FORMULATION STRATEGY FOR STABLE POSACONAZOLE NANOEMULSION: APPLICATION OF PSEUDOTERNARY PHASE DIAGRAM IN PREFORMULATION DESIGN

Authors

DOI:

https://doi.org/10.22159/ijap.2025v17i5.55055

Keywords:

Posaconazole, Nanoemulsion, Pseudo-ternary phase diagram, Droplet size

Abstract

Objective: posaconazole (PCZ), a potent broad-spectrum antifungal agent of the triazole class, is categorized as a Biopharmaceutical Classification System (BCS) Class II drug due to its poor aqueous solubility and limited oral bioavailability. Conventional PCZ formulations exhibit compromised therapeutic efficacy. This study aimed to develop and characterize an intravaginal nanoemulsion (NE) system as a novel drug delivery system (NDDS) to enhance PCZ solubility, avoid hepatic first-pass metabolism, and ensure rapid and complete drug release.

Methods: A systematic solubility screening of PCZ was conducted using various oils, surfactants, and co-surfactants. Pseudoternary phase diagrams were constructed to identify optimal NE regions. Based on these diagrams, multiple formulations were prepared and evaluated via visual inspection, thermodynamic stability, light transmittance, pH measurement, drug content, dilution test, and droplet size analysis.

Results: Among the tested formulations, F5 was optimized, demonstrating superior physicochemical characteristics. It showed the highest drug content (99.87%±0.20), a droplet size of (102.9±0.12 nm), a polydispersity index (0.28±0.008), and a zeta potential of (-29.45±0.09 mV). In vitro drug release revealed complete PCZ release (100%) within 150 min in citrate phosphate buffer (pH 4.5) with 1% Tween 80.

Conclusion: The optimized NE (F5), composed of 30% Imwitor 988, 30% S-mix (Tween 20: Transcutol, 1:1), 40% distilled water, and 1% PCZ, demonstrated excellent stability and a rapid drug release profile. Compared to clotrimazole-based vaginal tablets, which exhibit slower and incomplete drug release, this nanoemulsion offers enhanced solubility, efficient local delivery, and bypasses hepatic metabolism, making it a promising candidate for vaginal PCZ administration.

References

1. Kumar K, Thorat YS, Kunjwani HK, Bindurani R. Formulation and evaluation of medicated suppository of clindamycin phosphate. Int J Biol Pharm Res. 2013;4(9):627-33.

2. Thorat YS, Hosmani AH. Treatment of mouth ulcer by curcumin loaded thermoreversible mucoadhesive gel: a technical note. Int J Pharm Pharm Sci. 2015;7(10):399-402.

3. Afzaal H, Shahiq UZ Zaman, Saeed A, Hamdani SD, Raza A, Gul A. Development of mucoadhesive adapalene gel for biotherapeutic delivery to vaginal tissue. Front Pharmacol. 2022;13:1017549. doi: 10.3389/fphar.2022.1017549, PMID 36249754.

4. US Food and Drug Administration. Noxa fil (posaconazole) prescribing information. In: Silver Spring, MD: FDA; 2014. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/205053s1lbl.pdf. [Last accessed on 15 Apr 2020].

5. Azeem A, Rizwan M, Ahmad FJ, Iqbal Z, Khar RK, Aqil M. Nanoemulsion components screening and selection: a technical note. AAPS PharmSciTech. 2009;10(1):69-76. doi: 10.1208/s12249-008-9178-x, PMID 19148761.

6. Patel MR, Patel RB, Parikh JR, Solanki AB, Patel BG. Effect of formulation components on the in vitro permeation of microemulsion drug delivery system of fluconazole. AAPS PharmSciTech. 2009;10(3):917-23. doi: 10.1208/s12249-009-9286-2, PMID 19609836.

7. Mohamed MI. Optimization of chlorphenesin emulgel formulation. American Association of Plastic Surgeons J. 2004;6(3):81-7. doi: 10.1208/aapsj060326.

8. Shafiq Un Nabi S, Shakeel F, Talegaonkar S, Ali J, Baboota S, Ahuja A. Formulation development and optimization using nanoemulsion technique: a technical note. AAPS PharmSciTech. 2007;8(2):28. doi: 10.1208/pt0802028, PMID 17622106.

9. Aulton ME, Taylor KM, editors. Chapter 27. Aulton’s pharmaceutics: the design and manufacture of medicines. 5th ed. Elsevier; 2018. p. 450-1.

10. Hamid KM, Wais M, Sawant G. A review on nanoemulsions: formulation composition and applications. Asian J Pharm Clin Res. 2021 Apr;14(4):22-8. doi: 10.22159/ajpcr.2021.v14i4.40859.

11. Zhou H, Yue Y, Liu G, Li Y, Zhang J, Gong Q. Preparation and characterization of a lecithin nanoemulsion as a topical delivery system. Nanoscale Res Lett. 2009;5(1):224-30. doi: 10.1007/s11671-009-9469-5, PMID 20652152.

12. Puppala RK, A VL. Optimization and solubilization study of nanoemulsion budesonide and constructing pseudo-ternary phase diagram. Asian J Pharm Clin Res. 2019;12(1):551-3. doi: 10.22159/ajpcr.2019.v12i1.28686.

13. Almajidi YQ, Mahdi ZH, Maraie NK. Preparation and in vitro evaluation of montelukast sodium oral nanoemulsion. Int J App Pharm. 2018;10(5):49-53. doi: 10.22159/ijap.2018v10i5.28367.

14. Suminar MM, Jufri M. Physical stability and anti-oxidant activity assay of a nanoemulsion gel formulation containing tocotrienol. Int J Appl Pharm. 2017;9(1):140-3. doi: 10.22159/ijap.2017.v9s1.74_81.

15. Patel HC, Parmar G, Seth AK, Patel JD, Patel SR. Formulation and evaluation of O/W nanoemulsion of ketoconazole. PSM. 2013;4(4):338-51.

16. Mohamadi Saani SS, Abdolalizadeh J, Zeinali Heris S. Ultrasonic/sonochemical synthesis and evaluation of nanostructured oil in water emulsions for topical delivery of protein drugs. Ultrason Sonochem. 2019 Jul;55:86-95. doi: 10.1016/j.ultsonch.2019.03.018, PMID 31084795.

17. Patel G, Shelat P, Lalwani A. Statistical modeling optimization and characterization of solid self-nanoemulsifying drug delivery system of lopinavir using design of experiment. Drug Deliv. 2016;23(8):3027-42. doi: 10.3109/10717544.2016.1141260, PMID 26882014.

18. Mundada VP, Sawant KS. Enhanced oral bioavailability and anticoagulant activity of dabigatranetexilate by self-micro emulsifying drug delivery system: systematic development in vitro, ex vivo and in vivo evaluation. J Nanomed Nanotechnol. 2018;9(1):1-13.

19. Alshahrani SM. Preparation characterization and in vivo anti-inflammatory studies of ostrich oil-based nanoemulsion. J Oleo Sci. 2019;68(3):203-8. doi: 10.5650/jos.ess18213, PMID 30760670.

20. Siddique AB, Ebrahim H, Mohyeldin M, Qusa M, Batarseh Y, Fayyad A. Novel liquid-liquid extraction and self-emulsion methods for simplified isolation of extra-virgin olive oil phenolics with emphasis on (-)-oleocanthal and its oral anti-breast cancer activity. PLOS One. 2019;14(4):e0214798. doi: 10.1371/journal.pone.0214798, PMID 30964898.

21. Pratiwi L, Fudholi A, Martien R, Pramono S. Design and optimization of self-nanoemulsifying drug delivery systems (SNEDDS) of ethyl acetate fraction from mangosteen peel. Int J PharmTech Res. 2016;9(6):380-7.

22. Maraie NK, Almajidi YQ. Application of nanoemulsion technology for preparation and evaluation of intranasal mucoadhesivenanoinsitu gel for ondansetron HCl. J Glob Pharm Technol. 2018;10(3):431-42.

23. Baloch J, Sohail MF, Sarwar HS, Kiani MH, Khan GM, Jahan S. Self-nanoemulsifying drug delivery system (SNEDDS) for improved oral bioavailability of chlorpromazine: in vitro and in vivo evaluation. Medicina (Kaunas). 2019;55(5):210. doi: 10.3390/medicina55050210, PMID 31137751.

24. Shiva KY, Naveen KN, SharadaGoranti SKD. Development of intravaginal metronidazole gel for the treatment of bacterial vaginosis: effect of mucoadhesive natural polymers on the release of metronidazole. Int J PharmTech Res. 2010;2(3):1746-50.

25. Piazzini V, D Ambrosio M, Luceri C, Cinci L, Landucci E, Bilia AR. Formulation of nanomicelles to improve the solubility and the oral absorption of silymarin. Molecules. 2019;24(9):1688. doi: 10.3390/molecules24091688, PMID 31052197.

26. Affandi MM, Julianto T, Majeed A. Development and stability evaluation of astaxanthinnanoemulsion. Asian J Pharm Clin Res. 2011;4(1):142-8.

27. IOI Oleo GmbH. IMWITOR® 988 technical data sheet. Hamburg, Germany; 2020.

28. National Center for Biotechnology Information (NCBI). PubChem compound summary for CID 443314, polysorbate 20. Bethesda: National Library of Medicine (US). Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Polysorbate-20.

29. Ball C, Woodrow KA. Electrospun solid dispersions of Maraviroc for rapid intravaginal preexposure prophylaxis of HIV. Antimicrob Agents Chemother. 2014;58(8):4855-65. doi: 10.1128/AAC.02564-14, PMID 24913168.

30. US Food and Drug Administration. Inactive ingredient database. In: Silver Spring, MD: FDA; 2025. Available from: https://www.accessdata.fda.gov/scripts/cder/iig/.

31. Musakhanian J, Osborne DW, Rodier JD. Skin penetration and permeation properties of transcutol® in complex formulations. AAPS PharmSciTech. 2024;25(7):201. doi: 10.1208/s12249-024-02886-8, PMID 39235493.

32. Amin N, Das B. A review on formulation and characterization of nanoemulsion. Int J Curr Pharm Sci. 2019;11(4):1-5. doi: 10.22159/ijcpr.2019v11i4.34925.

33. Kawakami K, Yoshikawa T, Hayashi T, Nishihara Y, Masuda K. Microemulsion of astaxanthinnanoemulsion. Asian J Pharm Clin Res. 2011;4(1):142-8.

34. Hanifah M, Jufri M. Formulation and stability testing of nanoemulsion lotion containing Centella asiatica extract. J Young Pharm. 2018;10(4):404-8. doi: 10.5530/jyp.2018.10.89.

35. Sadoon NA, Ghareeb MM. Formulation and characterization of isradipine as oral nanoemulsion. Iraqi J Pharm Sci. 2020;29(1):143-53. doi: 10.31351/vol29iss1pp143-153.

36. Hadi AS, Ghareeb MM. Rizatriptan benzoate nano-emulsion for intranasal drug delivery: preparation and characterization. IJDDT. 2022;2(2):546-52.

37. Drais HK, Hussein AA. Formulation and characterization of carvedilolnanoemulsion oral liquid dosage form. Int J Pharm Pharm Sci. 2015;7(12):209-16.

38. Ahmad FJ, Alam MA, Khan ZI, Khar RK, Ali M. Development and in vitro evaluation of an acid buffering bioadhesive vaginal gel for mixed vaginal infections. Acta Pharm. 2008;58(4):407-19. doi: 10.2478/v10007-008-0023-2, PMID 19103575.

39. British Pharmacopoeia. XXX. London: Medicines and Healthcare products Regulatory Agency; 2016. p. 741.

40. An Y, Yan X, Li B, Li Y. Microencapsulation of capsanthin by self-emulsifying nanoemulsions and stability evaluation. Eur Food Res Technol. 2014;239(6):1077-85. doi: 10.1007/s00217-014-2328-3.

41. Mohammadi M, Elahimehr Z, Mahboobian MM. Acyclovir loaded nanoemulsions: preparation characterization and irritancy studies for ophthalmic delivery. Curr Eye Res. 2021;46(11):1646-52. doi: 10.1080/02713683.2021.1929328, PMID 33979552.

42. Elmataeeshy ME, Sokar MS, Bahey El Din M, Shaker DS. Enhanced transdermal permeability of terbinafine through novel nanoemulgel formulation; development in vitro and in vivo characterization. Future J Pharm Sci. 2018;4(1):18-28. doi: 10.1016/j.fjps.2017.07.003.

43. Sakini SJ, Maraie NK. Optimization and in vitro evaluation of the release of class II drug from its nanocubosomal dispersion. Int J Appl Pharm. 2019;11(2):86-90. doi: 10.22159/ijap.2019v11i2.30582.

44. Jaiswal M, Dudhe R, Sharma PK. Nanoemulsion: an advanced mode of drug delivery system. 3 Biotech. 2015;5(2):123-7. doi: 10.1007/s13205-014-0214-0, PMID 28324579.

45. Hamed SB, AbdAlhammid SN. Formulation and characterization of felodipine as an oral nanoemulsions. Iraqi J Pharm Sci. 2021;30(1):209-17. doi: 10.31351/vol30iss1pp209-217.

46. Rao MR, Paul G. Vaginal delivery of clotrimazole by mucoadhesion for treatment of candidiasis. J Drug Delivery Ther. 2021;11(6):6-14. doi: 10.22270/jddt.v11i6.5116.

47. Mc Clements DJ. Nanoemulsions versus microemulsions: terminology differences and similarities. Soft Matter. 2012;8(6):1719-29. doi: 10.1039/C2SM06903B.

48. Gao ZG, Choi HG, Shin HJ, Park KM, Lim SJ, Hwang KJ. Physicochemical characterization and evaluation of a microemulsion system for oral delivery of cyclosporin A. International Journal of Pharmaceutics. 1998;161(1):75-86. doi: 10.1016/S0378-5173(97)00325-6.

49. Youssef AA, Cai C, Dudhipala N, Majumdar S. Design of topical ocular ciprofloxacin nanoemulsion for the management of bacterial keratitis. Pharmaceuticals (Basel). 2021;14(3):210. doi: 10.3390/ph14030210, PMID 33802394.

50. Barradas TN, Senna JP, Cardoso SA, De Holanda E Silva KG, Elias Mansur CR. Formulation characterization and in vitro drug release of hydrogel thickened nanoemulsions for topical delivery of 8-methoxypsoralen. Mater Sci Eng C Mater Biol Appl. 2018;92:245-53. doi: 10.1016/j.msec.2018.06.049, PMID 30184748.

51. Geeva Prasanth A, Sathish Kumar A, Sai Shruthi B, Subramanian S. Kinetic study and in vitro drug release studies of nitrendipine loaded arylamide grafted chitosan blend microspheres. Mater Res Express. 2019;6(12). doi: 10.1088/2053-1591/ab5811.

52. Karthikeyan M, Deepa MK, Bassim E, Rahna CS, Sree Raj KR. Investigation of kinetic drug release characteristics and in vitro evaluation of sustained release matrix tablets of a selective COX-2 inhibitor for rheumatic diseases. J Pharm Innov. 2020 Jun;16:551-7. doi: 10.1007/s12247-020-09459-9.

53. Magalhaes NS, Cave G, Seiller M, Benita S. The stability and in vitro release kinetics of a clofibride emulsion. International Journal of Pharmaceutics. 1991;76(3):225-37. doi: 10.1016/0378-5173(91)90275-S.

Published

07-09-2025

How to Cite

SADIK HAMZA, M., & SALEH, Z. T. (2025). FORMULATION STRATEGY FOR STABLE POSACONAZOLE NANOEMULSION: APPLICATION OF PSEUDOTERNARY PHASE DIAGRAM IN PREFORMULATION DESIGN. International Journal of Applied Pharmaceutics, 17(5), 426–435. https://doi.org/10.22159/ijap.2025v17i5.55055

Issue

Section

Original Article(s)

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.