PECTIN BEADS IN DRUG DELIVERY: EXTRACTION, FORMULATION, AND PHARMACEUTICAL APPLICATIONS

Authors

  • SARAVANAN MUNIYANDY Department of Pharmacy, Fatima College of Health Sciences, PO Box: 3798, AI, Mafraq, Abu Dhabi, The United Arab Emirates https://orcid.org/0000-0002-6295-5676

DOI:

https://doi.org/10.22159/ijap.2025v17i5.54903

Keywords:

Pectin beads (PB), Targeted drug delivery, Biopolymer, Controlled release, Colon-specific delivery, Pharmaceutical applications

Abstract

Pectin is a natural, non-toxic biopolymer derived from plant cell walls, where it constitutes approximately one-third of the dry weight in most higher plants. Predominantly concentrated in the middle lamella, it has traditionally been used in the food industry for its thickening, gelling, and stabilizing properties. However, its unique resistance to gastric and intestinal enzymatic degradation, coupled with fermentability by colonic bacteria, has led to its emerging role in pharmaceutical applications, particularly in targeted drug delivery. The gelling characteristics of pectin depend on its source, molecular weight, and degree of esterification (DE), factors that influence its suitability as a carrier for bioactive agents. Despite the increasing interest in pectin-based systems, previous reviews have largely focused on its conventional uses, lacking depth in recent advancements within pharmaceutical and biomedical domains. This review addresses those lacunae by offering an updated and detailed examination of pectin's pharmaceutical relevance, with a special focus on pectin beads (PB). It outlines the complete process for preparing the PB formulation, including solution preparation, incorporation of active agents, cross-linking, droplet optimization, hardening, washing, and drying. Furthermore, the article examines the gelation and swelling properties of PB, as well as their morphological and physicochemical characterization using scanning electron microscopy (SEM) and zeta potential analysis. Emphasis is placed on their versatile pharmaceutical applications, such as regulated drug release, colon-specific delivery, iron supplementation, immunization, and enhanced stability via polymeric coatings like chitosan and alginate. By synthesizing current findings, this review provides a comprehensive resource for researchers investigating the potential of pectin in modern therapeutic systems.

References

1. Jiang P, Ren Y, Zhang Y. Effects of pectin on intestinal microbiota and human health. TNS. 2023;4(1):321-30. doi: 10.54254/2753-8818/4/20220581.

2. Liang WL, Liao JS, Qi JR, Jiang WX, Yang XQ. Physicochemical characteristics and functional properties of high methoxyl pectin with different degree of esterification. Food Chem. 2022;375:131806. doi: 10.1016/j.foodchem.2021.131806, PMID 34933235.

3. Saldivar Guevara MM, Saucedo Rivalcoba VE, Rivera Armenta JL, Elvira Torales LI. Evaluation of a cross linking agent in the preparation of films based on chitosan and pectin for food packaging applications. Cellulose Chem Technol. 2022;56(9-10):1061-70. doi: 10.35812/CelluloseChemTechnol.2022.56.94.

4. Yu Y, Cui L, Liu X, Wang Y, Song C, Pak U. Determining methyl-esterification patterns in plant-derived homogalacturonan pectins. Front Nutr. 2022;9:925050. doi: 10.3389/fnut.2022.925050, PMID 35911105.

5. Pieczywek PM, Cybulska J, Zdunek A. An atomic force microscopy study on the effect of β-galactosidase α-L-rhamnosidase and α-L-arabinofuranosidase on the structure of pectin extracted from apple fruit using sodium carbonate. Int J Mol Sci. 2020;21(11):4064. doi: 10.3390/ijms21114064, PMID 32517129.

6. Paoletti S, Donati I. pH effects on the conformations of galacturonan in solution: conformational transition and loosening extension and stiffness. Polysaccharides. 2023;4(3):271-324. doi: 10.3390/polysaccharides4030018.

7. Ortenzi MA, Antenucci S, Marzorati S, Panzella L, Molino S, Rufian Henares JA. Pectin-based formulations for controlled release of an ellagic acid salt with high solubility profile in physiological media. Molecules. 2021;26(2):433. doi: 10.3390/molecules26020433, PMID 33467593.

8. Nguyen TT, Hirano T, Chamida RN, Septiani EL, Nguyen NT, Ogi T. Porous pectin particle formation utilizing spray drying with a three-fluid nozzle. Powder Technol. 2024;440:119782. doi: 10.1016/j.powtec.2024.119782.

9. Paoletti S, Donati I. pH effects on the conformations of galacturonan in solution: conformational transition and loosening extension and stiffness. Polysaccharides. 2023;4(3):271-324. doi: 10.3390/polysaccharides4030018.

10. Kedir WM, Deresa EM, Diriba TF. Pharmaceutical and drug delivery applications of pectin and its modified nanocomposites. Heliyon. 2022;8(9):e10654. doi: 10.1016/j.heliyon.2022.e10654, PMID 36164543.

11. Huang ST, Yang CH, Lin PJ, Su CY, Hua CC. Multiscale structural and rheological features of colloidal low-methoxyl pectin solutions and calcium induced sol-gel transition. Phys Chem Chem Phys. 2021;23(35):19269-79. doi: 10.1039/D1CP02778F, PMID 34524316.

12. Kapoor DU, Garg R, Gaur M, Pareek A, Prajapati BG, Castro GR. Pectin hydrogels for controlled drug release: recent developments and future prospects. Saudi Pharm J. 2024;32(4):102002. doi: 10.1016/j.jsps.2024.102002, PMID 38439951.

13. Emrich T, Stracke JO, Guo X, Damhjell K, Moelleken J, Vogel R. Increasing robustness, reliability and storage stability of critical reagents by freeze drying. Bioanalysis. 2021;13(10):829-40. doi: 10.4155/bio-2020-0299, PMID 33890493.

14. Wu CL, Liu ZW, Liao JS, Qi JR. Effect of enzymatic de-esterification and RG-I degradation of high methoxyl pectin (HMP) on sugar acid gel properties. Int J Biol Macromol. 2024;265(1):130724. doi: 10.1016/j.ijbiomac.2024.130724, PMID 38479656.

15. Feng S, Yi J, Ma Y, Bi J. The role of amide groups in the mechanism of acid induced pectin gelation: a potential pH-sensitive hydrogel based on hydrogen bond interactions. Food Hydrocoll. 2023;141:108741. doi: 10.1016/j.foodhyd.2023.108741.

16. Cao L, Lu W, Mata A, Nishinari K, Fang Y. Egg box model-based gelation of alginate and pectin: a review. Carbohydr Polym. 2020;242:116389. doi: 10.1016/j.carbpol.2020.116389, PMID 32564839.

17. Liu ZH, Ai S, Xia Y, Wang HL. Intestinal toxicity of Pb: structural and functional damages effects on distal organs and preventive strategies. Sci Total Environ. 2024;931:172781. doi: 10.1016/j.scitotenv.2024.172781, PMID 38685433.

18. Qian Q, Liang J, Ren Z, Sima J, Xu X, Rinklebe J. Digestive fluid components affect speciation and bioaccessibility and the subsequent exposure risk of soil chromium from stomach to intestinal phase in in vitro gastrointestinal digestion. J Hazard Mater. 2024;463:132882. doi: 10.1016/j.jhazmat.2023.132882, PMID 37939559.

19. Begum RA, Fry SC. Arabinogalactan proteins as boron acting enzymes cross linking the rhamnogalacturonan-II domains of pectin. Plants (Basel). 2023;12(23):3921. doi: 10.3390/plants12233921, PMID 38068557.

20. Bertsch Socorro A. Fermentation of by-products from the dairy and cereal industry by lacticaseibacillus rhamnosus and saccharomyces cerevisiae. Front Nutr . 2019 Apr 12;6:42. doi: 10.3389/fnut.2019.00042.

21. Roushenas S, Nikzad MF, Ghoreyshi AA, Ghorbani M. Magnetic pectin nanocomposite for efficient adsorption of heavy metals from aqueous solution. J Water Environ Nanotechnol. 2022;7(1):69-88. doi: 10.22090/jwent.2022.01.006.

22. Jiang B, Yu D, Zhang Y, Hamza T, Feng H, Hoag SW. Delivery of a therapeutic antibody to the lower gastrointestinal tract for the treatment of clostridium difficile infection (CDI). Pharm Dev Technol. 2023;28(2):232-9. doi: 10.1080/10837450.2023.2174553, PMID 36789978.

23. Sabater C, Blanco Doval A, Margolles A, Corzo N, Montilla A. Artichoke pectic oligosaccharide characterisation and virtual screening of prebiotic properties using in silico colonic fermentation. Carbohydr Polym. 2021;255:117367. doi: 10.1016/j.carbpol.2020.117367, PMID 33436200.

24. Butte K, Momin M, Deshmukh H. Optimisation and in vivo evaluation of pectin-based drug delivery system containing curcumin for colon. Int J Biomater. 2014;2014:924278. doi: 10.1155/2014/924278, PMID 25101127.

25. Suberkropp K. Pectin-degrading enzymes: polygalacturonase and pectin lyase. In: Barlocher F, Gessner MO, Graca MA, editors. Methods to study litter decomposition: a practical guide. Cham: Springer International Publishing; 2020. p. 419-24. doi: 10.1007/978-3-030-30515-4_45.

26. Vityazev FV, Khramova DS, Saveliev NY, Ipatova EA, Burkov AA, Beloserov VS. Pectin glycerol gel beads: preparation characterization and swelling behaviour. Carbohydr Polym. 2020;238:116166. doi: 10.1016/j.carbpol.2020.116166, PMID 32299571.

27. Morales E, Quilaqueo M, Morales Medina R, Drusch S, Navia R, Montillet A. Pectin chitosan hydrogel beads for delivery of functional food ingredients. Foods. 2024;13(18):2885. doi: 10.3390/foods13182885, PMID 39335814.

28. Wong SK, Lawrencia D, Supramaniam J, Goh BH, Manickam S, Wong TW. In vitro digestion and swelling kinetics of thymoquinone loaded Pickering emulsions incorporated in alginate chitosan hydrogel beads. Front Nutr. 2021;8:752207. doi: 10.3389/fnut.2021.752207, PMID 34671634.

29. Wu B, Li Y, Li Y, Li H, Li L, Xia Q. Encapsulation of resveratrol loaded pickering emulsions in alginate/pectin hydrogel beads: improved stability and modification of digestive behavior in the gastrointestinal tract. Int J Biol Macromol. 2022;222(A):337-47. doi: 10.1016/j.ijbiomac.2022.09.175, PMID 36152701.

30. Lin D, Cai B, Wang L, Cai L, Wang Z, Xie J. A viscoelastic PEGylated poly(glycerol sebacate)-based bilayer scaffold for cartilage regeneration in full-thickness osteochondral defect. Biomaterials. 2020;253:120095. doi: 10.1016/j.biomaterials.2020.120095, PMID 32445809.

31. Heda GD. A simple method of drying polyacrylamide slab gels that eliminates cracking. BioTechniques. 2021;70(1):54-7. doi: 10.2144/btn-2020-0117, PMID 33222512.

32. Popov S, Paderin N, Khramova D, Kvashninova E, Melekhin A, Vityazev F. Characterization and biocompatibility properties in vitro of gel beads based on the pectin and κ-carrageenan. Mar Drugs. 2022;20(2):94. doi: 10.3390/md20020094, PMID 35200624.

33. Hu C, Yuan X, Zhao R, Hong B, Chen C, Zhu Q. Scale-up preparation of manganese iron prussian blue nanozymes as potent oral nanomedicines for acute ulcerative colitis. Adv Healthc Mater. 2024;13(16):e2400083. doi: 10.1002/adhm.202400083, PMID 38447228.

34. Hoseini B, Jaafari MR, Golabpour A, Momtazi Borojeni AA, Karimi M, Eslami S. Application of ensemble machine learning approach to assess the factors affecting size and polydispersity index of liposomal nanoparticles. Sci Rep. 2023;13(1):18012. doi: 10.1038/s41598-023-43689-4, PMID 37865639.

35. Zheng L, Xu Y, Li Q, Zhu B. Pectinolytic lyases: a comprehensive review of sources category property structure and catalytic mechanism of pectate lyases and pectin lyases. Bioresour Bioprocess. 2021;8(1):79. doi: 10.1186/s40643-021-00432-z, PMID 38650254.

36. Ozakar RS. Development and in vitro characterization of gastroretentive formulations as calcium pectinate hydrogel pellets of pregabalin by ionotropic gelation method. Indian J Pharm Educ Res. 2022;56(1s):s9-s20. doi: 10.5530/ijper.56.1s.38.

37. Handschuh Wang S, Wang B, Wang T, Stadler FJ. Measurement principles for room temperature liquid and fusible metals surface tension. Surf Interfaces. 2023;39:102921. doi: 10.1016/j.surfin.2023.102921.

38. Atara SA, Soniwala MM. Formulation and evaluation of pectin calcium chloride beads of azathioprine for colon targeted drug delivery system. Int J Pharm Pharm Sci. 2018;10(1):172-9. doi: 10.22159/ijpps.2018v10i1.23175.

39. Kamble D, Singhavi D, Tapadia S, Khan S. Investigation of pectin hydroxypropyl methylcellulose coated floating beads for pulsatile release of piroxicam. Turk J Pharm Sci. 2020;17(5):542-8. doi: 10.4274/tjps.galenos.2019.99896, PMID 33177936.

40. Rebitski EP, Darder M, Carraro R, Aranda P, Ruiz Hitzky E. Chitosan and pectin core shell beads encapsulating metformin clay intercalation compounds for controlled delivery. New J Chem. 2020;44(24):10102-10. doi: 10.1039/C9NJ06433H.

41. Ramteke KH, Nath L. Formulation evaluation and optimization of pectin bora rice beads for colon targeted drug delivery system. Adv Pharm Bull. 2014;4(2):167-77. doi: 10.5681/apb.2014.025, PMID 24511481.

42. Faulkner B, Delgado Charro MB. Cardiovascular paediatric medicines development: have paediatric investigation plans lost heart? Pharmaceutics. 2020;12(12):1176. doi: 10.3390/pharmaceutics12121176, PMID 33276598.

43. Li Y, Wu B, Li Y, Li H, Ji S, Xia Q. pH-responsive pickering emulsions pectin hydrogel beads for loading of resveratrol: preparation characterization and evaluation. J Drug Deliv Sci Technol. 2023;79:104008. doi: 10.1016/j.jddst.2022.104008.

44. Sriamornsak P. Sustained release drug delivery system using calcium pectinate gel coated pellets. Pharma Indochina. 1997;103.

45. Reichembach LH, De Oliveira Petkowicz CL, Guerrero P, De La Caba K. Pectin and pectin/chitosan hydrogel beads as coffee essential oils carrier systems. Food Hydrocoll. 2024;151:109814. doi: 10.1016/j.foodhyd.2024.109814.

46. Ramadan H, Moustafa N, Ahmed RR, El Shahawy AA, Eldin ZE, Al Jameel SS. Therapeutic effect of oral insulin chitosan nanobeads pectin dextrin shell on streptozotocin diabetic male albino rats. Heliyon. 2024;10(15):e35636. doi: 10.1016/j.heliyon.2024.e35636, PMID 39170289.

47. Ananthu MK, Chintamaneni PK, Shaik SB, Thadipatri R, Mahammed N. Artificial neural networks in optimization of pharmaceutical formulations. Saudi J Med PharmSci. 2021;7(8):368-78.

48. Deshmukh R. Bridging the gap of drug delivery in colon cancer: the role of chitosan and pectin based nanocarriers system. Curr Drug Deliv. 2020;17(10):911-24. doi: 10.2174/1567201817666200717090623, PMID 32679018.

49. Zhou P, Zheng M, Li X, Zhou J, Li W, Yang Y. Load mechanism and release behaviour of synephrine loaded calcium pectinate beads: experiments characterizations theoretical calculations and mathematical modeling. Int J Biol Macromol. 2023;242(3):125042. doi: 10.1016/j.ijbiomac.2023.125042, PMID 37230446.

50. Pawar AP, Prabakaran V, Gadhe AR, Marathe A. Effect of calcium tartarate and sodium bicarbonate as internal gelling agent on entrapment of metronidazole in calcium pectinate beads. World J Pharm Res. 2024;13(3):1017-26.

51. Mishra RK, Banthia AK, Majeed AB. Pectin based formulations for biomedical applications: a review. Asian J Pharm Clin Res. 2012;5(4):1-7.

52. Nataraj D, Reddy N. Chemical modifications of alginate and its derivatives. Int J Chem Res. 2020;4(1):1-17. doi: 10.22159/ijcr.2020v4i1.98.

53. Morales E, Quilaqueo M, Morales Medina R, Drusch S, Navia R, Montillet A. Pectin chitosan hydrogel beads for delivery of functional food ingredients. Foods. 2024 Sep 12;13(18):2885. doi: 10.3390/foods13182885, PMID 39335814.

54. Poojari R, Srivastava R. Composite alginate microspheres as the next-generation egg-box carriers for biomacromolecules delivery. Expert Opin Drug Deliv. 2013;10(8):1061-76. doi: 10.1517/17425247.2013.796361, PMID 23651345.

55. Duan H, Wang X, Azarakhsh N, Wang C, Li M, Fu G. Optimization of calcium pectinate gel production from high methoxyl pectin. J Sci Food Agric. 2022;102(2):757-63. doi: 10.1002/jsfa.11409, PMID 34216009.

56. Mishra A, Maity D, Pradhan D, Halder J, Rajwar TK, Rai VK. Development and evaluation of novel amoxicillin and phytic acid loaded gastro-retentive mucoadhesive pectin microparticles for the management of Helicobacter pylori infections. J Pharm Innov. 2024;19(2):6. doi: 10.1007/s12247-024-09820-2.

57. Zhang M, Su Y, Li J, Chang C, Gu L, Yang Y. Fabrication of phosphatidylcholine-EGCG nanoparticles with sustained release in simulated gastrointestinal digestion and their transcellular permeability in a Caco-2 monolayer model. Food Chem. 2023;437(1):137580. doi: 10.1016/j.foodchem.2023.137580, PMID 39491254.

58. Park JI, Cho SW, Kang JH, Park TE. Intestinal peyer’s patches: structure function and in vitro modeling. Tissue Eng Regen Med. 2023;20(3):341-53. doi: 10.1007/s13770-023-00543-y, PMID 37079198.

59. Kotb ES, Alhamdi HW, Alfaifi MY, Darweesh O, Shati AA, Elbehairi SE. Examining the quaternary ammonium chitosan Schiff base-ZnO nanocomposite’s potential as protective therapy for rats cisplatin induced hepatotoxicity. Int J Biol Macromol. 2024;276(1):133616. doi: 10.1016/j.ijbiomac.2024.133616, PMID 39009258.

60. Bediako JK, El Ouardi Y, Massima Mouele ES, Mensah B, Repo E. Polyelectrolyte and polyelectrolyte complex incorporated adsorbents in water and wastewater remediation a review of recent advances. Chemosphere. 2023;325:2023.138418. doi: 10.1016/j.chemosphere.2023.138418.

Published

07-09-2025

How to Cite

MUNIYANDY, S. (2025). PECTIN BEADS IN DRUG DELIVERY: EXTRACTION, FORMULATION, AND PHARMACEUTICAL APPLICATIONS. International Journal of Applied Pharmaceutics, 17(5), 64–73. https://doi.org/10.22159/ijap.2025v17i5.54903

Issue

Section

Review Article(s)

Similar Articles

<< < 1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.