ADVANCED NANOCARRIERS FOR OCULAR DRUG DELIVERY: STRATEGIES TO OVERCOME OCULAR BARRIERS

Authors

  • DIVYA Department of Pharmaceutics, Noida Institute of Engineering and Technology (Pharmacy Institute), Knowledge Park-II, Greater Noida-201306, Uttar Pradesh, India https://orcid.org/0009-0000-5047-0869
  • RUPA MAZUMDER Department of Pharmaceutics, Noida Institute of Engineering and Technology (Pharmacy Institute), Knowledge Park-II, Greater Noida-201306, Uttar Pradesh, India https://orcid.org/0000-0002-1888-548X
  • ANJNA RANI Department of Pharmaceutics, Noida Institute of Engineering and Technology (Pharmacy Institute), Knowledge Park-II, Greater Noida-201306, Uttar Pradesh, India https://orcid.org/0000-0002-7575-7580
  • RAKHI MISHRA Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Knowledge Park-II, Greater Noida-201306, Uttar Pradesh, India https://orcid.org/0000-0002-9292-3448

DOI:

https://doi.org/10.22159/ijap.2025v17i6.55388

Keywords:

Ocular drug delivery, Nanocarriers, Permeation enhancement, Ocular barriers, Advanced delivery system, Bio-availability, Patents, Clinical trial

Abstract

Ocular drug delivery is confronted with significant challenges because of the eye's specific anatomy and physiological barriers, including the blood-retinal and corneal epithelium. Traditional dose formulations often experienced rapid precorneal clearance and low absorption. Recent advances in nanotechnology, such as liposomes, cubosomes, glycerosomes, nano wafers, microneedles, vectors for gene therapy, olaminosomes, bilosomes, and exosomes, offer promising alternatives to bypass these limitations. These techniques facilitate longer ocular retention, controlled release, targeted distribution, enhanced drug solubility, and improved patient compliance. For instance, glycerosomes and nanoliposomes enhance permeability and biocompatibility; nanogels and cubosomes have structural advantages for drug stabilization and sensitivity; microneedles offer a minimally invasive approach to achieve epithelial barriers; exosomes enable targeted bioactivity and intracellular delivery; and olaminosomes, which are made of lipid-based vesicles and oleylamine, offer great entrapment efficiency and corneal adherence. In contrast, bilosomes, which incorporate bile salts, improve corneal permeability. The present work provides comprehensive insights into nanocarrier approaches for improving ocular bioavailability, along with related patents and clinical trials in this field.

References

1. Mc Cormick I, Mactaggart I, Resnikoff S, Muirhead D, Murthy GV, Silva JC. Eye health indicators for universal health coverage: results of a global expert prioritisation process. Br J Ophthalmol. 2022 Jul;106(7):893-901. doi: 10.1136/bjophthalmol-2020-318481, PMID 33712481.

2. Anshika Garg, Megha, Anuradha Verma, Manish Singh. Visionary nanomedicine: transforming ocular therapy with nanotechnology based drug delivery systems. Int J of Pharm Sci. 2025;3(2):63-76. doi: 10.5281/zenodo.14786780.

3. Patel A, Havelikar U, Sharma V, Yadav S, Rathee S, Ghosh B. A comprehensive review on proniosomes: a new concept in ocular drug delivery. Int J Curr Pharm Sci. 2023 Sep 15;15(5):1-9. doi: 10.22159/ijcpr.2023v15i5.3048.

4. Lanier OL, Manfre MG, Bailey C, Liu Z, Sparks Z, Kulkarni S. Review of approaches for increasing ophthalmic bioavailability for eye drop formulations. AAPS PharmSciTech. 2021 Apr;22(3):107. doi: 10.1208/s12249-021-01977-0, PMID 33719019.

5. Tsung TH, Tsai YC, Lee HP, Chen YH, Lu DW. Biodegradable polymer-based drug delivery systems for ocular diseases. Int J Mol Sci. 2023 Aug 19;24(16):12976. doi: 10.3390/ijms241612976, PMID 37629157.

6. Tang Z, Fan X, Chen Y, Gu P. Ocular nanomedicine. Adv Sci (Weinh). 2022 May;9(15):e2003699. doi: 10.1002/advs.202003699, PMID 35150092.

7. Kurul F, Turkmen H, Cetin AE, Topkaya SN. Nanomedicine: how nanomaterials are transforming drug delivery, bio-imaging and diagnosis. Next Nanotechnol. 2025;7:100129. doi: 10.1016/j.nxnano.2024.100129.

8. Lopez KL, Ravasio A, Gonzalez Aramundiz JV, Zacconi FC. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) prepared by microwave and ultrasound-assisted synthesis: promising green strategies for the nanoworld. Pharmaceutics. 2023 Apr 25;15(5):1333. doi: 10.3390/pharmaceutics15051333, PMID 37242575.

9. Duan Y, Dhar A, Patel C, Khimani M, Neogi S, Sharma P. A brief review on solid lipid nanoparticles: part and parcel of contemporary drug delivery systems. RSC Adv. 2020;10(45):26777-91. doi: 10.1039/d0ra03491f, PMID 35515778.

10. Phalak SD, Bodke V, Yadav R, Pandav S, Ranaware M. A systematic review on NANO drug delivery system: solid lipid nanoparticles (SLN). Int J Curr Pharm Sci. 2024 Jan 15;16(1):10-20. doi: 10.22159/ijcpr.2024v16i1.4020.

11. Gugleva V, Andonova V. Recent progress of solid lipid nanoparticles and nanostructured lipid carriers as ocular drug delivery platforms. Pharmaceuticals (Basel). 2023 Mar 22;16(3):474. doi: 10.3390/ph16030474, PMID 36986574.

12. Sun K, Hu K. Preparation and characterization of tacrolimus-loaded slns in situ gel for ocular drug delivery for the treatment of immune conjunctivitis. Drug Des Devel Ther. 2021 Jan;15:141-50. doi: 10.2147/DDDT.S287721, PMID 33469266.

13. Viegas C, Patricio AB, Prata JM, Nadhman A, Chintamaneni PK, Fonte P. Solid lipid nanoparticles vs. nanostructured lipid carriers: a comparative review. Pharmaceutics. 2023 May 25;15(6):1593. doi: 10.3390/pharmaceutics15061593, PMID 37376042.

14. Santonocito D, Barbagallo I, Distefano A, Sferrazzo G, Vivero Lopez M, Sarpietro MG. Nanostructured lipid carriers aimed to the ocular delivery of mangiferin: in vitro evidence. Pharmaceutics. 2023 Mar 15;15(3):951. doi: 10.3390/pharmaceutics15030951, PMID 36986812.

15. Makoni PA, Wa Kasongo K, Walker RB. Short-term stability testing of efavirenz-loaded solid lipid nanoparticle (SLN) and nanostructured lipid carrier (NLC) dispersions. Pharmaceutics. 2019 Aug 8;11(8):397. doi: 10.3390/pharmaceutics11080397, PMID 31398820.

16. Farooq U, O Reilly NJ, Ahmed Z, Gasco P, Raghu Raj Singh T, Behl G. Design of liposomal nanocarriers with a potential for combined dexamethasone and bevacizumab delivery to the eye. Int J Pharm. 2024 Apr;654:123958. doi: 10.1016/j.ijpharm.2024.123958, PMID 38442797.

17. Batur E, Ozdemir S, Durgun ME, Ozsoy Y. Vesicular drug delivery systems: promising approaches in ocular drug delivery. Pharmaceuticals (Basel). 2024 Apr 16;17(4):511. doi: 10.3390/ph17040511, PMID 38675470.

18. Lombardo D, Kiselev MA. Methods of liposomes preparation: formation and control factors of versatile nanocarriers for biomedical and nanomedicine application. Pharmaceutics. 2022 Feb 28;14(3):543. doi: 10.3390/pharmaceutics14030543, PMID 35335920.

19. Chen X, Wu J, Lin X, Wu X, Yu X, Wang B. Tacrolimus-loaded cationic liposomes for dry eye treatment. Front Pharmacol. 2022;13:838168. doi: 10.3389/fphar.2022.838168, PMID 35185587.

20. Su Y, Fan X, Pang Y. Nano based ocular drug delivery systems: an insight into the preclinical/clinical studies and their potential in the treatment of posterior ocular diseases. Biomater Sci. 2023;11(13):4490-507. doi: 10.1039/d3bm00505d, PMID 37222479.

21. Ozsoy Y, Gungor S, Kahraman E, Durgun ME. Polymeric micelles as a novel carrier for ocular drug delivery. In: Nanoarchitectonics in biomedicine. Amsterdam: Elsevier; 2019. p. 85-117. doi: 10.1016/B978-0-12-816200-2.00005-0.

22. El Shahed SA, Hassan DH, El Nabarawi MA, El Setouhy DA, Abdellatif MM. Polymeric mixed micelle-loaded hydrogel for the ocular delivery of fexofenadine for treating allergic conjunctivitis. Polymers. 2024 Aug 7;16(16):2240. doi: 10.3390/polym16162240, PMID 39204460.

23. Durgun ME, Gungor S, Ozsoy Y. Micelles: promising ocular drug carriers for anterior and posterior segment diseases. J Ocul Pharmacol Ther. 2020 Jul 1;36(6):323-41. doi: 10.1089/jop.2019.0109, PMID 32310723.

24. Adwan S, Al Akayleh F, Qasmieh M, Obeidi T. Enhanced ocular drug delivery of dexamethasone using a chitosan-coated Soluplus®-based mixed micellar system. Pharmaceutics. 2024 Oct 29;16(11):1390. doi: 10.3390/pharmaceutics16111390, PMID 39598514.

25. Kaushal N, Kumar M, Tiwari A, Tiwari V, Sharma K, Sharma A. Polymeric micelles loaded in situ gel with prednisolone acetate for ocular inflammation: development and evaluation. Nanomedicine (Lond). 2023 Aug;18(20):1383-98. doi: 10.2217/nnm-2023-0123, PMID 37702303.

26. Gorle A, Nerkar P, Ola M, Bhaskar R, Khalane V. Formulation and evaluation of polymeric ocular nanosuspension containing azelastine hydrochloride. BCA. 2024 Sep 25;24(2):2809. doi: 10.51470/BCA.2024.24.2.2809.

27. Suriyaamporn P, Pornpitchanarong C, Pamornpathomkul B, Patrojanasophon P, Rojanarata T, Opanasopit P. Ganciclovir nanosuspension loaded detachable microneedles patch for enhanced drug delivery to posterior eye segment. J Drug Deliv Sci Technol. 2023 Oct;88:104975. doi: 10.1016/j.jddst.2023.104975.

28. Qin T, Dai Z, Xu X, Zhang Z, You X, Sun H. Nanosuspension as an efficient carrier for improved ocular permeation of voriconazole. Curr Pharm Biotechnol. 2021 Feb;22(2):245-53. doi: 10.2174/1389201021999200820154918, PMID 32867650.

29. Guven UM, Yenilmez E. Olopatadine hydrochloride loaded kollidon® SR nanoparticles for ocular delivery: nanosuspension formulation and in vitro-in vivo evaluation. J Drug Deliv Sci Technol. 2019 Jun;51:506-12. doi: 10.1016/j.jddst.2019.03.016.

30. Wu Y, Tao Q, Xie J, Lu L, Xie X, Zhang Y. Advances in nanogels for topical drug delivery in ocular diseases. Gels. 2023 Apr 2;9(4):292. doi: 10.3390/gels9040292, PMID 37102904.

31. Suhail M, Rosenholm JM, Minhas MU, Badshah SF, Naeem A, Khan KU. Nanogels as drug delivery systems: a comprehensive overview. Ther Deliv. 2019 Nov;10(11):697-717. doi: 10.4155/tde-2019-0010, PMID 31789106.

32. Xu H, Li S, Liu YS. Nanoparticles in the diagnosis and treatment of vascular aging and related diseases. Signal Transduct Target Ther. 2022 Jul 11;7(1):231. doi: 10.1038/s41392-022-01082-z, PMID 35817770.

33. Li C, Obireddy SR, Lai WF. Preparation and use of nanogels as carriers of drugs. Drug Deliv. 2021 Jan;28(1):1594-602. doi: 10.1080/10717544.2021.1955042, PMID 34308729.

34. Shetty R, Jose J, Maliyakkal N, DSS, Johnson RP, Bandiwadekar A. Micelle nanogel-based drug delivery system for lutein in ocular administration. Naunyn Schmiedebergs Arch Pharmacol. 2025 Feb 28;398(8):10611-23. doi: 10.1007/s00210-025-03919-0, PMID 40019526.

35. Amrutkar CS, Patil SB. Nanocarriers for ocular drug delivery: recent advances and future opportunities. Indian J Ophthalmol. 2023 Jun;71(6):2355-66. doi: 10.4103/ijo.IJO_1893_22, PMID 37322644.

36. Meng T, Zheng J, Shin CS, Gao N, Bande D, Sudarjat H. Combination nanomedicine strategy for preventing high-risk corneal transplantation rejection. ACS Nano. 2024 Aug 6;18(31):20679-93. doi: 10.1021/acsnano.4c06595, PMID 39074146.

37. Dourado LF, Silva CN, Gonçalves RS, Inoue TT, De Lima ME, Cunha Junior AS. Improvement of PnPP-19 peptide bioavailability for glaucoma therapy: design and application of nanowafers based on PVA. J Drug Deliv Sci Technol. 2022 Aug;74:103501. doi: 10.1016/j.jddst.2022.103501.

38. Marcano DC, Shin CS, Lee B, Isenhart LC, Liu X, Li F. Synergistic cysteamine delivery nanowafer as an efficacious treatment modality for corneal cystinosis. Mol Pharm. 2016 Oct 3;13(10):3468-77. doi: 10.1021/acs.molpharmaceut.6b00488, PMID 27571217.

39. Liu LC, Chen YH, Lu DW. Overview of recent advances in nano-based ocular drug delivery. Int J Mol Sci. 2023 Oct 19;24(20):15352. doi: 10.3390/ijms242015352, PMID 37895032.

40. Rojekar S, Parit S, Gholap AD, Manchare A, Nangare SN, Hatvate N. Revolutionizing eye care: exploring the potential of microneedle drug delivery. Pharmaceutics. 2024 Oct 30;16(11):1398. doi: 10.3390/pharmaceutics16111398, PMID 39598522.

41. Jiang X, Liu S, Chen J, Lei J, Meng W, Wang X. A transformative wearable corneal microneedle patch for efficient therapy of ocular injury and infection. Adv Sci (Weinh). 2025 Mar;12(12):e2414548. doi: 10.1002/advs.202414548, PMID 39887635.

42. Gupta P, Yadav KS. Applications of microneedles in delivering drugs for various ocular diseases. Life Sci. 2019 Nov;237:116907. doi: 10.1016/j.lfs.2019.116907, PMID 31606378.

43. Sivadasan D, Sultan MH, Alqahtani SS, Javed S. Cubosomes in drug delivery a comprehensive review on its structural components, preparation techniques and therapeutic applications. Biomedicines. 2023 Apr 7;11(4):1114. doi: 10.3390/biomedicines11041114, PMID 37189732.

44. Manorma MR, Mazumder R, Rani A, Budhori R, Kaushik A. Current measures against ophthalmic complications of diabetes mellitus a short review. Int J App Pharm. 2021 Nov 7;13(6):54-65. doi: 10.22159/ijap.2021v13i6.42876.

45. Umar H, Wahab HA, Gazzali AM, Tahir H, Ahmad W. Cubosomes: design, development and tumor-targeted drug delivery applications. Polymers. 2022 Jul 31;14(15):3118. doi: 10.3390/polym14153118, PMID 35956633.

46. Ding Y, Chow SH, Chen J, Brun AP, Wu CM, Duff AP. Targeted delivery of LM22A-4 by cubosomes protects retinal ganglion cells in an experimental glaucoma model. Acta Biomater. 2021 May;126:433-44. doi: 10.1016/j.actbio.2021.03.043, PMID 33774200.

47. Nasr M, Teiama M, Ismail A, Ebada A, Saber S. In vitro and in vivo evaluation of cubosomal nanoparticles as an ocular delivery system for fluconazole in treatment of keratomycosis. Drug Deliv Transl Res. 2020 Dec;10(6):1841-52. doi: 10.1007/s13346-020-00830-4, PMID 32779112.

48. Kamble SN RS. A comprehensive review on cubosomes. Int J of Pharm Sci. 2024 May 29;2(5):1728-39. doi: 10.5281/zenodo.11388304. [Last accessed on 06 Jul 2025].

49. Gupta P, Mazumder R, Padhi S. Glycerosomes: advanced liposomal drug delivery system. Indian J Pharm Sci. 2020;82(3):385-97. doi: 10.36468/pharmaceutical-sciences.661.

50. Sharma D, Rani A, Singh VD, Shah P, Sharma S, Kumar S. Glycerosomes: novel nano-vesicles for efficient delivery of therapeutics. Recent Adv Drug Deliv Formul. 2023 Sep;17(3):173-82. doi: 10.2174/0126673878245185230919101148, PMID 37921130.

51. Gupta P, Mazumder R, Padhi S. Development of natamycin-loaded glycerosomes a novel approach to defend ophthalmic keratitis. IJPER. 2020 May 29;54(2s):s163-72. doi: 10.5530/ijper.54.2s.72.

52. Naguib MJ, Hassan YR, Abd Elsalam WH. 3D printed ocusert laden with ultra-fluidic glycerosomes of ganciclovir for the management of ocular cytomegalovirus retinitis. Int J Pharm. 2021 Sep;607:121010. doi: 10.1016/j.ijpharm.2021.121010, PMID 34391852.

53. Manukonda R, Attem J, Yenuganti VR, Kaliki S, Vemuganti GK. Exosomes in the visual system: new avenues in ocular diseases. Tumour Biol. 2022 Aug 9;44(1):129-52. doi: 10.3233/TUB-211543, PMID 35964221.

54. Zhou T, He C, Lai P, Yang Z, Liu Y, Xu H. miR-204–containing exosomes ameliorate GVHD-associated dry eye disease. Sci Adv. 2022 Jan 14;8(2):eabj9617. doi: 10.1126/sciadv.abj9617, PMID 35020440.

55. An S, Anwar K, Ashraf M, Lee H, Jung R, Koganti R. Wound healing effects of mesenchymal stromal cell secretome in the cornea and the role of exosomes. Pharmaceutics. 2023 May 13;15(5):1486. doi: 10.3390/pharmaceutics15051486, PMID 37242728.

56. Palakurthi SS, Shah B, Kapre S, Charbe N, Immanuel S, Pasham S. A comprehensive review of challenges and advances in exosome-based drug delivery systems. Nanoscale Adv. 2024;6(23):5803-26. doi: 10.1039/d4na00501e, PMID 39484149.

57. Bonner SE, Van De Wakker SI, Phillips W, Willms E, Sluijter JP, Hill AF. Scalable purification of extracellular vesicles with high yield and purity using multimodal flowthrough chromatography. J Extracell Biol. 2024 Feb;3(2):e138. doi: 10.1002/jex2.138, PMID 38939900.

58. Tawfik M, Chen F, Goldberg JL, Sabel BA. Nanomedicine and drug delivery to the retina: current status and implications for gene therapy. Naunyn Schmiedebergs Arch Pharmacol. 2022 Dec;395(12):1477-507. doi: 10.1007/s00210-022-02287-3, PMID 36107200.

59. Amador C, Shah R, Ghiam S, Kramerov AA, Ljubimov AV. Gene therapy in the anterior eye segment. Curr Gene Ther. 2022;22(2):104-31. doi: 10.2174/1566523221666210423084233, PMID 33902406.

60. Kellish PC, Marsic D, Crosson SM, Choudhury S, Scalabrino ML, Strang CE. Intravitreal injection of a rationally designed AAV capsid library in non-human primate identifies variants with enhanced retinal transduction and neutralizing antibody evasion. Mol Ther. 2023 Dec;31(12):3441-56. doi: 10.1016/j.ymthe.2023.10.001, PMID 37814449.

61. Maurya R, Vikal A, Narang RK, Patel P, Kurmi BD. Recent advancements and applications of ophthalmic gene therapy strategies: a breakthrough in ocular therapeutics. Exp Eye Res. 2024 Aug;245:109983. doi: 10.1016/j.exer.2024.109983, PMID 38942133.

62. Dhurandhar D, Sahoo NK, Mariappan I, Narayanan R. Gene therapy in retinal diseases: a review. Indian J Ophthalmol. 2021 Sep;69(9):2257-65. doi: 10.4103/ijo.IJO_3117_20, PMID 34427196.

63. Buya AB, Beloqui A, Memvanga PB, Preat V. Self-nano-emulsifying drug-delivery systems: from the development to the current applications and challenges in oral drug delivery. Pharmaceutics. 2020 Dec 9;12(12):1194. doi: 10.3390/pharmaceutics12121194, PMID 33317067.

64. Vikash B, Shashi PNK, Pandey NK, Kumar B, Wadhwa S, Goutam U. Formulation and evaluation of ocular self-nanoemulsifying drug delivery system of brimonidine tartrate. J Drug Deliv Sci Technol. 2023 Mar;81:104226. doi: 10.1016/j.jddst.2023.104226.

65. Jeong JH, Yoon TH, Ryu SW, Kim MG, Kim GH, Oh YJ. Quality by design (QbD)-based development of a self-nanoemulsifying drug delivery system for the ocular delivery of flurbiprofen. Pharmaceutics. 2025 May 9;17(5):629. doi: 10.3390/pharmaceutics17050629, PMID 40430920.

66. Dehghani M, Zahir Jouzdani F, Shahbaz S, Andarzbakhsh K, Dinarvand S, Fathian Nasab MH. Triamcinolone loaded self nano-emulsifying drug delivery systems for ocular use: an alternative to invasive ocular surgeries and injections. Int J Pharm. 2024 Mar;653:123840. doi: 10.1016/j.ijpharm.2024.123840, PMID 38262585.

67. Ahmed S, Amin MM, Sayed S. Ocular drug delivery: a comprehensive review. AAPS PharmSciTech. 2023 Feb 14;24(2):66. doi: 10.1208/s12249-023-02516-9, PMID 36788150.

68. Ahmed S, Amin MM, El Korany SM, Sayed S. Pronounced capping effect of olaminosomes as nanostructured platforms in ocular candidiasis management. Drug Deliv. 2022 Dec 31;29(1):2945-58. doi: 10.1080/10717544.2022.2120926, PMID 36073061.

69. Abd Elsalam WH, ElKasabgy NA. Mucoadhesive olaminosomes: a novel prolonged release nanocarrier of agomelatine for the treatment of ocular hypertension. Int J Pharm. 2019 Apr;560:235-45. doi: 10.1016/j.ijpharm.2019.01.070, PMID 30763680.

70. Kaurav H, Tripathi M, Kaur SD, Bansal A, Kapoor DN, Sheth S. Emerging trends in bilosomes as therapeutic drug delivery systems. Pharmaceutics. 2024 May 23;16(6):697. doi: 10.3390/pharmaceutics16060697, PMID 38931820.

71. Alsaidan OA, Zafar A, Yasir M, Alzarea SI, Alqinyah M, Khalid M. Development of ciprofloxacin-loaded bilosomes in situ gel for ocular delivery: optimization in vitro characterization ex-vivo permeation and antimicrobial study. Gels. 2022 Oct 25;8(11):687. doi: 10.3390/gels8110687, PMID 36354595.

72. Bassani CL, Van Anders G, Banin U, Baranov D, Chen Q, Dijkstra M. Nanocrystal assemblies: current advances and open problems. ACS Nano. 2024 Jun 11;18(23):14791-840. doi: 10.1021/acsnano.3c10201, PMID 38814908.

73. Geng F, Fan X, Liu Y, Lu W, Wei G. Recent advances in nanocrystal based technologies applied for ocular drug delivery. Expert Opin Drug Deliv. 2024 Feb;21(2):211-27. doi: 10.1080/17425247.2024.2311119, PMID 38271023.

74. Geng F, Fan X, Liu Y, Lu W, Wei G. Recent advances in nanocrystal based technologies applied for ocular drug delivery. Expert Opin Drug Deliv. 2024 Feb;21(2):211-27. doi: 10.1080/17425247.2024.2311119, PMID 38271023.

75. Sonowal L, Gautam S. Ocular drug delivery strategies using carbon nanotubes: a perspective. Mater Lett. 2025 Jan;379:137642. doi: 10.1016/j.matlet.2024.137642.

76. Demirci H, Wang Y, Li Q, Lin CM, Kotov NA, Grisolia AB. Penetration of carbon nanotubes into the retinoblastoma tumor after intravitreal injection in LH BETA T AG transgenic mice reti-noblastoma model. J Ophthalmic Vis Res. 2020;15(4):446-52. doi: 10.18502/jovr.v15i4.7778, PMID 33133434.

77. Sciortino N, Fedeli S, Paoli P, Brandi A, Chiarugi P, Severi M. Multiwalled carbon nanotubes for drug delivery: efficiency related to length and incubation time. Int J Pharm. 2017 Apr;521(1-2):69-72. doi: 10.1016/j.ijpharm.2017.02.023, PMID 28229946.

78. Rodrigues FS, Campos A, Martins J, Ambrosio AF, Campos EJ. Emerging trends in nanomedicine for improving ocular drug delivery: light-responsive nanoparticles mesoporous silica nanoparticles and contact lenses. ACS Biomater Sci Eng. 2020 Dec 14;6(12):6587-97. doi: 10.1021/acsbiomaterials.0c01347, PMID 33320633.

79. Alhowyan AA, Kalam MA, Iqbal M, Raish M, El Toni AM, Alkholief M. Mesoporous silica nanoparticles coated with carboxymethyl chitosan for 5-fluorouracil ocular delivery: characterization in vitro and in vivo studies. Molecules. 2023 Jan 27;28(3):1260. doi: 10.3390/molecules28031260, PMID 36770926.

80. Huang K, Liu X, LV Z, Zhang D, Zhou Y, Lin Z. MMP9-responsive graphene oxide quantum dot-based nano-in-micro drug delivery system for combinatorial therapy of choroidal neovascularization. Small. 2023 Sep;19(39):e2207335. doi: 10.1002/smll.202207335, PMID 36871144.

81. Zhang X, Yang L, Wang F, Su Y. Carbon quantum dots for the diagnosis and treatment of ophthalmic diseases. Hum Cell. 2024 Aug 2;37(5):1336-46. doi: 10.1007/s13577-024-01111-9, PMID 39093514.

82. Biswal MR, Bhatia S. Carbon dot nanoparticles: exploring the potential use for gene delivery in ophthalmic diseases. Nanomaterials (Basel). 2021 Apr 6;11(4):935. doi: 10.3390/nano11040935, PMID 33917548.

83. Bhattacharya M, Sadeghi A, Sarkhel S, Hagström M, Bahrpeyma S, Toropainen E. Release of functional dexamethasone by intracellular enzymes: a modular peptide based strategy for ocular drug delivery. J Control Release. 2020 Nov;327:584-94. doi: 10.1016/j.jconrel.2020.09.005, PMID 32911015.

84. Hu Y, Wang Y, Deng J, Ding X, Lin D, Shi H. Enzyme instructed self assembly of peptide drug conjugates in tear fluids for ocular drug delivery. J Control Release. 2022 Apr;344:261-71. doi: 10.1016/j.jconrel.2022.03.011, PMID 35278493.

85. Jacob S, Nair AB, Shah J, Gupta S, Boddu SH, Sreeharsha N. Lipid nanoparticles as a promising drug delivery carrier for topical ocular therapy an overview on recent advances. Pharmaceutics. 2022 Feb 27;14(3):533. doi: 10.3390/pharmaceutics14030533, PMID 35335909.

86. Wang J, Li B, Kompella UB, Yang H. Dendrimer and dendrimer gel derived drug delivery systems: breaking bottlenecks of topical administration of glaucoma medications. MedComm Biomater Appl. 2023 Mar;2(1):e30. doi: 10.1002/mba2.30, PMID 38562247.

87. Li S, Chen L, Fu Y. Nanotechnology-based ocular drug delivery systems: recent advances and future prospects. J Nanobiotechnology. 2023 Jul 22;21(1):232. doi: 10.1186/s12951-023-01992-2, PMID 37480102.

88. Demirci H, Wang Y, Li Q, Lin CM, Kotov NA, Grisolia AB. Penetration of carbon nanotubes into the retinoblastoma tumor after intravitreal injection in LH BETA T AG transgenic mice reti-noblastoma model. J Ophthalmic Vis Res. 2020;15(4):446-52. doi: 10.18502/jovr.v15i4.7778, PMID 33133434.

89. Justin SH, Qing P, Qingguo X, Nicholas JB, Walter JS, Bing W. Glucocorticoid-loaded nanoparticles for prevention of corneal allograft rejection and neovascularization, US10195212B2; 2017.

90. Ashim KM, Poonam RV, Ulrich MG. Topical drug delivery systems for ophthalmic use, US9017725B2; 2015.

91. Subramanian V, Jayaganesh VN, Tina W, Yin Chiang FB. Liposomal formulation for ocular drug delivery, US10272040B2; 2019.

92. Mazumder R, Swarupanjali P, Gupta P. Glycerosomes of natamycin for treatment of ophthalmic fungal keratitis, I. P. 201911040868 2019.

Published

07-11-2025

How to Cite

DIVYA, MAZUMDER, R., RANI, A., & MISHRA, R. (2025). ADVANCED NANOCARRIERS FOR OCULAR DRUG DELIVERY: STRATEGIES TO OVERCOME OCULAR BARRIERS. International Journal of Applied Pharmaceutics, 17(6), 152–161. https://doi.org/10.22159/ijap.2025v17i6.55388

Issue

Section

Review Article(s)

Similar Articles

<< < 144 145 146 147 > >> 

You may also start an advanced similarity search for this article.