THE ROLE OF ΑIIBΒ3 RECEPTORS IN MYOCARDIAL INFARCTION: MECHANISMS AND THERAPEUTIC STRATEGIES

Authors

  • ABU SAFANA BISWAS Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysore-570015, Karnataka, India https://orcid.org/0009-0005-4684-7236
  • GANAVI BETHANAGERE RAMESHA Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysore-570015, Karnataka, India
  • KAMSAGARA LINGANNA KRISHNA Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysore-570015, Karnataka, India
  • BHARAT JAYAPRAKASH BYALAHUNASHI Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysore-570015, Karnataka, India https://orcid.org/0009-0004-8455-7419
  • SEEMA MEHDI Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysore-570015, Karnataka, India
  • SUMAN PATHAK Department of Dravyaguna, Govt. Ayurvedic Medical College, Shimoga-577201, Karnataka, India

DOI:

https://doi.org/10.22159/ijap.2025v17i5.54646

Keywords:

Fibronectin, Glycoprotein IIb/IIIa, αIIbβ3 receptors, Platelet activation, Fibrinogen, Myocardial infarction

Abstract

Myocardial infarction (MI), a leading cause of death globally, is primarily caused by coronary artery blockage and the resulting myocardial ischemia. The epidemiology, molecular processes, clinical biomarkers, and treatment approaches of MI are all included in this review. In addition, the traditional antiplatelet treatments and new natural inhibitors such as disintegrin from snake venom, special attention is given to the platelet integrin αIIbβ3 receptor, whose crucial function in MI pathogenesis is reviewed. Several studies conducted between 2018 and 2023 demonstrated that αIIbβ3 plays a crucial role in mediating fibrinogen-dependent platelet aggregation and thrombus stability after plaque rupture. Using αIIbβ3 inhibitors during high-risk percutaneous coronary intervention (PCI) was justified by these findings. The recent studies done in 2024–2025 have broadened our understanding by showing that αIIbβ3 has a role in leukocyte-platelet interactions, thrombosis, inflammatory signalling, and plaque progression, indicating that its functions extend beyond hemostasis. Vascular damage and repair are reviewed in connection with important molecular pathways implicated in MI development, such as PI3K/Akt, Notch, NLRP3/Caspase-1/IL-1β, TLR4/MYD88/NF-κB, JAK/STAT, and TGF-β/SMADs. The growing clinical significance of diagnostic biomarkers such as troponins, CK-MB, VEGF-A₁₆₅b, and MMP-28 is underlined. In summary, αIIbβ3 continues to play a key role in thrombus formation by binding fibrinogen and encouraging platelet aggregation; however, recent data suggest that it also plays a role in vascular inflammation and atherogenesis, making it a viable target for the treatment of MI both acutely and over the long term.

References

1. Panda P, Verma HK, Lakkakula S, Merchant N, Kadir F, Rahman S. Biomarkers of oxidative stress tethered to cardiovascular diseases. Oxid Med Cell Longev. 2022;2022(1):9154295. doi: 10.1155/2022/9154295, PMID 35783193.

2. Smit M, Coetzee AR, Lochner A. The pathophysiology of myocardial ischemia and perioperative myocardial infarction. J Cardiothorac Vasc Anesth. 2020;34(9):2501-12. doi: 10.1053/j.jvca.2019.10.005, PMID 31685419.

3. Fathima SN. An update on myocardial infarction. Vol. 1. Current Research and Trends in Medical Science and Technology; 2021. p. 1-162.

4. Elsaka O. Pathophysiology investigations and management in cases of myocardial infarction. Asian J Adv Med Sci. 2022;4(1):1-14.

5. Sagheer U, Al Kindi S, Abohashem S, Phillips CT, Rana JS, Bhatnagar A. Environmental pollution and cardiovascular disease: Part 1 of 2: air pollution. JACC Adv. 2024;3(2):100805. doi: 10.1016/j.jacadv.2023.100805, PMID 38939391.

6. Rozanski A, Blumenthal JA, Hinderliter AL, Cole S, Lavie CJ. Cardiology and lifestyle medicine. Prog Cardiovasc Dis. 2023 Mar-Apr;77:4-13. doi: 10.1016/j.pcad.2023.04.004, PMID 37059409.

7. Sreeniwas Kumar A, Sinha N. Cardiovascular disease in India: A 360 degree overview. Med J Armed Forces India. 2020;76(1):1-3. doi: 10.1016/j.mjafi.2019.12.005, PMID 32020960.

8. Chong B, Jayabaskaran J, Jauhari SM, Chan SP, Goh R, Kueh MT. Global burden of cardiovascular diseases: projections from 2025 to 2050. Eur J Prev Cardiol. 2024:zwae281. doi: 10.1093/eurjpc/zwae281, PMID 39270739.

9. Chadwick Jayaraj J, Davatyan K, Subramanian SS, Priya J. Epidemiology of myocardial infarction. In: Pamukcu B, editor. Myocardial infarction. IntechOpen; 2019. doi: 10.5772/intechopen.74768.

10. De Filippis EM, Collins BL, Singh A, Biery DW, Fatima A, Qamar A. Women who experience a myocardial infarction at a young age have worse outcomes compared with men: the mass general brigham YOUNG-MI registry. Eur Heart J. 2020;41(42):4127-37. doi: 10.1093/eurheartj/ehaa662, PMID 33049774.

11. Kundu J, James KS, Hossain B, Chakraborty R. Gender differences in premature mortality for cardiovascular disease in India, 2017-18. BMC Public Health. 2023;23(1):547. doi: 10.1186/s12889-023-15454-9, PMID 36949397.

12. Mritunjay M, Ramavataram DV. Predisposing risk factors associated with acute MI (AMI): a review. Indian J Forensic Med Toxicol. 2021;15(2):406-17. doi: 10.37506/ijfmt.v15i2.14343.

13. Rathore A, Sharma AK, Murti Y, Bansal S, Kumari V, Snehi V. Medicinal plants in the treatment of myocardial infarction disease: a systematic review. Curr Cardiol Rev. 2024;20(4):e290424229484. doi: 10.2174/011573403X278881240405044328, PMID 38685783.

14. Islam MR, Nova TT, Momenuzzaman NA, Rabbi SN, Jahan I, Binder T. Prevalence of CYP2C19 and ITGB3 polymorphisms among Bangladeshi patients who underwent percutaneous coronary intervention. Sage Open Med. 2021 Aug 26;9:20503121211042209. doi: 10.1177/20503121211042209, PMID 34471538.

15. Akram AW, Saba E, Rhee MH. Antiplatelet and antithrombotic activities of Lespedeza cuneata via pharmacological inhibition of integrin αIIbβ3, MAPK, and PI3K/AKT pathways and FeCl3-induced murine thrombosis. Evid Based Complement Alternat Med. 2024;2024(1):9927160. doi: 10.1155/2024/9927160, PMID 38370873.

16. De Luca G, Verburg A, Hof AV, Ten Berg J, Kereiakes DJ, Coller BS. Current and future roles of glycoprotein IIb–IIIa inhibitors in primary angioplasty for ST-segment elevation myocardial infarction. Biomedicines. 2024;12(9):2023. doi: 10.3390/biomedicines12092023, PMID 39335537.

17. Rai M, Sinha A, Roy S. A review on the chemical induced experimental model of cardiotoxicity. Int J Pharm Pharm Sci. 2024 Jul 1;16(7):1-11. doi: 10.22159/ijpps.2024v16i7.51028.

18. Severino P, D Amato A, Pucci M, Infusino F, Adamo F, Birtolo LI. Ischemic heart disease pathophysiology paradigms overview: from plaque activation to microvascular dysfunction. Int J Mol Sci. 2020;21(21):8118. doi: 10.3390/ijms21218118, PMID 33143256.

19. Valikeserlis I, Athanasiou AA, Stakos D. Cellular mechanisms and pathways in myocardial reperfusion injury. Coron Artery Dis. 2021;32(6):567-77. doi: 10.1097/MCA.0000000000000997, PMID 33471478.

20. Jan B, Dar MI, Choudhary B, Basist P, Khan R, Alhalmi A. Cardiovascular diseases among Indian older adults: a comprehensive review. Cardiovasc Ther. 2024;2024(1):6894693. doi: 10.1155/2024/6894693, PMID 39742010.

21. Poredos P, Poredos AV, Gregoric I. Endothelial dysfunction and its clinical implications. Angiology. 2021;72(7):604-15. doi: 10.1177/0003319720987752, PMID 33504167.

22. Bai B, Yin H, Wang H, Liu F, Liang Y, Liu A. The combined effects of depression or anxiety with high sensitivity C-reactive protein in predicting the prognosis of coronary heart disease patients. BMC Psychiatry. 2024;24(1):717. doi: 10.1186/s12888-024-06158-4, PMID 39438827.

23. Gulati R, Behfar A, Narula J, Kanwar A, Lerman A, Cooper L. Acute myocardial infarction in young individuals. Mayo Clin Proc. 2020;95(1):136-56. doi: 10.1016/j.mayocp.2019.05.001, PMID 31902409.

24. Asl SK, Rahimzadegan M. The recent progress in the early diagnosis of acute myocardial infarction based on myoglobin biomarker: nano-aptasensors approaches. J Pharm Biomed Anal. 2022 Mar 20;211:114624. doi: 10.1016/j.jpba.2022.114624, PMID 35123334.

25. Ghosh A, Datta P, Dhingra M. Higher levels of creatine kinase MB (CK-MB) than total creatine kinase (CK): a biochemistry reporting error or an indicator of other pathologies? Cureus. 2023;15(12):e50792. doi: 10.7759/cureus.50792, PMID 38239552.

26. Aydin S, Ugur K, Aydin S, Sahin I, Yardim M. Biomarkers in acute myocardial infarction: current perspectives. Vasc Health Risk Manag. 2019 Jan 17;15:1-10. doi: 10.2147/VHRM.S166157, PMID 30697054.

27. Bularga A, Lee KK, Stewart S, Ferry AV, Chapman AR, Marshall L. High sensitivity troponin and the application of risk stratification thresholds in patients with suspected acute coronary syndrome. Circulation. 2019;140(19):1557-68. doi: 10.1161/circulationaha.119.042866, PMID 31475856.

28. Rios Navarro C, Hueso L, Diaz A, Marcos Garces V, Bonanad C, Ruiz Sauri A. Implicacion de la isoforma antiangiogenica VEGF-A165b en la angiogenesis y la funcion sistolica tras un infarto de miocardio reperfundido. Revista Espanola De Cardiologia. 2021;74(2):131-9. doi: 10.1016/j.recesp.2020.03.029.

29. Kikuchi R, Stevens M, Harada K, Oltean S, Murohara T. Anti-angiogenic isoform of vascular endothelial growth factor a in cardiovascular and renal disease. Adv Clin Chem. 2019;88:1-33. doi: 10.1016/bs.acc.2018.10.001, PMID 30612603.

30. Wu Y, Pan N, An Y, Xu M, Tan L, Zhang L. Diagnostic and prognostic biomarkers for myocardial infarction. Front Cardiovasc Med. 2020;7:617277. doi: 10.3389/fcvm.2020.617277, PMID 33614740.

31. Mierke CT. Bidirectional mechanical response between cells and their microenvironment. Front Phys. 2021 Oct 20;9:749830. doi: 10.3389/fphy.2021.749830.

32. Nielsen SH, Mouton AJ, De Leon Pennell KY, Genovese F, Karsdal M, Lindsey ML. Understanding cardiac extracellular matrix remodeling to develop biomarkers of mioutcomes. Matrix Biol. 2019;75:43-57. doi: 10.1016/j.matbio.2017.12.001.

33. Boudria A, Abou Faycal C, Jia T, Gout S, Keramidas M, Didier C. VEGF165b, a splice variant of VEGF-A, promotes lung tumor progression and escape from anti-angiogenic therapies through a β1 integrin/VEGFR autocrine loop. Oncogene. 2019;38(7):1050-66. doi: 10.1038/s41388-018-0486-7, PMID 30194450.

34. Kuppuswamy S, Annex BH, Ganta VC. Targeting anti-angiogenic VEGF165b-VEGFR1 signaling promotes nitric oxide independent therapeutic angiogenesis in preclinical peripheral artery disease models. Cells. 2022;11(17):2676. doi: 10.3390/cells11172676, PMID 36078086.

35. Luchian I, Goriuc A, Sandu D, Covasa M. The role of matrix metalloproteinases (MMP-8, MMP-9, MMP-13) in periodontal and peri-implant pathological processes. Int J Mol Sci. 2022;23(3):1806. doi: 10.3390/ijms23031806, PMID 35163727.

36. Olejarz W, Lacheta D, Kubiak Tomaszewska G. Matrix metalloproteinases as biomarkers of atherosclerotic plaque instability. Int J Mol Sci. 2020;21(11):3946. doi: 10.3390/ijms21113946, PMID 32486345.

37. De Leon Pennell KY, Iyer RP, Ma Y, Yabluchanskiy A, Zamilpa R, Chiao YA. The mouse heart attack research tool 1.0 database. Am J Physiol Heart Circ Physiol. 2018;315(3):H522-30. doi: 10.1152/ajpheart.00172.2018, PMID 29775405.

38. Jiang XT, Ding L, Huang X, Lei YP, Ke HJ, Xiong HF. Elevated CK-MB levels are associated with adverse clinical outcomes in acute pancreatitis: a propensity score matched study. Front Med (Lausanne). 2023 Sep 8;10:1256804. doi: 10.3389/fmed.2023.1256804, PMID 37746074.

39. Ghorbaninezhad F, Bakhshivand M, Saeedi H, Alizadeh N. The association of elevated levels of LDH and CK-MB with cardiac injury and mortality in COVID-19 patients. Immuno Analysis. 2022;2(1):8. doi: 10.34172/ia.2022.08.

40. Schneider U, Mukharyamov M, Beyersdorf F, Dewald O, Liebold A, Gaudino M. The value of perioperative biomarker release for the assessment of myocardial injury or infarction in cardiac surgery. Eur J Cardiothorac Surg. 2022;61(4):735-41. doi: 10.1093/ejcts/ezab493, PMID 34791135.

41. Canty Jr JM. Myocardial injury troponin release and cardiomyocyte death in brief ischemia failure and ventricular remodeling. Am J Physiol Heart Circ Physiol. 2022;323(1):H1-H15. doi: 10.1152/ajpheart.00093.2022, PMID 35559722.

42. Long B, Long DA, Tannenbaum L, Koyfman A. An emergency medicine approach to troponin elevation due to causes other than occlusion myocardial infarction. Am J Emerg Med. 2020;38(5):998-1006. doi: 10.1016/j.ajem.2019.12.007, PMID 31864875.

43. Muzyk P, Twerenbold R, Morawiec B, Ayala PL, Boeddinghaus J, Nestelberger T. Use of cardiac troponin in the early diagnosis of acute myocardial infarction. Kardiol Pol. 2020;78(11):1099-106. doi: 10.33963/KP.15585, PMID 32847343.

44. Adepu KK, Anishkin A, Adams SH, Chintapalli SV. A versatile delivery vehicle for cellular oxygen and fuels or metabolic sensor? A review and perspective on the functions of myoglobin. Physiol Rev. 2024;104(4):1611-42. doi: 10.1152/physrev.00031.2023, PMID 38696337.

45. Asl SK, Rahimzadegan M. The recent progress in the early diagnosis of acute myocardial infarction based on myoglobin biomarker: nano-aptasensors approaches. J Pharm Biomed Anal. 2022;211:114624. doi: 10.1016/j.jpba.2022.114624, PMID 35123334.

46. Mueller C, Mockel M, Giannitsis E, Huber K, Mair J, Plebani M. Use of copeptin for rapid rule out of acute myocardial infarction. Eur Heart J Acute Cardiovasc Care. 2018;7(6):570-6. doi: 10.1177/2048872617710791, PMID 28593800.

47. Michaud K, Basso C, d’Amati G, Giordano C, Kholova I, Preston SD. Diagnosis of myocardial infarction at autopsy: AECVP reappraisal in the light of the current clinical classification. Virchows Arch. 2020;476(2):179-94. doi: 10.1007/s00428-019-02662-1, PMID 31522288.

48. Boeddinghaus J, Nestelberger T, Koechlin L, Wussler D, Lopez Ayala P, Walter JE. Early diagnosis of myocardial infarction with point of care high sensitivity cardiac troponin I. J Am Coll Cardiol. 2020;75(10):1111-24. doi: 10.1016/j.jacc.2019.12.065, PMID 32164884.

49. Alkhaqani AL, Ali BR. Evidence based nursing care of patient with acute myocardial infarction: case report. Int J Nurs Health Sci. 2022;4(1):1-7. doi: 10.33545/26649187.2022.v4.i1a.31.

50. Vogel B, Claessen BE, Arnold SV, Chan D, Cohen DJ, Giannitsis E. ST-segment elevation myocardial infarction. Nat Rev Dis Primers. 2019;5(1):39. doi: 10.1038/s41572-019-0090-3, PMID 31171787.

51. Vidal Cales P, Cepas Guillen PL, Brugaletta S, Sabate M. New interventional therapies beyond stenting to treat ST-segment elevation acute myocardial infarction. J Cardiovasc Dev Dis. 2021;8(9):100. doi: 10.3390/jcdd8090100, PMID 34564118.

52. Bansal SS, Bansal S, Swaroop C. Door to balloon time in St-segment elevation myocardial infarction (STEMI): a prospective study. CA. 2022;11(3):10-6. doi: 10.9734/CA/2022/v11i330196.

53. Writing Committee Members, Lawton JS, Tamis Holland JE, Bangalore S, Bates ER, Beckie TM, Bischoff JM, Bittl JA, Cohen MG, Di Maio JM, Don CW. ACC/AHA/SCAI guideline for coronary artery revascularization: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J Am Coll Cardiol. 2022;79(2):e21-129. doi: 10.1016/j.jacc.2021.09.006.

54. Sharifi Rad J, Sharopov F, Ezzat SM, Zam W, Ademiluyi AO, Oyeniran OH. An updated review on glycoprotein IIb/IIIa inhibitors as antiplatelet agents: basic and clinical perspectives. High Blood Press Cardiovasc Prev. 2023;30(2):93-107. doi: 10.1007/s40292-023-00562-9, PMID 36637623.

55. Capodanno D, Milluzzo RP, Angiolillo DJ. Intravenous antiplatelet therapies (glycoprotein IIb/IIIa receptor inhibitors and cangrelor) in percutaneous coronary intervention: from pharmacology to indications for clinical use. Ther Adv Cardiovasc Dis. 2019;13:1753944719893274. doi: 10.1177/1753944719893274, PMID 31823688.

56. Hu X, Wang W, Ye J, Lin Y, Yu B, Zhou L. Effect of GP IIb/IIIa inhibitor duration on the clinical prognosis of primary percutaneous coronary intervention in ST-segment elevation myocardial infarction with no-/slow-reflow phenomenon. Biomed Pharmacother. 2021 Nov;143:112196. doi: 10.1016/j.biopha.2021.112196, PMID 34560551.

57. Redfors B, Dworeck C, Haraldsson I, Angeras O, Odenstedt J, Ioanes D. Pretreatment with P2Y12 receptor antagonists in ST-elevation myocardial infarction: a report from the swedish coronary angiography and angioplasty registry. Eur Heart J. 2019;40(15):1202-10. doi: 10.1093/eurheartj/ehz069, PMID 30851037.

58. Ghafouri Fard S, Khanbabapour Sasi A, Hussen BM, Shoorei H, Siddiq A, Taheri M. Interplay between PI3K/AKT pathway and heart disorders. Mol Biol Rep. 2022;49(10):9767-81. doi: 10.1007/s11033-022-07468-0, PMID 35499687.

59. Yue Z, Chen J, Lian H, Pei J, Li Y, Chen X. PDGFR-β signaling regulates cardiomyocyte proliferation and myocardial regeneration. Cell Rep. 2019;28(4):966-978.e4. doi: 10.1016/j.celrep.2019.06.065, PMID 31340157.

60. Miricescu D, Totan A, Stanescu Spinu II, Badoiu SC, Stefani C, Greabu M. PI3K/AKT/mTOR signaling pathway in breast cancer: from molecular landscape to clinical aspects. Int J Mol Sci. 2020;22(1):173. doi: 10.3390/ijms22010173, PMID 33375317.

61. Wang Q, Wang J, Xiang H, Ding P, Wu T, Ji G. The biochemical and clinical implications of phosphatase and tensin homolog deleted on chromosome ten in different cancers. Am J Cancer Res. 2021;11(12):5833-55. doi: 10.7150/ajcr.64841, PMID 35018228.

62. Feng Q, Li X, Qin X, Yu C, Jin Y, Qian X. PTEN inhibitor improves vascular remodeling and cardiac function after myocardial infarction through PI3k/Akt/VEGF signaling pathway. Mol Med. 2020;26(1):111. doi: 10.1186/s10020-020-00241-8, PMID 33213359.

63. Kachanova O, Lobov A, Malashicheva A. The role of the notch signaling pathway in recovery of cardiac function after myocardial infarction. Int J Mol Sci. 2022;23(20):12509. doi: 10.3390/ijms232012509, PMID 36293363.

64. Peng X, Wang S, Chen H, Chen M. Role of the Notch1 signaling pathway in ischemic heart disease (Review). Int J Mol Med. 2023;51(3):27. doi: 10.3892/ijmm.2023.5230, PMID 36799152.

65. Zhou Q, Rong C, Gu T, Li H, Wu L, Zhuansun X. Mesenchymal stem cells improve liver fibrosis and protect hepatocytes by promoting microRNA-148a-5p-mediated inhibition of Notch signaling pathway. Stem Cell Res Ther. 2022;13(1):354. doi: 10.1186/s13287-022-03030-8, PMID 35883205.

66. Kelley N, Jeltema D, Duan Y, He Y. The NLRP3 inflammasome: an overview of mechanisms of activation and regulation. Int J Mol Sci. 2019;20(13):3328. doi: 10.3390/ijms20133328, PMID 31284572.

67. Abbate A, Toldo S, Marchetti C, Kron J, Van Tassell BW, Dinarello CA. Interleukin-1 and the inflammasome as therapeutic targets in cardiovascular disease. Circ Res. 2020;126(9):1260-80. doi: 10.1161/circresaha.120.315937, PMID 32324502.

68. Kologrivova I, Shtatolkina M, Suslova T, Ryabov V. Cells of the immune system in cardiac remodeling: main players in resolution of inflammation and repair after myocardial infarction. Front Immunol. 2021 Apr 2;12:664457. doi: 10.3389/fimmu.2021.664457, PMID 33868315.

69. Xiao Z, Kong B, Yang H, Dai C, Fang J, Qin T. Key player in cardiac hypertrophy emphasizing the role of toll-like receptor 4. Front Cardiovasc Med. 2020 Nov 26;7:579036. doi: 10.3389/fcvm.2020.579036, PMID 33324685.

70. Xiao SJ, Zhou YF, Wu Q, Ma WR, Chen ML, Pan DF. Uncovering the differentially expressed genes and pathways involved in the progression of stable coronary artery disease to acute myocardial infarction using bioinformatics analysis. Eur Rev Med Pharmacol Sci. 2021;25(1):301-12. doi: 10.26355/eurrev_202101_24396, PMID 33506919.

71. Verhoeven Y, Tilborghs S, Jacobs J, De Waele J, Quatannens D, Deben C. The potential and controversy of targeting STAT family members in cancer. Semin Cancer Biol. 2020;60:41-56. doi: 10.1016/j.semcancer.2019.10.002, PMID 31605750.

72. Harhous Z, Booz GW, Ovize M, Bidaux G, Kurdi M. An update on the multifaceted roles of STAT3 in the heart. Front Cardiovasc Med. 2019 Oct 25;6:150. doi: 10.3389/fcvm.2019.00150, PMID 31709266.

73. Billah M, Ridiandries A, Allahwala UK, Mudaliar H, Dona A, Hunyor S. Remote ischemic preconditioning induces cardioprotective autophagy and signals through the IL-6-dependent JAK-STAT pathway. Int J Mol Sci. 2020;21(5):1692. doi: 10.3390/ijms21051692, PMID 32121587.

74. Tzavlaki K, Moustakas A. TGF-β signaling. Biomolecules. 2020;10(3):487. doi: 10.3390/biom10030487, PMID 32210029.

75. Annett S, Moore G, Robson T. FK506 binding proteins and inflammation related signalling pathways; basic biology current status and future prospects for pharmacological intervention. Pharmacol Ther. 2020 Nov;215:107623. doi: 10.1016/j.pharmthera.2020.107623, PMID 32622856.

76. Lai LY, Gracie NP, Gowripalan A, Howell LM, Newsome TP. SMAD proteins: mediators of diverse outcomes during infection. Eur J Cell Biol. 2022;101(2):151204. doi: 10.1016/j.ejcb.2022.151204, PMID 35131661.

77. Ahuja S, Zaheer S. Multifaceted TGF-β signaling a master regulator: from bench to bedside intricacies and complexities. Cell Biol Int. 2024;48(2):87-127. doi: 10.1002/cbin.12097, PMID 37859532.

78. Hanna A, Frangogiannis NG. The role of the TGF-β superfamily in myocardial infarction. Front Cardiovasc Med. 2019 Sep 18;6:140. doi: 10.3389/fcvm.2019.00140, PMID 31620450.

79. Saadat S, Noureddini M, Mahjoubin Tehran M, Nazemi S, Shojaie L, Aschner M. Pivotal role of TGF-β/Smad signaling in cardiac fibrosis: non-coding RNAs as effectual players. Front Cardiovasc Med. 2020 Jan 20;7:588347. doi: 10.3389/fcvm.2020.588347, PMID 33569393.

80. Carver W, Fix E, Fix C, Fan D, Chakrabarti M, Azhar M. Effects of emodin a plant derived anthraquinone on TGF-β1-induced cardiac fibroblast activation and function. J Cell Physiol. 2021;236(11):7440-9. doi: 10.1002/jcp.30416, PMID 34041746.

81. Zhuang Z, Yu D, Yi X, Xiao D, Jiang S, He R. Phosphatase and tensin homolog regulates arthro fibrotic myofibroblast proliferation via PI3K/AKT signalling pathways. Chin J Tissue Eng Res. 2019;23(5):767. doi: 10.3969/j.issn.2095-4344.0541.

82. Saad MA, Eltarzy MA, Abdel Salam RM, Ahmed MA. Liraglutide mends cognitive impairment by averting Notch signaling pathway overexpression in a rat model of polycystic ovary syndrome. Life Sci. 2021 Jan 15;265:118731. doi: 10.1016/j.lfs.2020.118731, PMID 33160995.

83. Wu D, Chen Y, Sun Y, Gao Q, Li H, Yang Z. Target of MCC950 in inhibition of NLRP3 inflammasome activation: a literature review. Inflammation. 2020;43(1):17-23. doi: 10.1007/s10753-019-01098-8, PMID 31646445.

84. Feng YY, Wang Z, Pang H. Role of metformin in inflammation. Mol Biol Rep. 2023;50(1):789-98. doi: 10.1007/s11033-022-07954-5, PMID 36319785.

85. Ismail R, Habib HA, Anter AF, Amin A, Heeba GH. Modified citrus pectin ameliorates methotrexate induced hepatic and pulmonary toxicity: role of Nrf2, galectin-3/TLR-4/NF-κB/TNF-α and TGF-β signaling pathways. Front Pharmacol. 2025 Jan 23;16:1528978. doi: 10.3389/fphar.2025.1528978, PMID 39917614.

86. Delen E, Doganlar O. The dose dependent effects of ruxolitinib on the invasion and tumorigenesis in gliomas cells via inhibition of interferon gamma depended JAK/STAT signaling pathway. J Korean Neurosurg Soc. 2020;63(4):444-54. doi: 10.3340/jkns.2019.0252, PMID 32492985.

87. Luo Y, Ali T, Liu Z, Gao R, Li A, Yang C. EPO prevents neuroinflammation and relieves depression via JAK/STAT signaling. Life Sci. 2023;333:122102. doi: 10.1016/j.lfs.2023.122102, PMID 37769806.

88. Tang B, Kang P, Zhu L, Xuan L, Wang H, Zhang H. Simvastatin protects heart function and myocardial energy metabolism in pulmonary arterial hypertension induced right heart failure. J Bioenerg Biomembr. 2021;53(1):1-12. doi: 10.1007/s10863-020-09867-z, PMID 33394312.

89. Arnaout MA. The integrin receptors: from discovery to structure to medicines. Immunol Rev. 2025;329(1):e13433. doi: 10.1111/imr.13433, PMID 39724488.

90. Kaneva VN, Martyanov AA, Morozova DS, Panteleev MA, Sveshnikova AN. Platelet integrin αIIbβ3: mechanisms of activation and clustering; involvement into the formation of the thrombus heterogeneous structure. Biochem Moscow Suppl Ser A. 2019;13(2):97-110. doi: 10.1134/S1990747819010033.

91. Litvinov RI, Mravic M, Zhu H, Weisel JW, DeGrado WF, Bennett JS. Unique transmembrane domain interactions differentially modulate integrin αvβ3 and αIIbβ3 function. Proc Natl Acad Sci USA. 2019;116(25):12295-300. doi: 10.1073/pnas.1904867116, PMID 31160446.

92. Xin H, Huang J, Song Z, Mao J, Xi X, Shi X. Structure signal transduction activation and inhibition of integrin αIIbβ3. Thromb J. 2023 Feb 13;21(1):18. doi: 10.1186/s12959-023-00463-w, PMID 36782235.

93. Huang J, Li X, Shi X, Zhu M, Wang J, Huang S. Platelet integrin αIIbβ3: signal transduction regulation and its therapeutic targeting. J Hematol Oncol. 2019;12(1):26. doi: 10.1186/s13045-019-0709-6, PMID 30845955.

94. Ludhiadch A, Muralidharan A, Balyan R, Munshi A. The molecular basis of platelet biogenesis activation aggregation and implications in neurological disorders. Int J Neurosci. 2020;130(12):1237-49. doi: 10.1080/00207454.2020.1732372, PMID 32069430.

95. Cognasse F, Duchez AC, Audoux E, Ebermeyer T, Arthaud CA, Prier A. Platelets as key factors in inflammation: focus on CD40L/CD40. Front Immunol. 2022 Feb 3;13:825892. doi: 10.3389/fimmu.2022.825892, PMID 35185916.

96. Montecino Garrido H, Trostchansky A, Espinosa Parrilla Y, Palomo I, Fuentes E. How protein depletion balances thrombosis and bleeding risk in the context of platelet’s activatory and negative signaling. Int J Mol Sci. 2024;25(18):10000. doi: 10.3390/ijms251810000, PMID 39337488.

97. Van Den Kerkhof DL, Van Der Meijden PE, Hackeng TM, Dijkgraaf I. Exogenous integrin αIIbβ3 inhibitors revisited: past present and future applications. Int J Mol Sci. 2021;22(7):3366. doi: 10.3390/ijms22073366, PMID 33806083.

98. Ma Q, Dong J, Hindman B. Integrins: form and role in myofibroblast differentiation and function. In: Myofibroblasts: origins, function and role in disease. Nova Science Publishers; 2016.

99. Ahmed MU. Role of GPVI/fibrinogen interplay in platelet activation, thrombus formation and stability. Strasbourg, France: Universite de Strasbourg; 2020.

100. Hashemzadeh M, Haseefa F, Peyton L, Shadmehr M, Niyas AM, Patel A. A comprehensive review of the ten main platelet receptors involved in platelet activity and cardiovascular disease. Am J Blood Res. 2023;13(6):168-88. doi: 10.62347/NHUV4765, PMID 38223314.

101. Jiang L, Yuan C, Flaumenhaft R, Huang M. Recent advances in vascular thiol isomerases: insights into structures functions in thrombosis and antithrombotic inhibitor development. Thromb J. 2025;23(1):16. doi: 10.1186/s12959-025-00699-8, PMID 39962537.

102. Wang L, Tang C. Targeting platelet in atherosclerosis plaque formation: current knowledge and future perspectives. Int J Mol Sci. 2020;21(24):9760. doi: 10.3390/ijms21249760, PMID 33371312.

103. Zhang Y, Ehrlich SM, Zhu C, Du X. Signaling mechanisms of the platelet glycoprotein Ib-IX complex. Platelets. 2022;33(6):823-32. doi: 10.1080/09537104.2022.2071852, PMID 35615944.

104. Flora GD, Nayak MK. A brief review of cardiovascular diseases, associated risk factors and current treatment regimes. Curr Pharm Des. 2019;25(38):4063-84. doi: 10.2174/1381612825666190925163827, PMID 31553287.

105. Gawaz M, Geisler T, Borst O. Current concepts and novel targets for antiplatelet therapy. Nat Rev Cardiol. 2023;20(9):583-99. doi: 10.1038/s41569-023-00854-6, PMID 37016032.

106. Ilyas I, Little PJ, Liu Z, Xu Y, Kamato D, Berk BC. Mouse models of atherosclerosis in translational research. Trends Pharmacol Sci. 2022;43(11):920-39. doi: 10.1016/j.tips.2022.06.009, PMID 35902281.

107. Misra A, Feng Z, Chandran RR, Kabir I, Rotllan N, Aryal B. Integrin beta3 regulates clonality and fate of smooth muscle derived atherosclerotic plaque cells. Nat Commun. 2018;9(1):2073. doi: 10.1038/s41467-018-04447-7, PMID 29802249.

108. Lariviere M, Bonnet S, Lorenzato C, Laroche Traineau J, Ottones F, Jacobin-Valat MJ. Recent advances in the molecular imaging of atherosclerosis. Semin Thromb Hemost. 2020;46(5):563-86. doi: 10.1055/s-0039-1701019, PMID 32604420.

109. Hsia CW, Huang WC, Jayakumar T, Hsia CH, Hou SM, Chang CC. Garcinol acts as a novel integrin αIIbβ3 inhibitor in human platelets. Life Sci. 2023;326:121791. doi: 10.1016/j.lfs.2023.121791, PMID 37211346.

110. Lickert S, Kenny M, Selcuk K, Mehl JL, Bender M, Früh SM. Platelets drive fibronectin fibrillogenesis using integrin αIIbβ3. Sci Adv. 2022;8(10):eabj8331. doi: 10.1126/sciadv.abj8331, PMID 35275711.

111. Jain M, Chauhan AK. Role of integrins in modulating smooth muscle cell plasticity and vascular remodeling: from expression to therapeutic implications. Cells. 2022;11(4):646. doi: 10.3390/cells11040646, PMID 35203297.

112. Gao B, Xu J, Zhou J, Zhang H, Yang R, Wang H. Multifunctional pathology mapping theranostic nanoplatforms for US/MR imaging and ultrasound therapy of atherosclerosis. Nanoscale. 2021;13(18):8623-38. doi: 10.1039/D1NR01096D, PMID 33929480.

113. Filippi A, Constantin A, Alexandru N, Voicu G, Constantinescu CA, Rebleanu D. Integrins α4β1 and αVβ3 are reduced in endothelial progenitor cells from diabetic dyslipidemic mice and may represent new targets for therapy in aortic valve disease. Cell Transplant. 2020 Jan-Dec;29:963689720946277. doi: 10.1177/0963689720946277, PMID 32841051.

114. Li Y, Gao Q, Shu X, Xiao L, Yang Y, Pang N. Antagonizing αvβ3 integrin improves ischemia mediated vascular normalization and blood perfusion by altering macrophages. Front Pharmacol. 2021 Feb 24;12:585778. doi: 10.3389/fphar.2021.585778, PMID 33716733.

115. Yurdagul Jr A. Crosstalk between macrophages and vascular smooth muscle cells in atherosclerotic plaque stability. Arterioscler Thromb Vasc Biol. 2022;42(4):372-80. doi: 10.1161/ATVBAHA.121.316233, PMID 35172605.

116. Dziedzic A, Bijak M. Interactions between platelets and leukocytes in pathogenesis of multiple sclerosis. Adv Clin Exp Med. 2019;28(2):277-85. doi: 10.17219/acem/83588, PMID 30411550.

117. Romanova VO, Kuzminova NV, Romanova LO, Lozinsky SE, Knyazkova II, Kulchytska OM. Indicators of nonspecific systemic inflammation as criteria for destabilization of the course of coronary artery disease. WOMAB. 2022;18(82):153-7. doi: 10.26724/2079-8334-2022-4-82-153-157.

118. Lordan R, Tsoupras A, Zabetakis I. Platelet activation and prothrombotic mediators at the nexus of inflammation and atherosclerosis: potential role of antiplatelet agents. Blood Rev. 2021;45:100694. doi: 10.1016/j.blre.2020.100694, PMID 32340775.

119. Fuentes E, Moore Carrasco R, De Andrade Paes AM, Trostchansky A. Role of platelet activation and oxidative stress in the evolution of myocardial infarction. J Cardiovasc Pharmacol Ther. 2019;24(6):509-20. doi: 10.1177/1074248419861437, PMID 31280622.

120. Ziegler M, Wang X, Peter K. Platelets in cardiac ischaemia/reperfusion injury: a promising therapeutic target. Cardiovasc Res. 2019;115(7):1178-88. doi: 10.1093/cvr/cvz070, PMID 30906948.

121. Walsh TG, Poole AW. Do platelets promote cardiac recovery after myocardial infarction: roles beyond occlusive ischemic damage. Am J Physiol Heart Circ Physiol. 2018;314(5):H1043-8. doi: 10.1152/ajpheart.00134.2018, PMID 29547023.

122. Kei CY, Singh K, Dautov RF, Nguyen TH, Chirkov YY, Horowitz JD. Coronary microvascular dysfunction: evolving understanding of pathophysiology clinical implications and potential therapeutics. Int J Mol Sci. 2023;24(14):11287. doi: 10.3390/ijms241411287, PMID 37511046.

123. Soud M, Ho G, Hideo Kajita A, Yacob O, Waksman R, McFadden EP. Periprocedural myocardial injury: pathophysiology prognosis and prevention. Cardiovasc Revasc Med. 2020;21(8):1041-52. doi: 10.1016/j.carrev.2020.04.011, PMID 32586745.

124. Zuccarelli V, Andreaggi S, Walsh JL, Kotronias RA, Chu M, Vibhishanan J. Treatment and care of patients with ST-segment elevation myocardial infarction-what challenges remain after three decades of primary percutaneous coronary intervention? J Clin Med. 2024;13(10):2923. doi: 10.3390/jcm13102923, PMID 38792463.

125. Burlacu A, Tinica G, Artene B, Simion P, Savuc D, Covic A. Peculiarities and consequences of different angiographic patterns of STEMI patients receiving coronary angiography only: data from a large primary PCI registry. Emerg Med Int. 2020;2020(1):9839281. doi: 10.1155/2020/9839281, PMID 32765909.

126. Udaya R, Sivakanesan R. Synopsis of biomarkers of atheromatous plaque formation rupture and thrombosis in the diagnosis of acute coronary syndromes. Curr Cardiol Rev. 2022;18(5):53-62. doi: 10.2174/1573403X18666220411113450, PMID 35410616.

127. Khatib R, Wilson F. Pharmacology of medications used in the treatment of atherosclerotic cardiovascular disease. In: Encyclopedia of cardiovascular research and medicine. Amsterdam: Elsevier; 2018. p. 68-88. doi: 10.1016/B978-0-12-809657-4.99756-4.

128. Lin FY, Li J, Xie Y, Zhu J, Huong Nguyen TT, Zhang Y. A general chemical principle for creating closure stabilizing integrin inhibitors. Cell. 2022;185(19):3533-3550.e27. doi: 10.1016/j.cell.2022.08.008, PMID 36113427.

129. Tonin G, Klen J. Eptifibatide an older therapeutic peptide with new indications: from clinical pharmacology to everyday clinical practice. Int J Mol Sci. 2023;24(6):5446. doi: 10.3390/ijms24065446, PMID 36982519.

130. Rikken SA, Van ’t Hof AW, Ten Berg JM, Kereiakes DJ, Coller BS. Critical analysis of thrombocytopenia associated with glycoprotein IIb/IIIa inhibitors and potential role of zalunfiban a novel small molecule glycoprotein inhibitor in understanding the mechanism(s). J Am Heart Assoc. 2023;12(24):e031855. doi: 10.1161/JAHA.123.031855, PMID 38063187.

131. Stoffer K, Bistas KG, Reddy V, Shah S. Abciximab. In: Treasure Island, FL: StatPearls Publishing; 2022.

132. Nesic D, Zhang Y, Spasic A, Li J, Provasi D, Filizola M. Cryo-electron microscopy structure of the αIIbβ3-abciximab complex. Arterioscler Thromb Vasc Biol. 2020;40(3):624-37. doi: 10.1161/ATVBAHA.119.313671, PMID 31969014.

133. Yang M, Kholmukhamedov A. Platelet reactivity in dyslipidemia: atherothrombotic signaling and therapeutic implications. Rev Cardiovasc Med. 2021;22(1):67-81. doi: 10.31083/j.rcm.2021.01.256, PMID 33792249.

134. Janus Bell E, Mangin PH. The relative importance of platelet integrins in hemostasis thrombosis and beyond. Haematologica. 2023;108(7):1734-47. doi: 10.3324/haematol.2022.282136, PMID 36700400.

135. Wang L, Wang J, Li J, Walz T, Coller BS. An αIIbβ3 monoclonal antibody traps a semiextended conformation and allosterically inhibits large ligand binding. Blood Adv. 2024;8(16):4398-409. doi: 10.1182/bloodadvances.2024013177, PMID 38968144.

136. Bai N, Niu Y, Ma Y, Shang YS, Zhong PY, Wang ZL. Evaluate short term outcomes of abciximab in st-segment elevation myocardial infarction patients undergoing percutaneous coronary intervention: a meta-analysis of randomized clinical trials. J Interv Cardiol. 2022;2022(1):3911414. doi: 10.1155/2022/3911414, PMID 35685429.

137. Oliveira IS, Manzini RV, Ferreira IG, Cardoso IA, Bordon KC, Machado AR. Cell migration inhibition activity of a non-RGD disintegrin from Crotalus durissus collilineatus venom. J Venom Anim Toxins Incl Trop Dis. 2018 Oct;24:28. doi: 10.1186/s40409-018-0167-6, PMID 30377432.

138. Fischer F, Buxy S, Kurz DJ, Eberli FR, Senn O, Zbinden R. Efficacy and safety of abbreviated eptifibatide treatment in patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention. Am J Cardiol. 2021 Jan 15;139:15-21. doi: 10.1016/j.amjcard.2020.09.054, PMID 33065082.

139. Mahajan P, Ayub F, Azimi R, Adoni N. Eptifibatide induced profound thrombocytopaenia: a rare complication. BMJ Case Rep. 2021;14(6):e241594. doi: 10.1136/bcr-2021-241594, PMID 34127501.

140. Islam A, Emran TB, Yamamoto DS, Iyori M, Amelia F, Yusuf Y. Anopheline antiplatelet protein from mosquito saliva regulates blood feeding behavior. Sci Rep. 2019;9(1):3129. doi: 10.1038/s41598-019-39960-2, PMID 30816309.

141. Huang J, Song W, Hua H, Yin X, Huang F, Alolga RN. Antithrombotic and anticoagulant effects of a novel protein isolated from the venom of the Deinagkistrodon acutus snake. Biomed Pharmacother. 2021;138:111527. doi: 10.1016/j.biopha.2021.111527, PMID 33773469.

142. Tan CH, Tan KY, Ng TS, Tan NH, Chong HP. De novo venom gland transcriptome assembly and characterization for Calloselasma rhodostoma (Kuhl, 1824), the Malayan pit viper from Malaysia: unravelling toxin gene diversity in a medically important basal crotaline. Toxins. 2023;15(5):315. doi: 10.3390/toxins15050315, PMID 37235350.

143. Kolvekar N, Bhattacharya N, Mondal S, Sarkar A, Chakrabarty D. Daboialipase a phospholipase A2 from vipera russelli russelli venom posesses anti-platelet, anti-thrombin and anti-cancer properties. Toxicon. 2024;239:107632. doi: 10.1016/j.toxicon.2024.107632, PMID 38310691.

144. Nafiseh NN, Hossein V, Nasser MD, Mojtaba N, Minoo A, Mohammad Ali B. Analysis and identification of putative novel peptides purified from Iranian endemic Echis carinatus Sochureki snake venom by MALDI-TOF mass spectrometry. Arch Razi Inst. 2023;78(5):1503-27. doi: 10.22092/ARI.2023.78.5.1503, PMID 38590689.

145. Pushpa Arokia Rani A, Serena MC Connell M. Snake venom. In: Manjur Shah M, Sharif U, Rufai Buhari T, Sabiu Imam T, editors. Snake venom and ecology. IntechOpen; 2022. doi: 10.5772/intechopen.101716.

146. Frangieh J, Rima M, Fajloun Z, Henrion D, Sabatier JM, Legros C. Snake venom components: tools and cures to target cardiovascular diseases. Molecules. 2021;26(8):2223. doi: 10.3390/molecules26082223, PMID 33921462.

147. Jackson WF. Calcium dependent ion channels and the regulation of arteriolar myogenic tone. Front Physiol. 2021 Nov 8;12:770450. doi: 10.3389/fphys.2021.770450, PMID 34819877.

148. Mendez Barbero N, Gutierrez Munoz C, Blanco Colio LM. Cellular crosstalk between endothelial and smooth muscle cells in vascular wall remodeling. Int J Mol Sci. 2021;22(14):7284. doi: 10.3390/ijms22147284, PMID 34298897.

149. Cesar PH, Braga MA, Trento MV, Menaldo DL, Marcussi S. Snake venom disintegrins: an overview of their interaction with integrins. Curr Drug Targets. 2019;20(4):465-77. doi: 10.2174/1389450119666181022154737, PMID 30360735.

150. Krishnan SM, Kraehling JR, Eitner F, Benardeau A, Sandner P. The impact of the nitric oxide (NO)/soluble guanylyl cyclase (sGC) signaling cascade on kidney health and disease: a preclinical perspective. Int J Mol Sci. 2018;19(6):1712. doi: 10.3390/ijms19061712, PMID 29890734.

151. Holland NA, Francisco JT, Johnson SC, Morgan JS, Dennis TJ, Gadireddy NR. Cyclic nucleotide directed protein kinases in cardiovascular inflammation and growth. J Cardiovasc Dev Dis. 2018;5(1):6. doi: 10.3390/jcdd5010006, PMID 29367584.

152. Upadhyay RK. Antihyperlipidemic and cardioprotective effects of plant natural products: a review. Int J Green Pharm. 2021 Apr 9;15(1):1-19. doi: 10.22377/ijgp.v15i1.3011.

153. Ebrahimi Y, Hasanvand A, Safarabadi AM, Sepahvand H, Moghadasi M, Abbaszadeh S. A review of the most important herbal drugs effective in chest pain due to cardiac disease. Anaesth Pain Intensive Care. 2019;23(1).

154. Sandner P, Zimmer DP, Milne GT, Follmann M, Hobbs A, Stasch JP. Soluble guanylate cyclase stimulators and activators. Handb Exp Pharmacol. 2021;264:355-94. doi: 10.1007/164_2018_197, PMID 30689085.

155. Jing L, Liu K, Wang F, Su Y. Role of mechanically sensitive cation channels Piezo1 and TRPV4 in trabecular meshwork cell mechanotransduction. Hum Cell. 2024;37(2):394-407. doi: 10.1007/s13577-024-01035-4, PMID 38316716.

156. Zhang MX, Song Y, Xu WL, Zhang LX, Li C, Li YL. Natural herbal medicine as a treatment strategy for myocardial infarction through the regulation of angiogenesis. Evid Based Complement Alternat Med. 2022;2022(1):8831750. doi: 10.1155/2022/8831750, PMID 35600953.

157. Wang R, Wang M, Zhou J, Wu D, Ye J, Sun G. Saponins in Chinese herbal medicine exerts protection in myocardial ischemia reperfusion injury: possible mechanism and target analysis. Front Pharmacol. 2020 Jun 14;11:570867. doi: 10.3389/fphar.2020.570867, PMID 33597866.

158. Pan J, Wang J, Lei Z, Wang H, Zeng N, Zou J. Therapeutic potential of Chinese herbal medicine and underlying mechanism for the treatment of myocardial infarction. Phytother Res. 2025 Jan;39(1):189-232. doi: 10.1002/ptr.8368, PMID 39523856.

159. Brown SA, Pereira N. Pharmacogenomic impact of CYP2C19 variation on clopidogrel therapy in precision cardiovascular medicine. J Pers Med. 2018;8(1):8. doi: 10.3390/jpm8010008, PMID 29385765.

Published

07-09-2025

How to Cite

BISWAS, A. S., RAMESHA, G. B., KRISHNA, K. L., BYALAHUNASHI, B. J., MEHDI, S., & PATHAK, S. (2025). THE ROLE OF ΑIIBΒ3 RECEPTORS IN MYOCARDIAL INFARCTION: MECHANISMS AND THERAPEUTIC STRATEGIES. International Journal of Applied Pharmaceutics, 17(5), 30–41. https://doi.org/10.22159/ijap.2025v17i5.54646

Issue

Section

Review Article(s)

Similar Articles

<< < 37 38 39 40 > >> 

You may also start an advanced similarity search for this article.