PHYTOSOME TECHNOLOGY IN CANCER TREATMENT ENHANCES THE BIOAVAILABILITY OF SECONDARY METABOLITES

Authors

  • MUJIBULLAH SHEIKH Department of Pharmaceutics, Datta Meghe College of Pharmacy DMIHER (Deemed to be University), Wardha, Maharashtra-442001, India https://orcid.org/0009-0003-1867-7028
  • ZOYA SHEIKH Department of Pharmaceutics, Datta Meghe College of Pharmacy DMIHER (Deemed to be University), Wardha, Maharashtra-442001, India
  • ARFANA SHEIKH Department of Pharmaceutics, Datta Meghe College of Pharmacy DMIHER (Deemed to be University), Wardha, Maharashtra-442001, India
  • MAHIN KHAN Department of Pharmaceutics, Datta Meghe College of Pharmacy DMIHER (Deemed to be University), Wardha, Maharashtra-442001, India
  • VAISHNAVI SHETE Department of Pharmaceutics, Datta Meghe College of Pharmacy DMIHER (Deemed to be University), Wardha, Maharashtra-442001, India

DOI:

https://doi.org/10.22159/ijap.2025v17i6.54665

Keywords:

Phytosome technology, secondary metabolites, bioavailability, cancer pathways, targeted delivery, preclinical efficacy

Abstract

Phytosome technology represents a major breakthrough in the delivery of plant-derived secondary metabolites for cancer therapy, addressing fundamental limitations such as poor aqueous solubility, rapid metamorphosis, and reduced bioavailability, which hinders clinical translation. The secondary metabolites flavonoids, terpenoids, alkaloids, and phenolic resins exhibit potent anticancer activities by modulating crucial oncogenic nerve pathways e.g., NF-κB (Nuclear Factor kappa-light-chain-enhancer of activated B cells), PI3K (Phosphoinositide 3-kinase), causing apoptosis and inhibiting angiogenesis. However, their hydrophobic nature and volatility in the physiological environment limit their curative efficacy. Phytosomes, which are molecular complexes containing phytochemicals and phospholipids, increase lipid solubility, prevent bioactive compounds from degrading, and facilitate target delivery to the tumor, resulting in refined absorption, dispersed circulation, and reduced systemic toxicity. Preclinical studies have shown that phytosome encapsulation can increase anticancer activity by up to fivefold and synergizes with conventional chemotherapeutics, resulting in increased efficacy in breast and colorectal tumor models. This review critically examines the structural and mechanistic foundations of phytosome technology, its application in improving the pharmacokinetics and therapeutic indices of secondary metabolites, and recent innovations, including nanoparticle incorporation and codelivery systems. By integrating metabolomic profiling with nanocarrier design, phytosomes hold promise as a cornerstone for next-generation, natural product-based precision oncology, overcoming bioavailability barriers and potentiating anticancer effects to advance clinical translation.

References

1. Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, Jemal A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians. 2024;74(3):229–63.

2. Kumar S, Shukla MK, Sharma AK, Jayaprakash GK, Tonk RK, Chellappan DK, Singh SK, Dua K, Ahmed F, Bhattacharyya S, Kumar D. Metal-based nanomaterials and nanocomposites as promising frontier in cancer chemotherapy. MedComm. 2023;4(2):e253.

3. He Y, Chen H, Li W, Xu L, Yao H, Cao Y, Wang Z, Zhang L, Wang D, Zhou D. 3-Bromopyruvate-loaded bismuth sulfide nanospheres improve cancer treatment by synergizing radiotherapy with modulation of tumor metabolism. Journal of Nanobiotechnology. 2023 Jul 5;21(1):209.

4. Shukla S, Mehta A. Anticancer potential of medicinal plants and their phytochemicals: a review. Braz J Bot. 2015 Jun 1;38(2):199–210.

5. Zheng C, Li M, Ding J. Challenges and Opportunities of Nanomedicines in Clinical Translation. BIO Integration. 2021 Jul 1;2:57.

6. Kesharwani SS, Mallya P, Kumar VA, Jain V, Sharma S, Dey S. Nobiletin as a Molecule for Formulation Development: An Overview of Advanced Formulation and Nanotechnology-Based Strategies of Nobiletin. AAPS PharmSciTech. 2020 Aug 5;21(6):226.

7. Khan A, Siddiqui S, Husain SA, Mazurek S, Iqbal MA. Phytocompounds Targeting Metabolic Reprogramming in Cancer: An Assessment of Role, Mechanisms, Pathways, and Therapeutic Relevance. J Agric Food Chem. 2021 Jun 30;69(25):6897–928.

8. Maviah MBJ, Farooq MA, Mavlyanova R, Veroniaina H, Filli MS, Aquib M, Kesse S, Boakye-Yiadom KO, Wang B. Food Protein-Based Nanodelivery Systems for Hydrophobic and Poorly Soluble Compounds. AAPS PharmSciTech. 2020 Mar 9;21(3):101.

9. Wang G, Wang ,JunJie, Wu ,Wei, Tony To ,Shing Shun, Zhao ,HuaFu, and Wang J. Advances in lipid-based drug delivery: enhancing efficiency for hydrophobic drugs. Expert Opinion on Drug Delivery. 2015 Sep 2;12(9):1475–99.

10. Pal P, Dave V, Paliwal S, Sharma M, Potdar MB, Tyagi A. Phytosomes—Nanoarchitectures’ Promising Clinical Applications and Therapeutics. In: Nanopharmaceutical Advanced Delivery Systems [Internet]. John Wiley & Sons, Ltd; 2021 [cited 2025 Apr 3]. p. 187–216. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119711698.ch9

11. Kapse MV, Mulla JAS. Unlocking the potential of phytosomes: a review of formulation techniques, evaluation methods, and emerging applications. Acta Materia Medica. 2024 Dec 28;3:509–20.

12. Agarwal A, Chakraborty ,Prithviraj, Chakraborty ,Debarupa D., and Saharan VA. Phytosomes: Complexation, Utilisation and Commerical Status. Journal of Biologically Active Products from Nature. 2012 Jan 1;2(2):65–77.

13. Li H, Xia ,Xiaoyu, Tan ,Xiaoyi, Zang ,Jiachen, Wang ,Zhenyu, EI-Seedi ,Hesham R., and Du M. Advancements of nature nanocage protein: preparation, identification and multiple applications of ferritins. Critical Reviews in Food Science and Nutrition. 2022 Sep 1;62(25):7117–28.

14. Lu M, Qiu Q, Luo X, Liu X, Sun J, Wang C, Lin X, Deng Y, Song Y. Phyto-phospholipid complexes (phytosomes): A novel strategy to improve the bioavailability of active constituents. Asian Journal of Pharmaceutical Sciences. 2019 May 1;14(3):265–74.

15. Kamireddy S, Sangeetha SS, Roy H. QUERCETIN PHYTOSOMES: A COMPREHENSIVE APPROACH FOR THE PREPARATION, AND OPTIMIZATION USING BOX-BEHNKEN DESIGN. International Journal of Applied Pharmaceutics [Internet]. 2025 May 8 [cited 2025 May 14]; Available from: https://www.innovareacademics.in/journals/index.php/ijap/article/view/54075

16. Alharbi WS, Almughem FA, Almehmady AM, Jarallah SJ, Alsharif WK, Alzahrani NM, Alshehri AA. Phytosomes as an Emerging Nanotechnology Platform for the Topical Delivery of Bioactive Phytochemicals. Pharmaceutics. 2021 Sep;13(9):1475.

17. Kumar A, Kumar B, Singh SK, Kaur B, Singh S. A REVIEW ON PHYTOSOMES: NOVEL APPROACH FOR HERBAL PHYTOCHEMICALS. Asian Journal of Pharmaceutical and Clinical Research. 2017 Oct 1;41–7.

18. Singh M, Devi ,Shanti, Rana ,Virendra S., Mishra ,Bhuwan B., Kumar ,Jitendra, and Ahluwalia V. Delivery of phytochemicals by liposome cargos: recent progress, challenges and opportunities. Journal of Microencapsulation. 2019 Apr 3;36(3):215–35.

19. Lu M, Qiu Q, Luo X, Liu X, Sun J, Wang C, Lin X, Deng Y, Song Y. Phyto-phospholipid complexes (phytosomes): A novel strategy to improve the bioavailability of active constituents. Asian J Pharm Sci. 2019 May;14(3):265–74.

20. Karimi N, Ghanbarzadeh B, Hamishehkar H, Keivani F, Pezeshki A, Gholian MM. Phytosome and Liposome: The Beneficial Encapsulation Systems in Drug Delivery and Food Application. Applied Food Biotechnology. 2015 Jun 30;2(3):17–27.

21. Mardiana L, Milanda T, Hadisaputri YE, Chaerunisaa AY. Phytosome-Enhanced Secondary Metabolites for Improved Anticancer Efficacy: Mechanisms and Bioavailability Review. Drug Des Devel Ther. 2025 Jan 11;19:201–18.

22. Turgeon BG, Bushley KE. Secondary Metabolism. In: Cellular and Molecular Biology of Filamentous Fungi [Internet]. John Wiley & Sons, Ltd; 2010 [cited 2025 Apr 5]. p. 376–95. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1128/9781555816636.ch26

23. Baryła M, Semeniuk-Wojtaś A, Róg L, Kraj L, Małyszko M, Stec R. Oncometabolites—A Link between Cancer Cells and Tumor Microenvironment. Biology. 2022 Feb;11(2):270.

24. Qiu S, Cai Y, Yao H, Lin C, Xie Y, Tang S, Zhang A. Small molecule metabolites: discovery of biomarkers and therapeutic targets. Sig Transduct Target Ther. 2023 Mar 20;8(1):1–37.

25. Dabbousy R, Rima M, Roufayel R, Rahal M, Legros C, Sabatier JM, Fajloun Z. Plant Metabolomics: The Future of Anticancer Drug Discovery. Pharmaceuticals. 2024 Oct;17(10):1307.

26. Seca AML, Pinto DCGA. Plant Secondary Metabolites as Anticancer Agents: Successes in Clinical Trials and Therapeutic Application. Int J Mol Sci. 2018 Jan 16;19(1):263.

27. A P. Plant Secondary Metabolites in Cancer Treatment: A Mini Review. OAJMB. 2024 Apr 2;9(2):1–4.

28. Jamal A, Arif A, Shahid MN, Kiran S, Batool Z. Plant Secondary Metabolites Inhibit Cancer by Targeting Epidermal Growth Factor Receptor (EGFR): An Updated Review on their Regulation and Mechanisms of Action. Asian Pacific Journal of Cancer Biology. 2025 Jan 12;10(1):191–206.

29. Situmorang PC, Ilyas S, Nugraha SE, Syahputra RA, Nik Abd Rahman NMA. Prospects of compounds of herbal plants as anticancer agents: a comprehensive review from molecular pathways. Front Pharmacol [Internet]. 2024 Jul 22 [cited 2025 Apr 19];15. Available from: https://www.frontiersin.orghttps://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2024.1387866/full

30. Roy A, Khan A, Ahmad I, Alghamdi S, Rajab BS, Babalghith AO, Alshahrani MY, Islam S, Islam MdR. Flavonoids a Bioactive Compound from Medicinal Plants and Its Therapeutic Applications. Biomed Res Int. 2022 Jun 6;2022:5445291.

31. Koppula S, Shaik B, Maddi S. Phytosomes as a New Frontier and Emerging Nanotechnology Platform for Phytopharmaceuticals: Therapeutic and Clinical Applications. Phytotherapy Research [Internet]. [cited 2025 Apr 19];n/a(n/a). Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/ptr.8465

32. Pandey P, Lakhanpal S, Mahmood D, Kang HN, Kim B, Kang S, Choi J, Choi M, Pandey S, Bhat M, Sharma S, Khan F, Park MN, Kim B. An updated review summarizing the anticancer potential of flavonoids via targeting NF-kB pathway. Front Pharmacol. 2025 Jan 6;15:1513422.

33. Hilal B, Khan MM, Fariduddin Q. Recent advancements in deciphering the therapeutic properties of plant secondary metabolites: phenolics, terpenes, and alkaloids. Plant Physiology and Biochemistry. 2024 Jun 1;211:108674.

34. Toma L, Deleanu M, Sanda GM, Barbălată T, Niculescu LŞ, Sima AV, Stancu CS. Bioactive Compounds Formulated in Phytosomes Administered as Complementary Therapy for Metabolic Disorders. International Journal of Molecular Sciences. 2024 Jan;25(8):4162.

35. Dabbousy R, Rima M, Roufayel R, Rahal M, Legros C, Sabatier JM, Fajloun Z. Plant Metabolomics: The Future of Anticancer Drug Discovery. Pharmaceuticals. 2024 Oct;17(10):1307.

36. Kawish SM, Sharma S, Gupta P, Ahmad FJ, Iqbal M, Alshabrmi FM, Anwer MdK, Fathi-karkan S, Rahdar A, Aboudzadeh MA. Nanoparticle-Based Drug Delivery Platform for Simultaneous Administration of Phytochemicals and Chemotherapeutics: Emerging Trends in Cancer Management. Particle & Particle Systems Characterization. 2024;41(12):2400049.

37. Li Q, Zhao H, Chen W, Huang P. Berberine induces apoptosis and arrests the cell cycle in multiple cancer cell lines. Arch Med Sci. 2023 Sep 1;19(5):1530–7.

38. Wu MY, Wang SF, Cai CZ, Tan JQ, Li M, Lu JJ, Chen XP, Wang YT, Zheng W, Lu JH. Natural autophagy blockers, dauricine (DAC) and daurisoline (DAS), sensitize cancer cells to camptothecin-induced toxicity. Oncotarget. 2017 Sep 8;8(44):77673–84.

39. Salerni BL, Bates DJ, Albershardt TC, Lowrey CH, Eastman A. Vinblastine induces acute, cell cycle phase-independent apoptosis in some leukemias and lymphomas and can induce acute apoptosis in others when Mcl-1 is suppressed. Mol Cancer Ther. 2010 Apr;9(4):791–802.

40. Tsai HY, Ho CT, Chen YK. Biological actions and molecular effects of resveratrol, pterostilbene, and 3′-hydroxypterostilbene. Journal of Food and Drug Analysis. 2017 Jan 1;25(1):134–47.

41. Liu Y, You Y, Lu J, Chen X, Yang Z. Recent Advances in Synthesis, Bioactivity, and Pharmacokinetics of Pterostilbene, an Important Analog of Resveratrol. Molecules. 2020 Nov 6;25(21):5166.

42. Singh A, Srivastav S, Singh MP, Singh R, Kumar P, Kush P. Recent advances in phytosomes for the safe management of cancer. Phytomedicine Plus. 2024 May 1;4(2):100540.

43. Kadriya A, Falah M. Nanoscale Phytosomes as an Emerging Modality for Cancer Therapy. Cells. 2023 Jan;12(15):1999.

44. Gaikwad SS, Morade YY, Kothule AM, Kshirsagar SJ, Laddha UD, Salunkhe KS. Overview of phytosomes in treating cancer: Advancement, challenges, and future outlook. Heliyon. 2023 Jun 1;9(6):e16561.

45. Basim S, Kasim A. Cytotoxic Activity of the Ethyl Acetate Extract of Iraqi Carica papaya Leaves in Breast and Lung Cancer Cell Lines. Asian Pac J Cancer Prev. 2023 Feb 1;24(2):581–6.

46. Li J, Shen S, Liu Z, Zhao H, Liu S, Liu Q, Yao GD, Song SJ. Synthesis and Structure–Activity Analysis of Icaritin Derivatives as Potential Tumor Growth Inhibitors of Hepatocellular Carcinoma Cells. J Nat Prod. 2023 Feb 24;86(2):290–306.

47. He M, Yasin K, Yu S, Li J, Xia L. Total Flavonoids in Artemisia absinthium L. and Evaluation of Its Anticancer Activity. International Journal of Molecular Sciences. 2023 Jan;24(22):16348.

48. Shoaib M, Ghias M, Ali Shah SW, Ali N, Umar MN, Rahman M, Shah I. Synthetic flavonols and flavones: A future perspective as anticancer agents. Pakistan Journal of Pharmaceutical Sciences. 2019;32(3).

49. Dehnoee A, Kalbasi RJ, Tavakoli S, Zangeneh MM, Zangeneh A, Delnavazi MR. Anticancer potential of furanocoumarins and flavonoids of Heracleum persicum fruit [Internet]. Research Square; 2023 [cited 2025 Apr 20]. Available from: https://www.researchsquare.com/article/rs-3073212/v1

50. Tuzimski T, Petruczynik A, Plech T, Kaproń B, Makuch-Kocka A, Szultka-Młyńska M, Misiurek J, Buszewski B, Waksmundzka-Hajnos M. Determination of Selected Isoquinoline Alkaloids from Chelidonium majus, Mahonia aquifolium and Sanguinaria canadensis Extracts by Liquid Chromatography and Their In Vitro and In Vivo Cytotoxic Activity against Human Cancer Cells. IJMS. 2023 Mar 28;24(7):6360.

51. Nazemoroaya Z, Sarafbidabad M, Mahdieh A, Zeini D, Nyström B. Use of Saponinosomes from Ziziphus spina-christi as Anticancer Drug Carriers. ACS Omega. 2022 Aug 16;7(32):28421–33.

52. Mir SA, Dar A, Hamid L, Nisar N, Malik JA, Ali T, Bader GN. Flavonoids as promising molecules in the cancer therapy: An insight. Current Research in Pharmacology and Drug Discovery. 2024 Jan 1;6:100167.

53. Dhyani P, Quispe C, Sharma E, Bahukhandi A, Sati P, Attri DC, Szopa A, Sharifi-Rad J, Docea AO, Mardare I, Calina D, Cho WC. Anticancer potential of alkaloids: a key emphasis to colchicine, vinblastine, vincristine, vindesine, vinorelbine and vincamine. Cancer Cell International. 2022 Jun 2;22(1):206.

54. Ionkova I, Shkondrov A, Zarev Y, Kozuharova E, Krasteva I. Anticancer Secondary Metabolites: From Ethnopharmacology and Identification in Native Complexes to Biotechnological Studies in Species of Genus Astragalus L. and Gloriosa L. Current Issues in Molecular Biology. 2022 Sep;44(9):3884–904.

55. Shin SA, Moon SY, Kim WY, Paek SM, Park HH, Lee CS. Structure-Based Classification and Anti-Cancer Effects of Plant Metabolites. Int J Mol Sci. 2018 Sep 6;19(9):2651.

56. Sevastre AS, Manea EV, Popescu OS, Tache DE, Danoiu S, Sfredel V, Tataranu LG, Dricu A. Intracellular Pathways and Mechanisms of Colored Secondary Metabolites in Cancer Therapy. Int J Mol Sci. 2022 Sep 1;23(17):9943.

57. Püsküllüoğlu M, Michalak I. The therapeutic potential of natural metabolites in targeting endocrine-independent HER-2-negative breast cancer. Front Pharmacol [Internet]. 2024 Mar 4 [cited 2025 Apr 19];15. Available from: https://www.frontiersin.orghttps://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2024.1349242/full

58. Fakhri S, Moradi SZ, Farzaei MH, Bishayee A. Modulation of dysregulated cancer metabolism by plant secondary metabolites: A mechanistic review. Seminars in Cancer Biology. 2022 May 1;80:276–305.

59. Zhan X, Li J, Zhou T. Targeting Nrf2-Mediated Oxidative Stress Response Signaling Pathways as New Therapeutic Strategy for Pituitary Adenomas. Front Pharmacol. 2021 Mar 24;12:565748.

60. Barani M, Sangiovanni E, Angarano M, Rajizadeh MA, Mehrabani M, Piazza S, Gangadharappa HV, Pardakhty A, Mehrbani M, Dell’Agli M, Nematollahi MH. Phytosomes as Innovative Delivery Systems for Phytochemicals: A Comprehensive Review of Literature. IJN. 2021 Oct;Volume 16:6983–7022.

61. Hashemzadeh H, Hanafi-Bojd MY, Iranshahy M, Zarban A, Raissi H. The combination of polyphenols and phospholipids as an efficient platform for delivery of natural products. Sci Rep. 2023 Feb 13;13(1):2501.

62. PubChem. Vinblastine [Internet]. [cited 2025 Apr 19]. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/13342

63. PubChem. Vincristine [Internet]. [cited 2025 Apr 19]. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/5978

64. Liu Z, Zheng Q, Chen W, Wu M, Pan G, Yang K, Li X, Man S, Teng Y, Yu P, Gao W. Chemosensitizing effect of Paris Saponin I on Camptothecin and 10-hydroxycamptothecin in lung cancer cells via p38 MAPK, ERK, and Akt signaling pathways. European Journal of Medicinal Chemistry. 2017 Jan;125:760–9.

65. Singh S, Pandey VP, Yadav K, Yadav A, Dwivedi UN. Natural Products as Anti-Cancerous Therapeutic Molecules Targeted towards Topoisomerases. Current Protein & Peptide Science. 2020 Nov 1;21(11):1103–42.

66. Sudhakaran M, Sardesai S, Doseff AI. Flavonoids: New Frontier for Immuno-Regulation and Breast Cancer Control. Antioxidants. 2019 Apr;8(4):103.

67. Ranjan A, Ramachandran S, Gupta N, Kaushik I, Wright S, Srivastava S, Das H, Srivastava S, Prasad S, Srivastava SK. Role of Phytochemicals in Cancer Prevention. International Journal of Molecular Sciences. 2019 Jan;20(20):4981.

68. Chimento A, D’Amico M, De Luca A, Conforti FL, Pezzi V, De Amicis F. Resveratrol, Epigallocatechin Gallate and Curcumin for Cancer Therapy: Challenges from Their Pro-Apoptotic Properties. Life (Basel). 2023 Jan 17;13(2):261.

69. Maleki Dana P, Sadoughi F, Asemi Z, Yousefi B. The role of polyphenols in overcoming cancer drug resistance: a comprehensive review. Cellular & Molecular Biology Letters. 2022 Jan 3;27(1):1.

70. Vishwakarma DK, Mishra JN, Shukla AK, Singh AP, Vishwakarma DK, Mishra JN, Shukla AK, Singh AP. Phytosomes as a Novel Approach to Drug Delivery System. In: Smart Drug Delivery Systems - Futuristic Window in Cancer Therapy [Internet]. IntechOpen; 2024 [cited 2025 Apr 19]. Available from: https://www.intechopen.com/chapters/89431

71. Shriram RG, Moin A, Alotaibi HF, Khafagy ES, Al Saqr A, Abu Lila AS, Charyulu RN. Phytosomes as a Plausible Nano-Delivery System for Enhanced Oral Bioavailability and Improved Hepatoprotective Activity of Silymarin. Pharmaceuticals (Basel). 2022 Jun 24;15(7):790.

72. Zandavar H, Babazad MA, Zandavar H, Babazad MA. Secondary Metabolites: Alkaloids and Flavonoids in Medicinal Plants. In IntechOpen; 2023 [cited 2025 Apr 19]. Available from: https://www.intechopen.com/chapters/84231

73. Saadaoui I, Rasheed R, Abdulrahman N, Bounnit T, Cherif M, Al Jabri H, Mraiche F. Algae-Derived Bioactive Compounds with Anti-Lung Cancer Potential. Mar Drugs. 2020 Apr 8;18(4):197.

74. Tamzi NN, Rahman MM, Das S. Recent Advances in Marine-Derived Bioactives Towards Cancer Therapy. International Journal of Translational Medicine. 2024 Dec;4(4):740–81.

75. Martínez KA, Saide A, Crespo G, Martín J, Romano G, Reyes F, Lauritano C, Ianora A. Promising Antiproliferative Compound From the Green Microalga Dunaliella tertiolecta Against Human Cancer Cells. Front Mar Sci [Internet]. 2022 Feb 17 [cited 2025 Apr 19];9. Available from: https://www.frontiersin.orghttps://www.frontiersin.org/journals/marine-science/articles/10.3389/fmars.2022.778108/full

76. Frazzini S, Rossi L. Anticancer Properties of Macroalgae: A Comprehensive Review. Marine Drugs. 2025 Feb;23(2):70.

77. Hu Y, Lin Q, Zhao H, Li X, Sang S, McClements DJ, Long J, Jin Z, Wang J, Qiu C. Bioaccessibility and bioavailability of phytochemicals: Influencing factors, improvements, and evaluations. Food Hydrocolloids. 2023 Feb;135:108165.

78. Liu Y, Li S, Liu X, Sun H, Yue T, Zhang X, Yan B, Cao D. Design of Small Nanoparticles Decorated with Amphiphilic Ligands: Self-Preservation Effect and Translocation into a Plasma Membrane. ACS Appl Mater Interfaces. 2019 Jul 10;11(27):23822–31.

79. Jogpal V, Sanduja M, Dutt R, Garg V, Tinku. Advancement of nanomedicines in chronic inflammatory disorders. Inflammopharmacol. 2022 Apr;30(2):355–68.

80. Ames CL, Klompen AML, Badhiwala K, Muffett K, Reft AJ, Kumar M, Janssen JD, Schultzhaus JN, Field LD, Muroski ME, Bezio N, Robinson JT, Leary DH, Cartwright P, Collins AG, Vora GJ. Cassiosomes are stinging-cell structures in the mucus of the upside-down jellyfish Cassiopea xamachana. Commun Biol. 2020 Feb 13;3(1):67.

81. Paul W, Sharma CP. Inorganic nanoparticles for targeted drug delivery. In: Biointegration of Medical Implant Materials [Internet]. Elsevier; 2020 [cited 2025 Apr 19]. p. 333–73. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780081026809000135

82. Umashankar DD. Plant secondary metabolites as regenerative medicine. J Phytopharmacol. 2020 Aug 12;9(4):270–3.

83. Chauhan D, Yadav PK, Sultana N, Agarwal A, Verma S, Chourasia MK, Gayen JR. Advancements in nanotechnology for the delivery of phytochemicals. Journal of Integrative Medicine. 2024 Jul;22(4):385–98.

84. Pons-Faudoa FP, Ballerini A, Sakamoto J, Grattoni A. Advanced implantable drug delivery technologies: transforming the clinical landscape of therapeutics for chronic diseases. Biomed Microdevices. 2019 Jun;21(2):47.

85. Sakure K, Patel A, Pradhan M, Badwaik HR. Indian Journal of Pharmaceutical Sciences. [cited 2025 Apr 19]; Available from: https://www.ijpsonline.com/

86. Phytosome: A Fatty Solution for Efficient Formulation of Phytopharmaceuticals | Request PDF. ResearchGate [Internet]. 2024 Oct 22 [cited 2025 Apr 19]; Available from: https://www.researchgate.net/publication/280996888_Phytosome_A_Fatty_Solution_for_Efficient_Formulation_of_Phytopharmaceuticals

87. Koppula S, Shaik B, Maddi S. Phytosomes as a New Frontier and Emerging Nanotechnology Platform for Phytopharmaceuticals: Therapeutic and Clinical Applications. Phytotherapy Research [Internet]. [cited 2025 Apr 19];n/a(n/a). Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/ptr.8465

88. Vighne R, Deore S, Baviskar B, Baviskar B. A Comparative Investigation on the Phytosomes of Diverse Bioactive Nootropic Medicinal Herbs. Pharmacognosy Reviews. 2024;18(36):117–26.

89. Talebi M, Shahbazi K, Dakkali MS, Akbari M, Almasi Ghale R, Hashemi S, Sashourpour M, Mojab F, Aminzadeh S. Phytosomes: A promising nanocarrier system for enhanced bioavailability and therapeutic efficacy of herbal products. Phytomedicine Plus. 2025 May 1;5(2):100779.

90. Gaikwad SS, Morade YY, Kothule AM, Kshirsagar SJ, Laddha UD, Salunkhe KS. Overview of phytosomes in treating cancer: Advancement, challenges, and future outlook. Heliyon. 2023 May 24;9(6):e16561.

91. Usman M, Khan WR, Yousaf N, Akram S, Murtaza G, Kudus KA, Ditta A, Rosli Z, Rajpar MN, Nazre M. Exploring the Phytochemicals and Anti-Cancer Potential of the Members of Fabaceae Family: A Comprehensive Review. Molecules. 2022 Jun 16;27(12):3863.

92. Iqubal MK, Chaudhuri A, Iqubal A, Saleem S, Gupta MM, Ahuja A, Ali J, Baboota S. Targeted Delivery of Natural Bioactives and Lipid-nanocargos against Signaling Pathways Involved in Skin Cancer. Current Medicinal Chemistry. 2021 Dec 1;28(39):8003–35.

93. Chaudhary K, Rajora A. Phytosomes: a critical tool for delivery of herbal drugs for cancer. Phytochem Rev. 2025 Feb 1;24(1):165–95.

94. Mairuae N, Noisa P, Palachai N. Phytosome-Encapsulated 6-Gingerol- and 6-Shogaol-Enriched Extracts from Zingiber officinale Roscoe Protect Against Oxidative Stress-Induced Neurotoxicity. Molecules. 2024 Dec 22;29(24):6046.

95. Mouhid L, Corzo-Martínez M, Torres C, Vázquez L, Reglero G, Fornari T, Ramírez de Molina A. Improving In Vivo Efficacy of Bioactive Molecules: An Overview of Potentially Antitumor Phytochemicals and Currently Available Lipid-Based Delivery Systems. Journal of Oncology. 2017;2017(1):7351976.

96. Gupta MK, Sansare ,Vipul, Shrivastava ,Birendra, Jadhav ,Santosh, and Gurav P. Comprehensive review on use of phospholipid based vesicles for phytoactive delivery. Journal of Liposome Research. 2022 Jul 3;32(3):211–23.

97. Barani M, Sangiovanni ,Enrico, Angarano ,Marco, Rajizadeh ,Mohammad Amin, Mehrabani ,Mehrnaz, Piazza ,Stefano, Gangadharappa ,Hosahalli Veerabhadrappa, Pardakhty ,Abbas, Mehrbani ,Mehrzad, Dell’Agli ,Mario, and Nematollahi MH. Phytosomes as Innovative Delivery Systems for Phytochemicals: A Comprehensive Review of Literature. International Journal of Nanomedicine. 2021 Oct 15;16:6983–7022.

98. Singh D, Shukla G. The multifaceted anticancer potential of luteolin: involvement of NF-κB, AMPK/mTOR, PI3K/Akt, MAPK, and Wnt/β-catenin pathways. Inflammopharmacol. 2025 Feb 1;33(2):505–25.

99. Wanjiru J, Gathirwa J, Sauli E, Swai HS. Formulation, Optimization, and Evaluation of Moringa oleifera Leaf Polyphenol-Loaded Phytosome Delivery System against Breast Cancer Cell Lines. Molecules. 2022 Jul 11;27(14):4430.

100. Upaganlawar A, Polshettiwar S, Raut S, Tagalpallewar A, Pande V. Effective Cancer Management: Inimitable Role of Phytochemical Based Nano- Formulations. Current Drug Metabolism. 2022 Sep 1;23(11):869–81.

101. Khan T, Gurav P. PhytoNanotechnology: Enhancing Delivery of Plant Based Anti-cancer Drugs. Front Pharmacol [Internet]. 2018 Feb 9 [cited 2025 Apr 20];8. Available from: https://www.frontiersin.orghttps://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2017.01002/full

102. Dutt Y, Pandey RP, Dutt M, Gupta A, Vibhuti A, Raj VS, Chang CM, Priyadarshini A. Liposomes and phytosomes: Nanocarrier systems and their applications for the delivery of phytoconstituents. Coordination Chemistry Reviews. 2023 Sep 15;491:215251.

103. Wanjiru J, Gathirwa J, Sauli E, Swai HS. Formulation, Optimization, and Evaluation of Moringa oleifera Leaf Polyphenol-Loaded Phytosome Delivery System against Breast Cancer Cell Lines. Molecules. 2022 Jan;27(14):4430.

104. Maheshwari P, Daniel V. Advanced Applications of Phytosomes in Cancer Therapy: Innovations, Challenges, and Future Perspectives. International Journal of Newgen Research in Pharmacy & Healthcare. 2024 Dec 31;156–75.

105. Wang H, Li L, Ye J, Dong W, Zhang X, Xu Y, Hu J, Wang R, Xia X, Yang Y, Jin D, Wang R, Song Z, Gao L, Liu Y. Improved Safety and Anti-Glioblastoma Efficacy of CAT3-Encapsulated SMEDDS through Metabolism Modification. Molecules. 2021 Jan;26(2):484.

106. Klojdová I, Milota T, Smetanová J, Stathopoulos C. Encapsulation: A Strategy to Deliver Therapeutics and Bioactive Compounds? Pharmaceuticals. 2023 Mar;16(3):362.

107. Komeil IA, Abdallah OY, El-Refaie WM. Surface modified genistein phytosome for breast cancer treatment: In-vitro appraisal, pharmacokinetics, and in-vivo antitumor efficacy. European Journal of Pharmaceutical Sciences. 2022 Dec 1;179:106297.

108. Strohbehn GW, Stadler WM, Boonstra PS, Ratain MJ. Optimizing the doses of cancer drugs after usual dose finding. Clinical Trials. 2024 Jun 1;21(3):340–9.

109. Deleanu M, Toma L, Sanda GM, Barbălată T, Niculescu LŞ, Sima AV, Deleanu C, Săcărescu L, Suciu A, Alexandru G, Crişan I, Popescu M, Stancu CS. Formulation of Phytosomes with Extracts of Ginger Rhizomes and Rosehips with Improved Bioavailability, Antioxidant and Anti-Inflammatory Effects In Vivo. Pharmaceutics. 2023 Apr;15(4):1066.

110. P K, R K. Phytosome Technology: A Novel Breakthrough for the Health Challenges. Cureus. 16(8):e68180.

111. Gnananath K, Sri Nataraj K, Ganga Rao B. Phospholipid Complex Technique for Superior Bioavailability of Phytoconstituents. Adv Pharm Bull. 2017 Apr;7(1):35–42.

112. SEM & DLS: Complementary Techniques for Particle Analysis | Nanoscience Analytical [Internet]. 2024 [cited 2025 Apr 20]. Available from: https://www.nanoscience-analytical.com/sem-dls-complementary-techniques-for-particle-analysis/

113. Dynamic Light Scattering (DLS) Nanoparticle Analysis [Internet]. nanoComposix. [cited 2025 Apr 20]. Available from: https://nanocomposix.com/products/dynamic-light-scattering-dls-nanoparticle-analysis

114. Tafish AM, El-Sherbiny M, Al‐Karmalawy AA, Soliman OAEA, Saleh NM. Carvacrol-Loaded Phytosomes for Enhanced Wound Healing: Molecular Docking, Formulation, DoE-Aided Optimization, and in vitro/in vivo Evaluation. IJN. 2023 Oct 12;18:5749–80.

115. Dewi MK, Muhaimin M, Joni IM, Hermanto F, Chaerunisaa AY. Fabrication of Phytosome with Enhanced Activity of Sonneratia alba: Formulation Modeling and in vivo Antimalarial Study. Int J Nanomedicine. 2024 Sep 11;19:9411–35.

Published

07-11-2025

How to Cite

SHEIKH, M., SHEIKH, Z., SHEIKH, A., KHAN, M., & SHETE, V. (2025). PHYTOSOME TECHNOLOGY IN CANCER TREATMENT ENHANCES THE BIOAVAILABILITY OF SECONDARY METABOLITES. International Journal of Applied Pharmaceutics, 17(6), 67–77. https://doi.org/10.22159/ijap.2025v17i6.54665

Issue

Section

Review Article(s)

Similar Articles

<< < 137 138 139 140 141 > >> 

You may also start an advanced similarity search for this article.