MILTEFOSINE LOADED MESOPOROUS ZINC OXIDE NANOPARTICLES TO ENHANCE ORAL BIOAVAILABILITY AND SAFETY PROFILE: A PRETOXICOLOGICAL AND PHARMACOKINETIC STUDY

Authors

  • PARAG GHOSH School of Pharmacy, the Neotia University, West Bengal, India https://orcid.org/0009-0004-0783-3950
  • SUBAS CHANDRA DINDA School of Pharmacy, the Neotia University, West Bengal, India https://orcid.org/0000-0001-7560-080X
  • DEBAJIT DEWAN Bharat Technology, Bahirtafa, Beltala, Uluberia, Howrah, West Bengal, India
  • SUKANTA ROY School of Pharmacy, the Neotia University, West Bengal, India https://orcid.org/0000-0003-2694-4045
  • DIBYA DAS Department of Pharmaceutical Technology, JIS University, West Bengal, India
  • SOURAV DAS School of Pharmacy, the Neotia University, West Bengal, India
  • ANIRBANDEEP BOSE Department of Pharmaceutical Technology, Adamas University, West Bengal, India

DOI:

https://doi.org/10.22159/ijap.2025v17i5.54732

Keywords:

Miltefosine, Mesoporous ZnO nanoparticles, Oral bioavailability, Pharmacokinetics, Toxicity, Skin deposition, Nanomedicine, Leishmaniasis

Abstract

Objective: Miltefosine, the only approved oral therapy for leishmaniasis, is clinically limited by its poor bioavailability and significant gastrointestinal and systemic toxicities. This study aimed to develop and evaluate a novel oral formulation of miltefosine encapsulated in mesoporous zinc oxide nanoparticles (MF-ZnO NPs) to enhance its pharmacokinetic Safety Profile.

Methods: MF-ZnO NPs were synthesized via a templated method, achieving a particle size of ~178 nm and a drug loading efficiency of 60%. Stability studies were conducted in simulated gastric and intestinal fluids to assess nanoparticle integrity. In vitro drug release was evaluated in PBS (pH 6.8), showing a biphasic pattern with sustained release. A 28 d subacute oral toxicity study was performed in wistar rats across escalating dose groups, with raw miltefosine as a comparator. Parameters assessed included behavioral toxicity, biochemical markers (ALT, AST, creatinine, urea, bilirubin), organ weights, and histopathological scoring. Pharmacokinetic studies in rats determined systemic exposure and bioavailability enhancements. In vivo skin deposition was also assessed after 24 h.

Results: MF-ZnO NPs demonstrated excellent physicochemical stability and controlled biphasic drug release with 95% cumulative release at 72 h. Toxicological evaluation revealed minimal hepatic and renal toxicity at low and medium doses, whereas high-dose MF-ZnO NPs and raw miltefosine induced significant organ damage. Pharmacokinetic analysis showed improved oral bioavailability (AUC₀–inf: 7375.9±609.56 vs. 5539.7±240.99 h·µg/ml) and prolonged half-life (73.84±11.32 h vs. 57.29±5.61 h) for MF-ZnO NPs. Skin deposition studies confirmed a fourfold increase in localized drug accumulation with the nanoparticle formulation.

Conclusion: Encapsulation of miltefosine in mesoporous ZnO nanoparticles significantly enhanced its oral bioavailability, reduced systemic toxicity, and improved dermal deposition. MF-ZnO NPs present a promising oral delivery strategy for safer and more effective miltefosine therapy.

References

1. World Health Organization. Leishmaniasis. In: Geneva: World Health Organization; 2025. Available from: https://www.who.int/news-room/factsheets/detail/leishmaniasis. [Last accessed on 24 Apr 2025].

2. Palic S, Beijnen JH, Dorlo TP. An update on the clinical pharmacology of miltefosine in the treatment of leishmaniasis. Int J Antimicrob Agents. 2022;59(1):106459. doi: 10.1016/j.ijantimicag.2021.106459, PMID 34695563.

3. Dorlo TP, Balasegaram M, Beijnen JH, De Vries PJ. Miltefosine: a review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis. J Antimicrob Chemother. 2012;67(11):2576-97. doi: 10.1093/jac/dks275, PMID 22833634.

4. Gu L, Lin J, Wang Q, Meng F, Niu G, Lin H. Mesoporous zinc oxide-based drug delivery system offers an antifungal and immunoregulatory strategy for treating keratitis. J Control Release. 2024 Apr;368:483-97. doi: 10.1016/j.jconrel.2024.03.006, PMID 38458571.

5. Anjum S, Hashim M, Malik SA, Khan M, Lorenzo JM, Abbasi BH. Recent advances in zinc oxide nanoparticles (ZnO NPs) for cancer diagnosis, target drug delivery and treatment. Cancers (Basel). 2021;13(18):4570. doi: 10.3390/cancers13184570, PMID 34572797.

6. Baskar G, Chandhuru J, Sheraz Fahad KS, Praveen AS, Chamundeeswari M, Muthukumar T. Anticancer activity of fungal L-asparaginase conjugated with zinc oxide nanoparticles. J Mater Sci Mater Med. 2015;26(1):5380. doi: 10.1007/s10856-015-5380-z, PMID 25589205.

7. Sathishkumar P, Li Z, Govindan R, Jayakumar R, Wang C, Long Gu FL. Zinc oxide quercetin nanocomposite as a smart nano-drug delivery system: molecular level interaction studies. Appl Surf Sci. 2021 Jan 15;536:147741. doi: 10.1016/j.apsusc.2020.147741.

8. Namvar F, Azizi S, Rahman HS, Mohamad R, Rasedee A, Soltani M. Green synthesis, characterization and anticancer activity of hyaluronan/zinc oxide nanocomposite. Onco Targets Ther. 2016 Jul 26;9:4549-59. doi: 10.2147/OTT.S95962, PMID 27555781.

9. Selvakumari D, Deepa R, Mahalakshmi V, Subhashini P, Lakshminarayan N. Anticancer activity of ZnO nanoparticles on MCF7 (breast cancer cell) and A549 (lung cancer cell). ARPN J Eng Appl Sci. 2015;10(12):5418-21.

10. Ahmad A, Imran M, Ahsan H. Biomarkers as biomedical bioindicators: approaches and techniques for the detection, analysis and validation of novel biomarkers of diseases. Pharmaceutics. 2023;15(6):1630. doi: 10.3390/pharmaceutics15061630, PMID 37376078.

11. Aryutova K, Stoyanov DS, Kandilarova S, Todeva Radneva A, Kostianev SS. Clinical use of neurophysiological biomarkers and self-assessment scales to predict and monitor treatment response for psychotic and affective disorders. Curr Pharm Des. 2021;27(39):4039-48. doi: 10.2174/1381612827666210406151447, PMID 33823771.

12. Chen XH, Huang S, Kerr D. Biomarkers in clinical medicine. IARC Sci Publ. 2011;163:303-22. PMID 22997869.

13. Ilyin SE, Belkowski SM, Plata Salaman CR. Biomarker discovery and validation: technologies and integrative approaches. Trends Biotechnol. 2004;22(8):411-6. doi: 10.1016/j.tibtech.2004.06.005, PMID 15283986.

14. North A, Ciaravino V, Mufti N, Corash L. Preclinical pharmacokinetic and toxicology assessment of red blood cells prepared with S-303 pathogen inactivation treatment. Transfusion. 2011;51(10):2208-18. doi: 10.1111/j.1537-2995.2011.03132.x, PMID 21985050.

15. Patel S, Patel S, Kotadiya A, Patel S, Shrimali B, Joshi N. Age-related changes in hematological and biochemical profiles of Wistar rats. Lab Anim Res. 2024;40(1):7. doi: 10.1186/s42826-024-00194-7, PMID 38409070.

16. Patel AG, Nariya MB, De S. Acute toxicity and repeated dose 28 d oral toxicity study of metriviv syrup in female rats. Ayu. 2018;39(2):107-12. doi: 10.4103/ayu.AYU_18_18, PMID 30783366.

17. Niyomchan A, Chatgat W, Chatawatee B, Keereekoch T, Issuriya A, Jaisamut P. Safety evaluation of the polyherbal formulation NawaTab: acute and subacute oral toxicity studies in rats. Evid Based Complement Alternat Med. 2023 Jul 24;2023:9413458. doi: 10.1155/2023/9413458, PMID 37528898.

18. Valicherla GR, Tripathi P, Singh SK, Syed AA, Riyazuddin M, Husain A. Pharmacokinetics and bioavailability assessment of miltefosine in rats using high-performance liquid chromatography tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2016 Sep 15;1031:123-30. doi: 10.1016/j.jchromb.2016.07.042, PMID 27475453.

19. Knudsen GA, Cheng Y, Kuester RK, Hooth MJ, Sipes IG. Effects of dose and route on the disposition and kinetics of 1-butyl-1-methylpyrrolidinium chloride in male F-344 rats. Drug Metab Dispos. 2009;37(11):2171-7. doi: 10.1124/dmd.109.029082, PMID 19704025.

20. Palic S, Chu WY, Sundar S, Mondal D, Das P, Pandey K. Skin pharmacokinetics of miltefosine in the treatment of post-kala-azar dermal leishmaniasis in South Asia. J Antimicrob Chemother. 2024;79(7):1547-54. doi: 10.1093/jac/dkae129, PMID 38727613.

21. Halder D, Das S, Ghosh B, Biswas E, Roy S, Bose A. An LC-MS/MS-based bioanalytical approach to resolve pharmacokinetic investigation of acotiamide hydrochloride and its application to bioequivalence study. Int J Pharm Pharm Sci. 2020;12(10):76-84. doi: 10.22159/ijpps.2020v12i10.38410.

22. Sundar S, Rai M. Advances in the treatment of leishmaniasis. Curr Opin Infect Dis. 2002;15(6):593-8. doi: 10.1097/00001432-200212000-00007.

23. Mendens A, Albuquerque P, Reis CP. Liposomes as a strategy to improve oral drug delivery: current issues and future perspectives. Int J Nanomedicine. 2020 Jun 20;15:9387-402.

24. Zhang J, Zhang F, Wu W, Gao Y. Controlled synthesis and applications of mesoporous ZnO nanoparticles. Adv Mater Interfaces. 2021;8(6):2001508.

25. Carvalho S, Cordeiro Da Silva A, Moreira J. Miltefosine: antitumor activity and clinical perspectives. Cancer Chemother Pharmacol. 2019;84(2):417-32.

26. Perez Victoria FJ, Castanys S, Gamarro F. Leishmania donovani resistance to miltefosine involves a defective miltefosine transporter. J Infect Dis. 2006;194(10):1382-8.

27. Luo Q, Jiang M, Kou L, Zhang L, Li G, Yao Q. Ascorbate conjugated nanoparticles for promoted oral delivery of therapeutic drugs via sodium-dependent vitamin C transporter 1 (SVCT1). Artif Cells Nanomed Biotechnol. 2018;46(Suppl1):198-208. doi: 10.1080/21691401.2017.1417864, PMID 29260899.

28. Khatik R, Dwivedi P, Shrinet V, Sahu D, Soni V. Miltefosine-loaded lipid nanocarriers for the effective management of leishmaniasis: formulation characterization and in vivo evaluation. Drug Dev Ind Pharm. 2014;40(9):1195-202.

29. Zhang W, Tanaka Y, Yamazaki M, Kawai Y, Kawai Y. Nanoparticle-based topical drug delivery systems for skin diseases. Nanomedicine (Lond). 2018;13(14):1639-51.

30. Rodrigues J, Dourado LF, Amaral MH, Silva AC. Lipid-based carriers for oral delivery of miltefosine: a review. J Drug Deliv Sci Technol. 2020;57:101689.

31. Pandey A, Singh S. Nanocarrier-based drug delivery systems for leishmaniasis treatment: an update. Curr Pharm Des. 2021;27(5):678-91.

32. Sharma R, Wadhwa S, Singh S, Lohan S. Topical nanocarrier systems for treatment of skin disorders: a review. Adv Pharm Bull. 2017;7(3):285-98.

33. Das S, Ali N. Nanotechnology-based treatment strategies against leishmaniasis. J Nanomed Nanotechnol. 2020;11(5):573.

Published

07-09-2025

How to Cite

GHOSH, P., DINDA, S. C., DEWAN, D., ROY, S., DAS, D., DAS, S., & BOSE, A. (2025). MILTEFOSINE LOADED MESOPOROUS ZINC OXIDE NANOPARTICLES TO ENHANCE ORAL BIOAVAILABILITY AND SAFETY PROFILE: A PRETOXICOLOGICAL AND PHARMACOKINETIC STUDY. International Journal of Applied Pharmaceutics, 17(5), 203–213. https://doi.org/10.22159/ijap.2025v17i5.54732

Issue

Section

Original Article(s)

Similar Articles

<< < 126 127 128 129 130 > >> 

You may also start an advanced similarity search for this article.