CASE-CONTROL STUDY OF IMMUNOGLOBULINES AND PANCREATIC ENZYME ALTERATIONS IN COVID-19 IRAQI PATIENTS

Authors

  • ZAHRAA MOHAMMED ALI NAJI Baghdad University, College of Pharmacy, Baghdad, Iraq
  • LUBNA A. ALZUBAIDI Al-Mustansiriyah University, Collage of Engineering, Department of Environmental Engineering, Baghdad, Iraq https://orcid.org/0000-0001-8741-0069
  • IHAB I. AL KHALIFA Al-Rasheed University College, Pharmacy Department, Baghdad, Iraq
  • SHAIMAA M. MOHAMMED Al-Mustaqbal University, Pharmacy College, Babylon, Iraq

DOI:

https://doi.org/10.22159/ijap.2025v17i5.54773

Keywords:

Amylase, Lipase, COVID-19, IgG, IgM

Abstract

Objective: C-reactive and Pancreatic enzymes changes for COVID-19 patients were estimated.

Methods: Eighty individuals of both sexes, age range (28-69 y), with a mean±SE of (46.2±1.7) were included in this study, Group I: COVID-19 patients and Group II Aged matched healthy people as the control group. Venous blood samples were taken for each individual, serum collected and enzyme-linked immunosorbent assay technique (ELISA) was used to estimate the levels of C-reactive protein, lipase, and amylase, and we used a capture chemiluminescence immunoassay for IgM and an indirect chemiluminescence immunoassay for IgG.

Results: The mean serum levels of IgM, IgG, CRP, were significantly higher in the patient group than in the control group (1.7 vs. 0.7 AU/ml, 2.86 vs. 0.27 AU/ml, 7.6 vs. 4 mg/dl) respectively and pancreatic enzymes (lipase, and amylase) were significantly higher in the patient group than in the control group (86 vs. 54U/l, and 66 vs. 39U/l), respectively.

Conclusion, COVID-19 patients have an increased risk of exocrine secretion (lipase and amylase enzymes) and pancreatic damage. This work highlights the importance of pancreatic enzyme (amylase and lipase) estimation in affected patients.

References

1. Pribadi RR, Simadibrata M. Increased serum amylase and/or lipase in coronavirus disease 2019 (COVID-19) patients: is it really pancreatic injury? JGH. 2021;5(2):190-2. doi: 10.1002/jgh3.12436, PMID 33553654.

2. World Health Organization. Coronavirus disease (COVID-19) pandemic. (n. d.), 2020. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019.

3. Cascella M, Rajnik M, Cuomo A, Dulebohn SC, Di Napoli R. Features evaluation and treatment coronavirus (COVID-19). StatPearls, Treasure Island, FL; 2020. Available from: http://www.ncbi.nlm.nih.gov/books/nbk554776.

4. Yao XH, Li TY, He ZC, Ping YF. A pathological report of three COVID-19 cases by minimally invasive autopsies. Zhonghua Bing Li Xue Za Zhi. 2020 May 8;49(5):411–7. doi: 10.3760/cma.j.cn112151-20200312-00193.

5. Zippi M, Hong W, Traversa G, Maccioni F, De Biase D, Gallo C. Involvement of the exocrine pancreas during COVID-19 infection and possible pathogenetic hypothesis: a concise review. Infez Med. 2020;28(4):507-15. PMID 33257624.

6. Yang JK, Lin SS, Ji XJ, Guo LM. Binding of SARS coronavirus to its receptor damages islets and causes acute diabetes. Acta Diabetol. 2010;47(3):193-9. doi: 10.1007/s00592-009-0109-4, PMID 19333547.

7. Liu F, Long X, Zhang B, Zhang W, Chen X, Zhang Z. ACE2 expression in pancreas may cause pancreatic damage after SARS-CoV-2 infection. Clin Gastroenterol Hepatol. 2020;18(9):2128-30.e2. doi: 10.1016/j.cgh.2020.04.040, PMID 32334082.

8. Szlachcic WJ, Dabrowska A, Milewska A, Ziojla N, Blaszczyk K, Barreto Duran E. SARS-CoV-2 infects an in vitro model of the human developing pancreas through endocytosis. iScience. 2022;25(7):104594. doi: 10.1016/j.isci.2022.104594, PMID 35756892.

9. Wu CT, Lidsky PV, Xiao Y, Lee IT, Cheng R, Nakayama T. SARS-CoV-2 infects human pancreatic β cells and elicits β cell impairment. Cell Metab. 2021;33(8):1565-76.e5. doi: 10.1016/j.cmet.2021.05.013, PMID 34081912.

10. Correia De Sa T, Soares C, Rocha M. Acute pancreatitis and COVID-19: a literature review. World J Gastrointest Surg. 2021;13(6):574-84. doi: 10.4240/wjgs.v13.i6.574, PMID 34194615.

11. Muller JA, Groß R, Conzelmann C, Kruger J, Merle U, Steinhart J. SARS-CoV-2 infects and replicates in cells of the human endocrine and exocrine pancreas. Nat Metab. 2021;3(2):149-65. doi: 10.1038/s42255-021-00347-1, PMID 33536639.

12. Memon B, Abdelalim EM. ACE2 function in the pancreatic islet: implications for relationship between SARS-CoV-2 and diabetes. Acta Physiol (Oxf). 2021;233(4):e13733. doi: 10.1111/apha.13733, PMID 34561952.

13. Hikmet F, Mear L, Edvinsson A, Micke P, Uhlen M, Lindskog C. The protein expression profile of ACE2 in human tissues. Mol Syst Biol. 2020;16(7):e9610. doi: 10.15252/msb.20209610, PMID 32715618.

14. De Madaria E, Siau K, Cardenas Jaen K. Increased amylase and lipase in patients with COVID-19 pneumonia: don’t blame the pancreas just yet! Gastroenterology. 2021;160(5):1871. doi: 10.1053/j.gastro.2020.04.044, PMID 32330475.

15. Pieper Bigelow C, Strocchi A, Levitt MD. Where does serum amylase come from and where does it go? Gastroenterol Clin North Am. 1990;19(4):793-810. doi: 10.1016/S0889-8553(21)00514-8, PMID 1702756.

16. Banks PA, Bollen TL, Dervenis C, Gooszen HG, Johnson CD, Sarr MG. Classification of acute pancreatitis 2012: revision of the Atlanta classification and definitions by international consensus. Gut. 2013;62(1):102-11. doi: 10.1136/gutjnl-2012-302779.

17. Hameed AM, Lam VW, Pleass HC. Significant elevations of serum lipase not caused by pancreatitis: a systematic review. HPB (Oxf). 2015;17(2):99-112. doi: 10.1111/hpb.12277.

18. Liu L, Wei Q, Alvarez X, Wang H, Du Y, Zhu H. Epithelial cells lining salivary gland ducts are early target cells of severe acute respiratory syndrome coronavirus infection in the upper respiratory tracts of rhesus macaques. J Virol. 2011;85(8):4025-30. doi: 10.1128/JVI.02292-10, PMID 21289121.

19. Khalil RH, Al Humadi N. Types of acute phase reactants and their importance in vaccination. Biomed Rep. 2020;12(4):143-52. doi: 10.3892/br.2020.1276, PMID 32190302.

20. Kamal EM, Abd El Hakeem MA, El Sayed AM, Ahmed MM. Validity of c-reactive protein and procalcitonin in the prediction of bacterial infection in patients with liver cirrhosis. Minia Journal of Medical Research. 2019;30(3):124-7. doi: 10.21608/mjmr.2022.221909.

21. Sproston NR, Ashworth JJ. Role of C-reactive protein at sites of inflammation and infection. Front Immunol. 2018;9:754. doi: 10.3389/fimmu.2018.00754, PMID 29706967.

22. Gershov D, Kim S, Brot N, Elkon KB. C-reactive protein binds to apoptotic cells protects the cells from assembly of the terminal complement components and sustains an antiinflammatory innate immune response: implications for systemic autoimmunity. J Exp Med. 2000;192(9):1353-64. doi: 10.1084/jem.192.9.1353, PMID 11067883.

23. Campbell AK, Patel A. A homogeneous immunoassay for cyclic nucleotides based on chemiluminescence energy transfer. Biochem J. 1983;216(1):185-94. doi: 10.1042/bj2160185, PMID 6316935.

24. Shah K, Maghsoudlou P. Enzyme-linked immunosorbent assay (ELISA): the basics. Br J Hosp Med (Lond). 2016;77(7):C98-101. doi: 10.12968/hmed.2016.77.7.C98, PMID 27388394.

25. Jia X, Zhang P, Tian Y, Wang J, Zeng H, Wang J. Clinical significance of an IgM and IgG test for diagnosis of highly suspected COVID-19. Front Med (Lausanne). 2021;8:569266. doi: 10.3389/fmed.2021.569266, PMID 33912572.

26. Guo J, Li L, Wu Q, Li H, Li Y, Hou X. Detection and predictors of anti-SARS-CoV-2 antibody levels in COVID-19 patients at 8 m after symptom onset. Future Virol. 2021;16:795-804. doi: 10.2217/fvl-2021-0141, PMID 34804188.

27. Sadeghi Haddad Zavareh M, Bayani M, Shokri M, Ebrahimpour S, Babazadeh A, Mehraeen R. C-reactive protein as a prognostic indicator in COVID-19 patients. Interdiscip Perspect Infect Dis. 2021;2021:5557582. doi: 10.1155/2021/5557582, PMID 33968148.

28. Mokhtari T, Hassani F, Ghaffari N, Ebrahimi B, Yarahmadi A, Hassanzadeh G. COVID-19 and multiorgan failure: a narrative review on potential mechanisms. J Mol Histol. 2020;51(6):613-28. doi: 10.1007/s10735-020-09915-3, PMID 33011887.

29. Almutairi F, Rabeie N, Awais A, Samannodi M, Aljehani N, Tayeb S. COVID-19 induced acute pancreatitis after resolution of the infection. J Infect Public Health. 2022;15(3):282-4. doi: 10.1016/j.jiph.2022.01.003, PMID 35077949.

30. Liu F, Long X, Zhang B, Zhang W, Chen X, Zhang Z. ACE2 expression in pancreas may cause pancreatic damage after SARS-CoV-2 infection. Clin Gastroenterol Hepatol. 2020;18(9):2128-30.e2. doi: 10.1016/j.cgh.2020.04.040, PMID 32334082.

31. Mc Nabb Baltar J, Jin DX, Grover AS, Redd WD, Zhou JC, Hathorn KE. Lipase elevation in patients with COVID-19. Am J Gastroenterol. 2020;115(8):1286-8. doi: 10.14309/ajg.0000000000000732, PMID 32496339.

32. Prasad H, Ghetla SR, Butala U, Kesarkar A, Parab S. COVID-19 and serum amylase and lipase levels. Indian J Surg. 2023;85(2):337-40. doi: 10.1007/s12262-022-03434-z, PMID 35578610.

Published

07-09-2025

How to Cite

ALI NAJI, Z. M., ALZUBAIDI, L. A., KHALIFA, I. I. A., & MOHAMMED, S. M. (2025). CASE-CONTROL STUDY OF IMMUNOGLOBULINES AND PANCREATIC ENZYME ALTERATIONS IN COVID-19 IRAQI PATIENTS. International Journal of Applied Pharmaceutics, 17(5), 302–307. https://doi.org/10.22159/ijap.2025v17i5.54773

Issue

Section

Original Article(s)

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.