DETERMINATION OF PROTEIN TRANSPORTERS FOR THE ABSORPTION OF ZN-PEPTIDES FROM HOLOTHURIA SCABRA THROUGH NETWORK PHARMACOLOGY WITH MOLECULAR SIMULATION APPROACH

Authors

  • GITA SYAHPUTRA Department of Pharmacy, Faculty of Pharmacy, Universitas Islam Sultan Agung, Sermarang, 50112, Indonesia. Research Center for Vaccine and Drugs, National Research and Innovation Agency, Bogor-16911, Indonesia
  • MELVA LOUISA Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta-10430, Indonesia
  • MASTERIA YUNOVILSA PUTRA Department of Pharmacy, Faculty of Pharmacy, Universitas Islam Sultan Agung, Sermarang, 50112, Indonesia
  • RINA WIJAYANTI Department of Pharmacy, Faculty of Pharmacy, Universitas Islam Sultan Agung, Semarang,-50112, Indonesia
  • NUNIK GUSTINI Department of Pharmacy, Faculty of Pharmacy, Universitas Islam Sultan Agung, Sermarang, 50112, Indonesia
  • A’LIYATUR ROSYIDAH Department of Pharmacy, Faculty of Pharmacy, Universitas Islam Sultan Agung, Sermarang, 50112, Indonesia

DOI:

https://doi.org/10.22159/ijap.2025v17i6.55054

Keywords:

Collagen peptides, Holothuria scabra, Intestines, Molecular simulation, Zinc transporters

Abstract

Objective: This study aimed to identify key genes and proteins involved in zinc homeostasis and to evaluate the potential of sea cucumber (Holothuria scabra) peptides as zinc-binding agents targeting the zinc transporter protein ZIP2, which plays a central role in zinc deficiency.

Methods: Bioinformatics analyses were conducted to identify genes associated with zinc deficiency and related pathways. Protein–protein interaction (PPI) networks were used to determine key target genes involved in zinc homeostasis. Molecular docking simulations assessed the binding affinity of six H. scabra peptides to the ZIP2 protein compared with ZnSO₄ and Zn-carnosine as controls. Molecular dynamics (MD) simulations, including RMSD and RMSF analyses, were performed to evaluate the stability and interaction dynamics of the most promising peptide–protein complex.

Results: A total of 90 target genes associated with zinc deficiency were identified, involving multiple biological processes and pathways. Ten key protein-coding genes were found to play significant roles in zinc homeostasis, including nine zinc transporter genes (SLC39A2, SLC30A3, SLC39A4, SLC30A2, SLC30A4, SLC39A13, SLC29A8, TEX11, and C904f84) and one zinc-sensing receptor gene (GPR39). PPI network analysis revealed SLC39A2 (ZIP2) as the central gene in zinc homeostasis. Among the six tested peptides, the PY peptide exhibited the most favorable binding affinity to ZIP2 (-6.1 kcal/mol), surpassing both control compounds. MD simulations indicated stable interaction of the PY peptide at the active site of ZIP2 throughout the observation period.

Conclusion: The study highlights SLC39A2 (ZIP2) as a pivotal protein in zinc homeostasis and identifies the PY peptide from H. scabra as a promising zinc-binding agent. These in silico findings provide a foundation for future in vitro and in vivo investigations into potential peptide-based interventions for zinc deficiency.

References

1. Ohashi W, Fukada T. Contribution of zinc and zinc transporters in the pathogenesis of inflammatory bowel diseases. J Immunol Res. 2019;2019:8396878. doi: 10.1155/2019/8396878, PMID 30984791.

2. Guo H, Yu Y, Hong Z, Zhang Y, Xie Q, Chen H. Effect of collagen peptide-chelated zinc nanoparticles from pufferfish skin on zinc bioavailability in rats. J Med Food. 2021;24(9):987-96. doi: 10.1089/jmf.2021.K.0038. PMID 34448624.

3. Stammers AL, Lowe NM, Medina MW, Patel S, Dykes F, Pérez-Rodrigo C et al. The relationship between zinc intake and growth in children aged 1-8 y: a systematic review and meta-analysis. Eur J Clin Nutr. 2015;69(2):147-53. doi: 10.1038/ejcn.2014.204, PMID 25335444.

4. Sharif Y, Sadeghi O, Dorosty A, Siassi F, Jalali M, Djazayery A, et al. Association of vitamin D, retinol and zinc deficiencies with stunting in toddlers: findings from a national study in Iran. Public Health. 2020;181:1-7. doi: 10.1016/j.puhe.2019.10.029, PMID 31887436.

5. Gibson RS, Manger MS, Krittaphol W, Pongcharoen T, Gowachirapant S, Bailey KB, et al. Does zinc deficiency play a role in stunting among primary school children in NE Thailand? Br J Nutr. 2007;97(1):167-75. doi: 10.1017/S0007114507250445, PMID 17217573.

6. Umeta WM. Role of zinc in stunting of infants and children in rural Ethiopia. Wageningen university and research ProQuest dissertations and theses; 2003.

7. Bening S, Margawati A, Rosidi A. Zinc deficiency as risk factor for stunting among children aged 2-5 y. Universa Med. 2017;36(1):11. doi: 10.18051/UnivMed.2017.v36.11-18.

8. Santos CA, Fonseca J, Lopes MT, Carolino E, Guerreiro AS. Serum zinc evolution in dysphagic patients that underwent endoscopic gastrostomy for long-term enteral feeding. Asia Pac J Clin Nutr. 2017;26(2):227-33. doi: 10.6133/apjcn.022016.03, PMID 28244699.

9. Narvaez Caicedo C, Moreano G, Sandoval BA, Jara Palacios MA. Zinc deficiency among lactating mothers from a peri-urban community of the Ecuadorian Andean region: an initial approach to the need of zinc supplementation. Nutrients. 2018;10(7):869. doi: 10.3390/nu10070869, PMID 29976875.

10. Wapnir RA. Zinc deficiency, malnutrition and the gastrointestinal tract. J Nutr. 2000;130(5S Suppl):1388S-92S. doi: 10.1093/jn/130.5.1388S, PMID 10801949.

11. Gammoh NZ, Rink L. Zinc in infection and inflammation. Nutrients. 2017;9(6):624. doi: 10.3390/nu9060624, PMID 28629136.

12. Brown KH, Wuehler SE, Peerson JM. The importance of zinc in human nutrition and estimation of the global prevalence of zinc deficiency. Food and nutrient bulletin. Food Nutr Bull. 2001;22(2):113-25. doi: 10.1177/156482650102200201.

13. Cragg RA, Phillips SR, Piper JM, Varma JS, Campbell FC, Mathers JC. Homeostatic regulation of zinc transporters in the human small intestine by dietary zinc supplementation. Gut. 2005;54(4):469-78. doi: 10.1136/gut.2004.041962, PMID 15753530.

14. Udechukwu MC, Collins SA, Udenigwe CC. Prospects of enhancing dietary zinc bioavailability with food-derived zinc-chelating peptides. Food Funct. 2016;7(10):4137-44. doi: 10.1039/c6fo00706f, PMID 27713952.

15. Sun X, Sarteshnizi RA, Boachie RT, Okagu OD, Abioye RO, Pfeilsticker Neves RP, et al. Peptide-mineral complexes: understanding their chemical interactions, bioavailability, and potential application in mitigating micronutrient deficiency. Foods. 2020;9(10):1402. doi: 10.3390/foods9101402, PMID 33023157.

16. Kambe T, Hashimoto A, Fujimoto S. Current understanding of ZIP and ZnT zinc transporters in human health and diseases. Cell Mol Life Sci. 2014;71(17):3281-95. doi: 10.1007/s00018-014-1617-0, PMID 24710731.

17. Fang Z, Xu L, Lin Y, Cai X, Wang S. The preservative potential of Octopus scraps peptides-zinc chelate against Staphylococcus aureus: its fabrication, antibacterial activity and action mode. Food Control. 2019;98:24-33. doi: 10.1016/j.foodcont.2018.11.015.

18. Udechukwu MC, Downey B, Udenigwe CC. Influence of structural and surface properties of whey-derived peptides on zinc-chelating capacity, and in vitro gastric stability and bioaccessibility of the zinc-peptide complexes. Food Chem. 2018;240:1227-32. doi: 10.1016/j.foodchem.2017.08.063, PMID 28946246.

19. Wang C, Wang C, Li B, Li H. Zn(II) chelating with peptides found in sesame protein hydrolysates: identification of the binding sites of complexes. Food Chem. 2014;165:594-602. doi: 10.1016/j.foodchem.2014.05.146, PMID 25038717.

20. Chen D, Liu Z, Huang W, Zhao Y, Dong S, Zeng M. Purification and characterization of a zinc-binding peptide from oyster protein hydrolysate. J Funct Foods. 2013;5(2):689-97. doi: 10.1016/j.jff.2013.01.012.

21. Meng K, Chen L, Xia G, Shen X. Effects of zinc sulfate and zinc lactate on the properties of tilapia (Oreochromis Niloticus) skin collagen peptide chelate zinc. Food Chem. 2021;347:129043. doi: 10.1016/j.foodchem.2021.129043, PMID 33476919.

22. Liu X, Wang Z, Yin F, Liu Y, Qin N, Nakamura Y. Zinc-chelating mechanism of sea cucumber (Stichopus japonicus)-derived synthetic peptides. Mar Drugs. 2019;17(8):438. doi: 10.3390/md17080438, PMID 31349695.

23. Syahputra G, Gustini N, Louisa M, Fadilah F, Putra MY. Analysis of sea cucumber metabolites as phytate inhibitor in human ZiP transporter: molecular docking study. In: Nurlaila I, Ulfa Y, Anastasia H, Putro G, Rachmalina R, Ika Agustiya R, Sari Dewi Panjaitan N, Sarassari R, Lystia Poetranto A, Septima Mariya S, editors. Proceedings of the 1st International Conference for the Health Research-BRIN (ICHR 2022). Dordrecht: Atlantis Press International BV; 2023. p. 65-74. doi: 10.2991/978-94-6463-112-8_7.

24. Syahputra G, Sandhiutami NM, Hariyatun H, Hapsari Y, Gustini N, Sari M. Purification and characterization of a novel zinc chelating peptides from Holothuria scabra and its ex vivo absorption activity in the small intestine. J Appl Pharm Sci. 2024;14:235-46. doi: 10.7324/JAPS.2024.180224.

25. Syahputra G, Gustini N, Louisa M, Putra M, Fadilah A. Structural prediction of human ZIP2 and ZIP4 based on homology modelling and molecular simulation. Int J Appl Pharm. 2023;15(5):287-93. doi: 10.22159/ijap.2023v15i5.48240.

26. Zuhri UM, Purwaningsih EH, Fadilah FF, Yuliana ND. Network pharmacology integrated molecular dynamics reveals the bioactive compounds and potential targets of Tinospora crispa Linn. as insulin sensitizer. PLOS One. 2022;17(6):e0251837. doi: 10.1371/journal.pone.0251837, PMID 35737707.

27. Arwansyah A, Arif AR, Ramli I, Hasrianti H, Kurniawan I, Ambarsari L. Investigation of active compounds of Brucea Javanica in treating hypertension using A network pharmacology-based analysis combined with homology modeling, molecular docking and molecular dynamics simulation. Chemistry Select. 2022;7(1):e202102801. doi: 10.1002/slct.202102801.

28. Proses Fraksinasi GS. Peptida Kolagen Teripang dan Struktur Peptida yang Dihasilkannya; 2022.

29. Yang H, Lou C, Sun L, Li J, Cai Y, Wang Z. AdmetSAR 2.0: web-service for prediction and optimization of chemical ADMET properties. Bioinformatics. 2019;35(6):1067-9. doi: 10.1093/bioinformatics/bty707, PMID 30165565.

30. Ciemny M, Kurcinski M, Kamel K, Kolinski A, Alam N, Schueler Furman O. Protein-peptide docking: opportunities and challenges. Drug Discov Today. 2018;23(8):1530-7. doi: 10.1016/j.drudis.2018.05.006, PMID 29733895.

31. Roe DR, Cheatham TE. PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J Chem Theor Comput. 2013;9(7):3084-95. doi: 10.1021/ct400341p, PMID 26583988.

32. Mortier J, Rakers C, Bermudez M, Murgueitio MS, Riniker S, Wolber G. The impact of molecular dynamics on drug design: applications for the characterization of ligand-macromolecule complexes. Drug Discov Today. 2015;20(6):686-702. doi: 10.1016/j.drudis.2015.01.003, PMID 25615716.

33. Hashemzadeh H, Javadi H, Darvishi MH. Study of structural stability and formation mechanisms in DSPC and DPSM liposomes: a coarse-grained molecular dynamics simulation. Sci Rep. 2020;10(1):1837. doi: 10.1038/s41598-020-58730-z, PMID 32020000.

34. Sala D, Giachetti A, Rosato A. Insights into the dynamics of the human zinc transporter ZnT8 by MD simulations. J Chem Inf Model. 2021;61(2):901-12. doi: 10.1021/acs.jcim.0c01139, PMID 33508935.

35. Arwansyah A, Arif AR, Syahputra G, Sukarti S, Kurniawan I. Theoretical studies of thiazolyl-pyrazoline derivatives as promising drugs against malaria by QSAR modelling combined with molecular docking and molecular dynamics simulation. Mol Simul. 2021;47(12):988-1001. doi: 10.1080/08927022.2021.1935926.

36. Foster M, Samman S. Zinc and Regulation of inflammatory cytokines: implications for cardiometabolic disease. Nutrients. 2012;4(7):676-94. doi: 10.3390/nu4070676.

37. Prasad AS. Effects of zinc deficiency on Th1 and Th2 cytokine shifts. J Infect Dis. 2000;182 Suppl 1:S62-8. doi: 10.1086/315916, PMID 10944485.

38. Maares M, Haase H. Zinc and immunity: an essential interrelation. Arch Biochem Biophys. 2016;611:58-65. doi: 10.1016/j.abb.2016.03.022, PMID 27021581.

39. Muzzioli M, Stecconi R, Moresi R, Provinciali M. Zinc improves the development of human CD34+ cell progenitors towards NK cells and increases the expression of GATA-3 transcription factor in young and old ages. Biogerontology. 2009;10(5):593-604. doi: 10.1007/s10522-008-9201-3, PMID 19043799.

40. Mocchegiani E, Giacconi R, Cipriano C, Malavolta M. NK and NKT cells in aging and longevity: role of zinc and metallothioneins. J Clin Immunol. 2009;29(4):416-25. doi: 10.1007/s10875-009-9298-4, PMID 19408107.

41. Gregorio GV, Dans LF, Cordero CP, Panelo CA. Zinc supplementation reduced cost and duration of acute diarrhea in children. J Clin Epidemiol. 2007;60(6):560-6. doi: 10.1016/j.jclinepi.2006.08.004, PMID 17493510.

42. Maret W. Zinc in cellular regulation: the nature and significance of “zinc signals”. Int J Mol Sci. 2017;18(11):2285. doi: 10.3390/ijms18112285, PMID 29088067.

43. Overbeck S, Rink L, Haase H. Modulating the immune response by oral zinc supplementation: A single approach for multiple diseases. Arch Immunol Ther Exp (Warsz). 2008;56(1):15-30. doi: 10.1007/s00005-008-0003-8, PMID 18250973.

44. Maares M, Haase H. A guide to human zinc absorption: general overview and recent advances of in vitro intestinal models. Nutrients. 2020;12(3):762. doi: 10.3390/nu12030762, PMID 32183116.

45. Livingstone C. Zinc: physiology, deficiency, and parenteral nutrition. Nutr Clin Pract. 2015;30(3):371-82. doi: 10.1177/0884533615570376, PMID 25681484.

46. Chowanadisai W, Lonnerdal B, Kelleher SL. Identification of a mutation in SLC30A2 (ZnT-2) in women with low milk zinc concentration that results in transient neonatal zinc deficiency. J Biol Chem. 2006;281(51):39699-707. doi: 10.1074/jbc.M605821200, PMID 17065149.

47. Dufner-Beattie J, Weaver BP, Geiser J, Bilgen M, Larson M, Xu W. The mouse acrodermatitis enteropathica gene Slc39a4 (Zip4) is essential for early development and heterozygosity causes hypersensitivity to zinc deficiency. Hum Mol Genet. 2007;16(12):1391-9. doi: 10.1093/hmg/ddm088, PMID 17483098.

48. Boezio B, Audouze K, Ducrot P, Taboureau O. Network-based approaches in pharmacology. Mol Inform. 2017;36(10):1-10. doi: 10.1002/minf.201700048, PMID 28692140.

49. Adnan M, Jeon BB, Chowdhury MH, Oh KK, Das T, Chy MN. Network pharmacology study to reveal the potentiality of a methanol extract of Caesalpinia sappan L. wood against type-2 diabetes mellitus. Life (Basel). 2022;12(2):277. doi: 10.3390/lIFE12020277, PMID 35207564.

50. Inoue Y, Hasegawa S, Ban S, Yamada T, Date Y, Mizutani H. ZIP2 protein, a zinc transporter, is associated with keratinocyte differentiation. J Biol Chem. 2014;289(31):21451-62. doi: 10.1074/jbc.M114.560821, PMID 24936057.

51. Liuzzi JP, Cousins RJ. Mammalian zinc transporters. Annu Rev Nutr. 2004;24:151-72. doi: 10.1146/annurev.nutr.24.012003.132402. PMID 15189117.

52. Yang F, Silber S, Leu NA, Oates RD, Marszalek JD, Skaletsky H. TEX11 is mutated in infertile men with azoospermia and regulates genome-wide recombination rates in mouse. EMBO Mol Med. 2015;7(9):1198-210. doi: 10.15252/EMMM.201404967, PMID 26136358.

53. Guiraldelli MF, Felberg A, Almeida LP, Parikh A, de Castro RO, Pezza RJ. SHOC1 is a ERCC4-(HhH)2-like protein, integral to the formation of crossover recombination intermediates during mammalian meiosis. PLOS Genet. 2018;14(5):e1007381. doi: 10.1371/journal.pgen.1007381. PMID 29742103.

54. Jiang Y, Li T, Wu Y, Xu H, Xie C, Dong Y. GPR39 overexpression in OSCC promotes YAP-sustained malignant progression. J Dent Res. 2020;99(8):949-58. doi: 10.1177/0022034520915877, PMID 32325008.

55. Kambe T, Hashimoto A, Fujimoto S. Current understanding of ZIP and ZnT zinc transporters in human health and diseases. Cell Mol Life Sci. 2014;71(17):3281-95. doi: 10.1007/s00018-014-1617-0, PMID 24710731.

56. Laitakari A, Liu L, Frimurer TM, Holst B. The zinc-sensing receptor GPR39 in physiology and as a pharmacological target. Int J Mol Sci. 2021;22(8):3872. doi: 10.3390/IJMS22083872, PMID 33918078.

57. Maret W. Zinc and human disease. Met Ions Life Sci. 2013;13:389-414. doi: 10.1007/978-94-007-7500-8_12, PMID 24470098.

58. Fukada T, Yamasaki S, Nishida K, Murakami M, Hirano T. Zinc homeostasis and signaling in health and diseases: zinc signaling. J Biol Inorg Chem. 2011;16(7):1123-34. doi: 10.1007/S00775-011-0797-4, PMID 21660546.

59. Blaby-Haas CE, Merchant SS. Lysosome-related organelles as mediators of metal homeostasis. J Biol Chem. 2014;289(41):28129-36. doi: 10.1074/jbc.R114.592618. PMID 25160625.

60. Murdoch CC, Skaar EP. Nutritional immunity: the battle for nutrient metals at the host–pathogen interface. Nat Rev Microbiol. 2022;20(11):657-70. doi: 10.1038/S41579-022-00745-6, PMID 35641670.

61. Yang H, Lou C, Sun L, Li J, Cai Y, Wang Z. AdmetSAR 2.0: web-service for prediction and optimization of chemical ADMET properties. Bioinformatics. 2019;35(6):1067-9. doi: 10.1093/bioinformatics/bty707, PMID 30165565.

62. Lippens JL, Egea PF, Spahr C, Vaish A, Keener JE, Marty MT. Rapid LC-MS method for accurate molecular weight determination of membrane and hydrophobic proteins. Anal Chem. 2018;90(22):13616-23. doi: 10.1021/acs.analchem.8b03843, PMID 30335969.

63. Nicze M, Borowka M, Dec A, Niemiec A, Bułdak L, Okopien B. The current and promising oral delivery methods for protein- and peptide-based drugs. Int J Mol Sci. 2024;25(2):815. doi: 10.3390/ijms25020815, PMID 38255888.

64. Jash A, Ubeyitogullari A, Rizvi SS. Liposomes for oral delivery of protein and peptide-based therapeutics: challenges, formulation strategies, and advances. J Mater Chem B. 2021;9(24):4773-92. doi: 10.1039/d1tb00126d, PMID 34027542.

65. Senel S, Kremer M, Nagy K, Squier C. Delivery of bioactive peptides and proteins across oral (buccal) mucosa. Curr Pharm Biotechnol. 2001;2(2):175-86. doi: 10.2174/1389201013378734, PMID 11480421.

66. Richard J. Challenges in oral peptide delivery: lessons learnt from the clinic and future prospects. Ther Deliv. 2017;8(8):663-84. doi: 10.4155/tde-2017-0024, PMID 28730934.

67. Mahmood A, FitzGerald AJ, Marchbank T, Ntatsaki E, Murray D, Ghosh S. Zinc carnosine, a health food supplement that stabilises small bowel integrity and stimulates gut repair processes. Gut. 2007;56(2):168-75. doi: 10.1136/gut.2006.099929, PMID 16777920.

68. Chen D, Liu Z, Huang W, Zhao Y, Dong S, Zeng M. Purification and characterisation of a zinc-binding peptide from oyster protein hydrolysate. J Funct Foods. 2013;5(2):689-97. doi: 10.1016/j.jff.2013.01.012.

69. M Chinonye Udechukwu, Stephanie A Collins, Chibuike C Udenigwe. Prospects of enhancing dietary zinc bioavailability with food-derived zinc-chelating peptides. Food Funct. 2016 Oct 12;7(10):4137-44. doi: 10.1039/c6fo00706f.

70. Udechukwu MC, Collins SA, Udenigwe CC. Prospects of enhancing dietary zinc bioavailability with food-derived zinc-chelating peptides. Food Funct. 2016;7(10):4137-44. doi: 10.1039/C6FO00706F, PMID 27713952.

Published

07-11-2025

How to Cite

SYAHPUTRA, G., LOUISA, M., PUTRA, M. Y., WIJAYANTI, R., GUSTINI, N., & ROSYIDAH, A. (2025). DETERMINATION OF PROTEIN TRANSPORTERS FOR THE ABSORPTION OF ZN-PEPTIDES FROM HOLOTHURIA SCABRA THROUGH NETWORK PHARMACOLOGY WITH MOLECULAR SIMULATION APPROACH. International Journal of Applied Pharmaceutics, 17(6), 277–289. https://doi.org/10.22159/ijap.2025v17i6.55054

Issue

Section

Original Article(s)

Similar Articles

<< < 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.