatment of Candida albicans mycosis. Colloids Surf B Biointerfaces. 2020 Feb;186:110705. doi: 10.1016/j.colsurfb.2019.110705, PMID 31830707.

72. El Sheridy NA, Ramadan AA, Eid AA, El Khordagui LK. Itraconazole lipid nanocapsules gel for dermatological applications: in vitro characteristics and treatment of induced cutaneous candidiasis. Colloids Surf B Biointerfaces. 2019 Sep 1;181:623-31. doi: 10.1016/j.colsurfb.2019.05.057, PMID 31202972.

73. Kamaly N, Xiao Z, Valencia PM, Radovic Moreno AF, Farokhzad OC. Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem Soc Rev. 2012 Apr 7;41(7):2971-3010. doi: 10.1039/c2cs15344k, PMID 22388185.

74. Amaral AC, Saavedra PH, Oliveira Souza AC, De Melo MT, Tedesco AC, Morais PC. Miconazole-loaded chitosan-based nanoparticles for local treatment of vulvovaginal candidiasis fungal infections. Colloids Surf B Biointerfaces. 2019 Feb 1;174:409-15. doi: 10.1016/j.colsurfb.2018.11.048, PMID 30481701.

75. Adelaide Fernandes Costa, Deize Evangelista Araujo, Mirlane Santos Cabral. Development characterization and in vitro in vivo evaluation of polymeric nanoparticles containing miconazole and farnesol for treatment of vulvovaginal candidiasis. Med Mycol. 2019 Jan 1;57(1):52-62. doi: 10.1093/mmy/myx155.

76. Lombardo D, Kiselev MA, Caccamo MT. Smart nanoparticles for drug delivery application: development of versatile nanocarrier platforms in biotechnology and nanomedicine. J Nanomater. 2019;2019(1):1-26. doi: 10.1155/2019/3702518.

77. Sabio RM, Meneguin AB, Ribeiro TC, Silva RR, Chorilli M. New insights towards mesoporous silica nanoparticles as a technological platform for chemotherapeutic drugs delivery. Int J Pharm. 2019 Jun 10;564:379-409. doi: 10.1016/j.ijpharm.2019.04.067, PMID 31028801.

78. Manzano M, Vallet Regi M. Mesoporous silica nanoparticles for drug delivery. Adv Funct Materials. 2020;30(2):1902634. doi: 10.1002/adfm.201902634.

79. Mendiratta S, Hussein M, Nasser HA, Ali AA. Multidisciplinary role of mesoporous silica nanoparticles in brain regeneration and cancers: from crossing the blood–brain barrier to treatment. Part Part Syst Char. 2019;36(9):1900195. doi: 10.1002/ppsc.201900195.

80. Mas N, Galiana I, Hurtado S, Mondragon L, Bernardos A, Sancenon F. Enhanced antifungal efficacy of tebuconazole using gated pH-driven mesoporous nanoparticles. Int J Nanomedicine. 2014 May 23;9(1):2597-606. doi: 10.2147/IJN.S59654, PMID 24920897.

81. Parasuraman P, Antony A, SBS, Sharan A, Syed A, Ahmed M. Antimicrobial photodynamic inactivation of fungal biofilm using amino functionalized mesoporous silica rose bengal nanoconjugate against Candida albicans. Sci Afr. 2018 Nov 1;1:e00007. doi: 10.1016/j.sciaf.2018.e00007.

82. Bain A, Vasdev N, Tekade M, Mishra DK, Sengupta P, Tekade RK. Toxicity of nanomaterials. In: Public health and toxicology issues drug research, Vol 2. Amsterdam: Elsevier; 2024. p. 679-706. doi: 10.1016/B978-0-443-15842-1.00023-5.

83. Zoroddu MA, Medici S, Ledda A, Nurchi VM, Lachowicz JI, Peana M. Toxicity of nanoparticles. Curr Med Chem. 2014;21(33):3837-53. doi: 10.2174/0929867321666140601162314, PMID 25306903.

84. Muhammad Umar Ijaz, Ali Akbar, Asma Ashraf. Toxicity of nanoparticles in biological systems. Materials Research Foundations. 2024;161:245-66. doi: 10.21741/9781644902998-9.

85. Sharifi S, Behzadi S, Laurent S, Forrest ML, Stroeve P, Mahmoudi M. Toxicity of nanomaterials. Chem Soc Rev. 2012 Feb 27;41(6):2323-43. doi: 10.1039/c1cs15188f, PMID 22170510.

86. Sharma N, Kurmi BD, Singh D, Mehan S, Khanna K, Karwasra R. Nanoparticles toxicity: an overview of its mechanism and plausible mitigation strategies. J Drug Target. 2024 May 27;32(5):457-69. doi: 10.1080/1061186X.2024.2316785, PMID 38328920.

87. Lina TT, Johnson SJ, Wagner RD. Intravaginal poly-(D, L-lactic-co-glycolic acid)-(polyethylene glycol) drug-delivery nanoparticles induce pro-inflammatory responses with Candida albicans infection in a mouse model. PLOS One. 2020;15(10):e0240789. doi: 10.1371/journal.pone.0240789, PMID 33091017.

88. Vidyadhari A, Singh N, Singh AK, Ralli T, Solanki P, Mirza MA. Investigation of luliconazole loaded mucoadhesive electrospun nanofibers for anticandidal activity in the management of vaginal candidiasis. ACS Omega. 2023 Nov 14;8(45):42102-13. doi: 10.1021/acsomega.3c02141, PMID 38024758.

89. Upmalis DH. Methods and kits for treating vulvovaginal candidiasis with miconazole nitrate; 2000. Available from: https://patents.google.com/patent/us6153635a/en.us6153635a.

90. Palacin C, Guerrero M, Raga MM, Romero A, Guglietta A. Pharmaceutical compositions of sertaconazole for vaginal use; 2004. Available from: https://patents.google.com/patent/ca2509830a1/en. [Last accessed on 12 Aug 2024].

91. Paquette N, Tremblay MH, Tremblay S, Therrien R, Fortin MC, Belley Montfort L. Multiplex detection of vulvovaginal candidiasis trichomoniasis and bacterial vaginosis; 2024. Available from: https://patents.google.com/patent/us12037649b2/en?oq=us12037649b2. [Last accessed on 26 Mar 2025].

92. Medicinal composition for treating vulvovaginal candidiasis. CN103127490B; 2014. Available from: https://patents.google.com/patent/CN103127490B/en. [Last accessed on 02 Sep 2024].

93. Bartizal K, Daruwala P, Hughes D, Hughes MP, Malkar NB, Radhakrishnan B. Compositions and methods for the treatment of fungal infections; 2021. Available from: https://patents.google.com/patent/us11197909b2/en. [Last accessed on 02 Sep 2024].

94. Dekker J, Medlen CE. Fulvic acid and its use in the treatment of candida infections; 2008. Available from: https://patents.google.com/patent/EP1700599B1/en. [Last accessed on 03 Sep 2024].

95. Roberta Gaziano, Samuele Sabbatini, Claudia Monari. The interplay between Candida albicans vaginal mucosa host immunity and resident microbiota in health and disease: an overview and future perspectives. Microorganisms. Available from: https://www.mdpi.com/20762607/11/5/1211. [Last accessed on 10 Aug 2024].

96. Bradfield Strydom M, Khan S, Walpola RL, Ware RS, Tiralongo E. Interplay of the microbiome and antifungal therapy in recurrent vulvovaginal candidiasis (RVVC): a narrative review. J Med Microbiol. 2023 May;72(5):001705. doi: 10.1099/jmm.0.001705, PMID 37171871.

97. Chew SY, Than LT. Vulvovaginal candidosis: contemporary challenges and the future of prophylactic and therapeutic approaches. Mycoses. 2016 May;59(5):262-73. doi: 10.1111/myc.12455, PMID 26765516.

98. Pereira LC, Correia AF, Da Silva ZD, De Resende CN, Brandao F, Almeida RM. Vulvovaginal candidiasis and current perspectives: new risk factors and laboratory diagnosis by using maldi tof for identifying species in primary infection and recurrence. Eur J Clin Microbiol Infect Dis. 2021 Aug;40(8):1681-93. doi: 10.1007/s10096-021-04199-1, PMID 33713006.

99. De Cassia Orlandi Sardi J, Silva DR, Anibal PC, De Campos Baldin JJ, Ramalho SR, Rosalen PL. Vulvovaginal candidiasis: epidemiology and risk factors, pathogenesis, resistance and new therapeutic options. Curr Fungal Infect Rep. 2021 Mar 1;15(1):32-40. doi: 10.1007/s12281-021-00415-9.

100. Gabriela Correa Carvalho, Gabriel Davi Marena, Gabriela Ricci Leonardi. Lycopene mesoporous silica nanoparticles and their association: a possible alternative against vulvovaginal candidiasis? Molecules. 2022 Dec;27(23):8558. doi: 10.3390/molecules27238558.

101. Annamaria Jutkova, Dusan Chorvat, Pavol Miskovsky. Encapsulation of anticancer drug curcumin and co-loading with photosensitizer hypericin into lipoproteins investigated by fluorescence resonance energy transfer. Int J Pharm. doi: 10.1016/j.ijpharm.2019.04.062.

102. Fernandes Costa A, Evangelista Araujo D, Santos Cabral M, Teles Brito I, Borges De Menezes Leite L, Pereira M. Development, characterization and in vitro in vivo evaluation of polymeric nanoparticles containing miconazole and farnesol for treatment of vulvovaginal candidiasis. Med Mycol. 2019 Jan 1;57(1):52-62. doi: 10.1093/mmy/myx155, PMID 29361177.

Published

07-11-2025

How to Cite

GOWDA, D. D., PARAMSHETTI, S., ANGOLKAR, M., PATIL, D., & K. M., A. S. (2025). NANOTECHNOLOGY REVOLUTION IN TREATING VULVOVAGINAL CANDIDIASIS: A BREAKTHROUGH BEYOND CONVENTIONAL THERAPIES. International Journal of Applied Pharmaceutics, 17(6), 90–101. https://doi.org/10.22159/ijap.2025v17i6.54550

Issue

Section

Review Article(s)

Similar Articles

<< < 110 111 112 113 114 > >> 

You may also start an advanced similarity search for this article.