MOLECULAR AND EPIGENETIC MECHANISMS OF COVID-19-RELATED CARDIOVASCULAR COMPLICATIONS: MULTIOMICS BIOMARKERS AND PRECISION MEDICINE APPROACHES

Authors

  • KETAKI DAWALE Jawaharlal Nehru Medical College (JNMC) DMIHER (Deemed to be University), Wardha, Maharashtra-442001, India
  • PANKAJ JAMBHOLKAR Jawaharlal Nehru Medical College (JNMC) DMIHER (Deemed to be University), Wardha, Maharashtra-442001, India
  • VASANT WAGH Jawaharlal Nehru Medical College (JNMC) DMIHER (Deemed to be University), Wardha, Maharashtra-442001, India

DOI:

https://doi.org/10.22159/ijap.2025v17i6.55425

Keywords:

COVID-19, SARS-CoV-2, Cardiovascular disease, Myocardial injury, Endothelial dysfunction, Cytokine storm, ACE2 receptor, Epigenetic reprogramming, Multiomics integration, Biomarkers

Abstract

COVID-19 has emerged as a significant precipitant of acute cardiovascular complications, collectively termed COVID-19-associated acute cardiovascular syndrome. Approximately one-third of hospitalized patients experience myocardial injury, with elevated cardiac troponins correlating with disease severity and mortality. The pathogenesis involves direct viral invasion of cardiomyocytes and endothelial cells via the ACE2 receptor, immune-mediated inflammation (notably cytokine storm), endothelial dysfunction, and prothrombotic states. These mechanisms are further modulated by genetic and epigenetic factors, including DNA methylation changes and host genetic polymorphisms, which influence individual susceptibility to cardiac complications. Multiomics integration—encompassing microRNA expression, exosomal biomarkers, glycomic profiling, and genomic data—has enabled the identification of novel molecular signatures for risk stratification and therapeutic targeting. For instance, specific miRNA signatures have been shown to predict responsiveness to anti-inflammatory therapies, offering the potential to personalize treatment strategies based on individual molecular profiles. Classic biomarkers such as high-sensitivity troponins, NT-proBNP, and myoglobin, alongside emerging molecular and epigenetic markers, provide valuable insights into the mechanisms linking SARS-CoV-2 infection to myocardial injury, arrhythmia, and long-term cardiovascular sequelae. This review synthesizes current evidence on the molecular, genetic, and epigenetic underpinnings of COVID-19-related cardiovascular disease, highlighting the promise of precision medicine approaches for early diagnosis, prognostication, and targeted intervention in post-COVID-19 cardiovascular risk management.

References

1. Terzic CM, Medina Inojosa BJ. Cardiovascular complications of corona virus disease 2019. Phys Med Rehabil Clin N Am. 2023;34(3):551-61. doi: 10.1016/j.pmr.2023.03.003, PMID 37419531.

2. Lin JS, Evans CV, Johnson E, Redmond N, Coppola EL, Smith N. Nontraditional risk factors in cardiovascular disease risk assessment: updated evidence report and systematic review for the U. S. preventive services task force. JAMA. 2018;320(3):281-97. doi: 10.1001/jama.2018.4242, PMID 29998301.

3. Shao HH, Yin RX. Pathogenic mechanisms of cardiovascular damage in COVID-19. Mol Med. 2024;30(1):92. doi: 10.1186/s10020-024-00855-2, PMID 38898389.

4. Fox SE, Heide RS. COVID-19: the heart of the matter pathological changes and a proposed mechanism. J Cardiovasc Pharmacol Ther. 2021;26(3):217-24. doi: 10.1177/1074248421995356, PMID 33703938.

5. Varga Z, Flammer AJ, Steiger P, Haberecker M, Andermatt R, Zinkernagel AS. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395(10234):1417-8. doi: 10.1016/S0140-6736(20)30937-5, PMID 32325026.

6. Qian Y, Lei T, Patel PS, Lee CH, Monaghan Nichols P, Xin HB. Direct activation of endothelial cells by SARS-CoV-2 nucleocapsid protein is blocked by simvastatin. bioRxiv. 2021 Feb 18;2021.02.14.431174. doi: 10.1101/2021.02.14.431174.

7. Kichloo A, Dettloff K, Aljadah M, Albosta M, Jamal S, Singh J. COVID-19 and hypercoagulability: a review. Clin Appl Thromb Hemost. 2020;26:1076029620962853. doi: 10.1177/1076029620962853, PMID 33074732.

8. Giudicessi JR, Roden DM, Wilde AA, Ackerman MJ. Genetic susceptibility for COVID-19 associated sudden cardiac death in African Americans. Heart Rhythm. 2020;17(9):1487-92. doi: 10.1016/j.hrthm.2020.04.045, PMID 32380288.

9. Henning RJ. Cardiovascular exosomes and microRNAs in cardiovascular physiology and pathophysiology. J Cardiovasc Transl Res. 2021;14(2):195-212. doi: 10.1007/s12265-020-10040-5, PMID 32588374.

10. Di Liegro CM, Schiera G, Di Liegro I. Extracellular vesicle associated RNA as a carrier of epigenetic information. Genes. 2017;8(10):240. doi: 10.3390/genes8100240, PMID 28937658.

11. Fu E, Li Z. Extracellular vesicles: a new frontier in the theranostics of cardiovascular diseases. I Radiology. 2024;2(3):240-59. doi: 10.1002/ird3.77.

12. Sarkar S, Sen R. Insights into cardiovascular defects and cardiac epigenome in the context of COVID-19. Epigenomes. 2022;6(2):13. doi: 10.3390/epigenomes6020013, PMID 35645252.

13. Krause C, Bergmann E, Schmidt SV. Epigenetic modulation of myeloid cell functions in HIV and SARS-CoV-2 infection. Mol Biol Rep. 2024;51(1):342. doi: 10.1007/s11033-024-09266-2, PMID 38400997.

14. Subramanian SP, Wojtkiewicz M, Yu F, Castro C, Schuette EN, Rodriguez Paar J. Integrated multiomics reveals alterations in paucimannose and complex type N-glycans in cardiac tissue of patients with COVID-19. Mol Cell Proteomics. 2025;24(4):100929. doi: 10.1016/j.mcpro.2025.100929, PMID 39988192.

15. Bogliotti YS, Ross PJ. Mechanisms of histone H3 lysine 27 trimethylation remodeling during early mammalian development. Epigenetics. 2012;7(9):976-81. doi: 10.4161/epi.21615, PMID 22895114.

16. Afonso J, Shim WJ, Boden M, Salinas Fortes MR, Da Silva Diniz WJ, De Lima AO. Repressive epigenetic mechanisms such as the H3K27me3 histone modification were predicted to affect muscle gene expression and its mineral content in Nelore cattle. Biochem Biophys Rep. 2023;33:101420. doi: 10.1016/j.bbrep.2023.101420, PMID 36654922.

17. Yu JS, Pan NN, Chen RD, Zeng LC, Yang HK, Li H. Cardiac biomarker levels and their prognostic values in COVID-19 patients with or without concomitant cardiac disease. Front Cardiovasc Med. 2020;7:599096. doi: 10.3389/fcvm.2020.599096, PMID 33553255.

18. Lippi G, Sanchis Gomar F, Henry BM, Lavie CJ. Cardiac biomarkers in COVID-19: a narrative review. EJIFCC. 2021;32(3):337-46. PMID 34819823.

19. Salem S, Mosaad R, Lotfy R, Elbadry M. Altered expression of DNA methyltransferases and methylation status of the TLR4 and TNF-α promoters in COVID-19. Arch Virol. 2023;168(3):95. doi: 10.1007/s00705-023-05722-9, PMID 36840831.

20. Foolchand A, Mazaleni S, Ghazi T, Chuturgoon AA. A review: highlighting the links between epigenetics COVID-19 infection and vitamin D. Int J Mol Sci. 2022;23(20):12292. doi: 10.3390/ijms232012292, PMID 36293144.

21. Freitas NL, Azevedo PR, Brandao F. A glance upon epigenetic and COVID-19. An Acad Bras Cienc. 2020;92(4):e20201451. doi: 10.1590/0001-3765202020201451, PMID 33295584.

22. Brancolini C, Gagliano T, Minisini M. HDACs and the epigenetic plasticity of cancer cells: target the complexity. Pharmacol Ther. 2022;238:108190. doi: 10.1016/j.pharmthera.2022.108190, PMID 35430294.

23. Zhang B, Zhang Z, Koeken VA, Kumar S, Aillaud M, Tsay HC. Altered and allele-specific open chromatin landscape reveals epigenetic and genetic regulators of innate immunity in COVID-19. Cell Genomics. 2023;3(2):100232. doi: 10.1016/j.xgen.2022.100232, PMID 36474914.

24. Asrani P, Hassan MdI. SARS-CoV-2 mediated lung inflammatory responses in host: targeting the cytokine storm for therapeutic interventions. Mol Cell Biochem. 2021;476(2):675-87. doi: 10.1007/s11010-020-03935-z, PMID 33064288.

25. Nishiga M, Wang DW, Han Y, Lewis DB, Wu JC. COVID-19 and cardiovascular disease: from basic mechanisms to clinical perspectives. Nat Rev Cardiol. 2020;17(9):543-58. doi: 10.1038/s41569-020-0413-9, PMID 32690910.

26. Jones EA. Mechanism of COVID-19-induced cardiac damage from patient in vitro and animal studies. Curr Heart Fail Rep. 2023;20(5):451-60. doi: 10.1007/s11897-023-00618-w, PMID 37526812.

27. Henein MY, Vancheri S, Longo G, Vancheri F. The role of inflammation in cardiovascular disease. Int J Mol Sci. 2022;23(21):12906. doi: 10.3390/ijms232112906, PMID 36361701.

28. Xu SW, Ilyas I, Weng JP. Endothelial dysfunction in COVID-19: an overview of evidence biomarkers mechanisms and potential therapies. Acta Pharmacol Sin. 2023;44(4):695-709. doi: 10.1038/s41401-022-00998-0, PMID 36253560.

29. Zhang X, Liu J, Deng X, Bo L. Understanding COVID-19-associated endothelial dysfunction: role of PIEZO1 as a potential therapeutic target. Front Immunol. 2024;15:1281263. doi: 10.3389/fimmu.2024.1281263, PMID 38487535.

30. Pelle MC, Zaffina I, Luca S, Forte V, Trapanese V, Melina M. Endothelial dysfunction in COVID-19: potential mechanisms and possible therapeutic options. Life (Basel). 2022;12(10):1605. doi: 10.3390/life12101605, PMID 36295042.

31. Ellison Hughes GM, Colley L, O Brien KA, Roberts KA, Agbaedeng TA, Ross MD. The role of MSC therapy in attenuating the damaging effects of the cytokine storm induced by COVID-19 on the heart and cardiovascular system. Front Cardiovasc Med. 2020;7:602183. doi: 10.3389/fcvm.2020.602183, PMID 33363221.

32. D Oria R, Schipani R, Leonardini A, Natalicchio A, Perrini S, Cignarelli A. The role of oxidative stress in cardiac disease: from physiological response to injury factor. Oxid Med Cell Longev. 2020;2020:5732956. doi: 10.1155/2020/5732956, PMID 32509147.

33. Moris D, Spartalis M, Spartalis E, Karachaliou GS, Karaolanis GI, Tsourouflis G. The role of reactive oxygen species in the pathophysiology of cardiovascular diseases and the clinical significance of myocardial redox. Ann Transl Med. 2017;5(16):326. doi: 10.21037/atm.2017.06.27, PMID 28861423.

34. Elahi MM, Kong YX, Matata BM. Oxidative stress as a mediator of cardiovascular disease. Oxid Med Cell Longev. 2009;2(5):259-69. doi: 10.4161/oxim.2.5.9441, PMID 20716913.

35. Lebedeva A, Fitzgerald W, Molodtsov I, Shpektor A, Vasilieva E, Margolis L. Differential clusterization of soluble and extracellular vesicle associated cytokines in myocardial infarction. Sci Rep. 2020;10(1):21114. doi: 10.1038/s41598-020-78004-y, PMID 33273611.

36. Feldman AM, Combes A, Wagner D, Kadakomi T, Kubota T, Li YY. The role of tumor necrosis factor in the pathophysiology of heart failure. J Am Coll Cardiol. 2000;35(3):537-44. doi: 10.1016/s0735-1097(99)00600-2, PMID 10716453.

37. Sabanoglu C, Inanc IH, Polat E, Peker SA. Long term predictive value of cardiac biomarkers in patients with COVID-19 infection. Eur Rev Med Pharmacol Sci. 2022;26(17):6396-403. doi: 10.26355/eurrev_202209_29667, PMID 36111943.

38. Yaluri N, Stancakova Yaluri A, Zenuch P, Zenuchova Z, Toth S, Kalanin P. Cardiac biomarkers and their role in identifying increased risk of cardiovascular complications in COVID-19 patients. Diagnostics (Basel). 2023;13(15):2508. doi: 10.3390/diagnostics13152508, PMID 37568870.

39. Italia L, Tomasoni D, Bisegna S, Pancaldi E, Stretti L, Adamo M. COVID-19 and heart failure: from epidemiology during the pandemic to myocardial injury myocarditis and heart failure sequelae. Front Cardiovasc Med. 2021;8:713560. doi: 10.3389/fcvm.2021.713560, PMID 34447795.

40. Bashir H, Yildiz M, Cafardi J, Bhatia A, Garcia S, Henry TD. A review of heart failure in patients with COVID-19. Heart Fail Clin. 2023;19(2S):e1-8. doi: 10.1016/j.hfc.2023.03.002, PMID 37169437.

41. Alvarez Garcia J, Lee S, Gupta A, Cagliostro M, Joshi AA, Rivas Lasarte M. Prognostic impact of prior heart failure in patients hospitalized with COVID-19. J Am Coll Cardiol. 2020;76(20):2334-48. doi: 10.1016/j.jacc.2020.09.549, PMID 33129663.

42. Giustino G, Croft LB, Stefanini GG, Bragato R, Silbiger JJ, Vicenzi M. Characterization of myocardial injury in patients with COVID-19. J Am Coll Cardiol. 2020;76(18):2043-55. doi: 10.1016/j.jacc.2020.08.069, PMID 33121710.

43. Shi S, Qin M, Shen B, Cai Y, Liu T, Yang F. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol. 2020;5(7):802-10. doi: 10.1001/jamacardio.2020.0950, PMID 32211816.

44. Mele D, Flamigni F, Rapezzi C, Ferrari R. Myocarditis in COVID-19 patients: current problems. Intern Emerg Med. 2021;16(5):1123-9. doi: 10.1007/s11739-021-02635-w, PMID 33484452.

45. Basso C, Leone O, Rizzo S, De Gaspari M, Van Der Wal AC, Aubry MC. Pathological features of COVID-19-associated myocardial injury: a multicentre cardiovascular pathology study. Eur Heart J. 2020;41(39):3827-35. doi: 10.1093/eurheartj/ehaa664, PMID 32968776.

46. Stark K, Massberg S. Interplay between inflammation and thrombosis in cardiovascular pathology. Nat Rev Cardiol. 2021;18(9):666-82. doi: 10.1038/s41569-021-00552-1, PMID 33958774.

47. Halushka MK, Vander Heide RS. Myocarditis is rare in COVID-19 autopsies: cardiovascular findings across 277 postmortem examinations. Cardiovasc Pathol. 2021;50:107300. doi: 10.1016/j.carpath.2020.107300, PMID 33132119.

48. He W, Chen P, Chen Q, Cai Z, Zhang P. Cytokine storm: behind the scenes of the collateral circulation after acute myocardial infarction. Inflamm Res. 2022;71(10-11):1143-58. doi: 10.1007/s00011-022-01611-0, PMID 35876879.

49. Kang S, Kishimoto T. Interplay between interleukin-6 signaling and the vascular endothelium in cytokine storms. Exp Mol Med. 2021;53(7):1116-23. doi: 10.1038/s12276-021-00649-0, PMID 34253862.

50. Sungnak W, Huang N, Becavin C, Berg M, Queen R, Litvinukova M. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat Med. 2020;26(5):681-7. doi: 10.1038/s41591-020-0868-6, PMID 32327758.

51. Mondal S, Quintili AL, Karamchandani K, Bose S. Thromboembolic disease in COVID-19 patients: a brief narrative review. J Intensive Care. 2020 Sep 14;8:70. doi: 10.1186/s40560-020-00483-y, PMID 32939266.

52. Manolis AS, Manolis TA, Manolis AA, Papatheou D, Melita H. COVID-19 infection: viral macro and micro-vascular coagulopathy and thromboembolism/prophylactic and therapeutic management. J Cardiovasc Pharmacol Ther. 2021;26(1):12-24. doi: 10.1177/1074248420958973, PMID 32924567.

53. Goshua G, Pine AB, Meizlish ML, Chang CH, Zhang H, Bahel P. Endotheliopathy in COVID-19-associated coagulopathy: evidence from a single centre cross-sectional study. Lancet Haematol. 2020;7(8):e575-82. doi: 10.1016/S2352-3026(20)30216-7, PMID 32619411.

54. Kell DB, Lip GY, Pretorius E. Fibrinaloid microclots and atrial fibrillation. Biomedicines. 2024;12(4):891. doi: 10.3390/biomedicines12040891, PMID 38672245.

55. Gomez K, Laffan M, Bradbury C. Debate: should the dose or duration of anticoagulants for the prevention of venous thrombosis be increased in patients with COVID-19 while we are awaiting the results of clinical trials? Br J Haematol. 2021;192(3):459-66. doi: 10.1111/bjh.17241, PMID 33236402.

56. Herlo A, Marinescu AR, Cut TG, Laza R, Oancea CI, Manolescu D. Risk factors for pulmonary embolism in individuals infected with SARS-CoV2-A single centre retrospective study. Biomedicines. 2024;12(4):774. doi: 10.3390/biomedicines12040774, PMID 38672130.

57. Mesinovic M, Wong XC, Rajahram GS. At-admission prediction of mortality and pulmonary embolism in COVID-19 patients using statistical and machine learning methods: an international cohort study. 2023 May 18;14(1):1-27. doi: 10.48550/arXiv.2305.11199.

58. Kevin Wibawa, Kintan Sari Nastiti, Siti Annisaa Meiviani, Pangeran Akbar Syah. Review article: cardiac arrhythmia among hospitalized COVID-19 patients. Asean Heart J. 2023 Mar;32(1):15-22. doi: 10.31762/AHJ2332.0103.

59. Kanuri SH, Jayesh Sirrkay P, Ulucay AS. COVID-19 heart unveiling as atrial fibrillation: pathophysiology management and future directions for research. Egypt Heart J. 2023;75(1):36. doi: 10.1186/s43044-023-00359-0, PMID 37120772.

60. Tan Z, Huang S, Mei K, Liu M, Ma J, Jiang Y. The prevalence and associated death of ventricular arrhythmia and sudden cardiac death in hospitalized patients with COVID-19: a systematic review and meta-analysis. Front Cardiovasc Med. 2021;8:795750. doi: 10.3389/fcvm.2021.795750, PMID 35127861.

61. Li J, Huang Q, Liang Y, Jiang J, Yang Y, Feng J. The potential mechanisms of arrhythmia in coronavirus disease-2019. Int J Med Sci. 2024;21(7):1366-77. doi: 10.7150/ijms.94578, PMID 38818469.

62. Gopinathannair R, Olshansky B, Chung MK, Gordon S, Joglar JA, Marcus GM. Cardiac arrhythmias and autonomic dysfunction associated with COVID-19: a scientific statement from the American heart association. Circulation. 2024;150(21):e449-65. doi: 10.1161/CIR.0000000000001290, PMID 39397661.

63. Calzari L, Dragani DF, Zanotti L, Inglese E, Danesi R, Cavagnola R. Epigenetic patterns accelerated biological aging and enhanced epigenetic drift detected 6 months following COVID-19 infection: insights from a genome-wide DNA methylation study. Clin Epigenetics. 2024;16(1):112. doi: 10.1186/s13148-024-01724-9, PMID 39164752.

64. Amraei R, Rahimi N. COVID-19, rennin angiotensin system and endothelial dysfunction. Cells. 2020;9(7):1652. doi: 10.3390/cells9071652, PMID 32660065.

65. Beacon TH, Delcuve GP, Davie JR. Epigenetic regulation of ACE2, the receptor of the SARS-CoV-2 virus1. Genome. 2021;64(4):386-99. doi: 10.1139/gen-2020-0124, PMID 33086021.

66. Merhavy ZI, Junor T, Gonzalez A, De Filippis SM, Oveisitork S, Rivera E. Long COVID: a comprehensive overview of the signs and symptoms across multiple organ systems. Korean J Fam Med. 2024;45(6):305-16. doi: 10.4082/kjfm.24.0085, PMID 39600184.

67. Kodaira M, Hasan MS, Grossman Y, Guerrero C, Guo L, Liu A. Risk of cardiovascular events after influenza infection related hospitalizations in adults with congenital heart disease: a nationwide population based study. Am Heart J. 2024;278:93-105. doi: 10.1016/j.ahj.2024.08.023, PMID 39241939.

68. Chen T, Chen H, Chen P, Zhu L, Mao W, Yao Y. High expression of IL6 and decrease in immune cells in COVID-19 patients combined with myocardial injury. Front Immunol. 2023;14:1190644. doi: 10.3389/fimmu.2023.1190644, PMID 37564653.

69. Yugar Toledo JC, Yugar LB, Sedenho Prado LG, Schreiber R, Moreno H. Pathophysiological effects of SARS-CoV-2 infection on the cardiovascular system and its clinical manifestations a mini review. Front Cardiovasc Med. 2023;10:1162837. doi: 10.3389/fcvm.2023.1162837, PMID 37260945.

70. Aleebrahim Dehkordi E, Mohebalizadeh M, Ganjirad Z, Torabi S, Hooshyar D, Saghazadeh A. Cardiovascular complications in respiratory viral infections with a focus on COVID-19. IGJ. 2024;16(2):42-59. doi: 10.18502/igj.v6i2.16409.

71. Temgoua MN, Boombhi J, Tochie JN, Mokube M, Betou FS, Ngowa FN. Potential long term cardiovascular complications in coronavirus disease 2019 survivors: lessons from past coronavirus diseases. J Xiangya Med. 2020;5:32. doi: 10.21037/jxym-20-65.

72. Noutsias M, Fechner H, De De Jonge HD, Wang X, Dekkers D, Houtsmuller AB. Human coxsackie adenovirus receptor is colocalized with integrins alpha(v)beta(3) and alpha(v)beta(5) on the cardiomyocyte sarcolemma and upregulated in dilated cardiomyopathy: implications for cardiotropic viral infections. Circulation. 2001;104(3):275-80. doi: 10.1161/01.cir.104.3.275, PMID 11457744.

73. Piracha ZZ, Gilani SS, Tariq MN, Saeed U, Sohail A, Abbasi UA. Decoding cardiovascular complexities in viral infections: comprehensive insights. The American Journal of Medical Sciences and Pharmaceutical Research. 2024;6(2):35-43. doi: 10.37547/TAJMSPR/Volume06Issue02-05.

74. Cenko E, Badimon L, Bugiardini R, Claeys MJ, De Luca G. Cardiovascular disease and COVID-19: a position paper from the esc working group on coronary pathophysiology and microcirculation ESC working group on thrombosis and the association for acute cardiovascular care (ACVC), in collaboration with the european heart rhythm association (EHRA). Cardiovasc Res. 2021 Sep 16:cvab298. doi: 10.1093/cvr/cvab298.

75. Ouranos K, Vassilopoulos S, Vassilopoulos A, Shehadeh F, Mylonakis E. Cumulative incidence and mortality rate of cardiovascular complications due to laboratory confirmed influenza virus infection: a systematic review and meta-analysis. Rev Med Virol. 2024;34(1):e2497. doi: 10.1002/rmv.2497, PMID 38126946.

76. Shen Y, Kan QC, Xu W, Chu YW, Xiong SD. Coxsackievirus B3 infection induced viral myocarditis by regulating the expression pattern of chemokines in cardiac myocytes. Iran J Allergy Asthma Immunol. 2009;8(1):1-9. PMID 19279353.

77. Zou H, Li Q, Chen J. Angiotensin converting enzyme 2 SNPs as the common genetic loci and optimal early identification genetic markers for COVID-19. International System for Agricultural Science and Technology. 2020;11(8):947. doi: 10.21203/rs.3.rs-1018735/v1.

78. Ma Y, Li Q, Chen J, Liu S, Liu S, He X. Angiotensin converting enzyme 2 SNPs as common genetic loci and optimal early identification genetic markers for COVID-19. Pathogens. 2022;11(8):947. doi: 10.3390/pathogens11080947, PMID 36015068.

79. Kim YC, Jeong BH. Strong correlation between the case fatality rate of COVID-19 and the rs6598045 single nucleotide polymorphism (SNP) of the interferon-induced transmembrane protein 3 (IFITM3) gene at the population level. Genes. 2020;12(1):42. doi: 10.3390/genes12010042, PMID 33396837.

80. Colzani M, Bargehr J, Mescia F, Williams EC, Knight Schrijver V, Lee J. Proinflammatory cytokines driving cardiotoxicity in COVID-19. Cardiovasc Res. 2024;120(2):174-87. doi: 10.1093/cvr/cvad174, PMID 38041432.

81. Colzani M, Bargehr J, Mescia F. Serological mechanisms driving cardiotoxicity in COVID-19. Circ Res. 2022;131Suppl 1:3121. doi: 10.1161/res.131.

82. Verma A, Tsao N, Thomann L, Ho YL, Iyengar S, Luoh SW. A phenome wide association study of genes associated with COVID-19 severity reveals shared genetics with complex diseases in the million veteran program. medRxiv. doi: 10.1101/2021.05.18.21257396.

83. Ji XS, Chen B, Ze B, Zhou WH. Human genetic basis of severe or critical illness in COVID-19. Front Cell Infect Microbiol. 2022;12:963239. doi: 10.3389/fcimb.2022.963239, PMID 36204639.

84. Sagris M, Theofilis P, Antonopoulos AS, Oikonomou E, Tsioufis K, Tousoulis D. Genetic predisposition and inflammatory inhibitors in COVID-19: where do we stand? Biomedicines. 2022;10(2):242. doi: 10.3390/biomedicines10020242, PMID 35203452.

85. Debnath M, Banerjee M, Berk M. Genetic gateways to COVID-19 infection: implications for risk severity and outcomes. FASEB J. 2020;34(7):8787-95. doi: 10.1096/fj.202001115R, PMID 32525600.

86. Ferreira LC, Gomes CE, Rodrigues Neto JF, Jeronimo SM. Genome wide association studies of COVID-19: connecting the dots. Infect Genet Evol. 2022;106:105379. doi: 10.1016/j.meegid.2022.105379, PMID 36280088.

87. Gholami M, Zoughi M, Hasanzad M, Larijani B, Amoli MM. Haplotypic variants of COVID-19 related genes are associated with blood pressure and metabolites levels. J Med Virol. 2023;95(1):e28355. doi: 10.1002/jmv.28355, PMID 36443248.

88. Upadhyai P, Shenoy PU, Banjan B, Albeshr MF, Mahboob S, Manzoor I. Exome wide association study reveals host genetic variants likely associated with the severity of COVID-19 in patients of European ancestry. Life (Basel). 2022;12(9):1300. doi: 10.3390/life12091300, PMID 36143338.

89. Horowitz JE, Kosmicki JA, Damask A, Sharma D, Roberts GH, Justice AE. Genome wide analysis provides genetic evidence that ACE2 influences COVID-19 risk and yields risk scores associated with severe disease. Nat Genet. 2022;54(4):382-92. doi: 10.1038/s41588-021-01006-7, PMID 35241825.

90. Loktionov A, Kobzeva KA, Dorofeeva A, Babkina M, Kolodezhnaya E, Bushueva O. A comprehensive genetic and bioinformatic analysis provides evidence for the engagement of COVID-19 GWAS-significant loci in the molecular mechanisms of coronary artery disease and stroke. Mol Pathol. 2024;5(3):385-404. doi: 10.3390/jmp5030026.

91. Hu J, Li C, Wang S, Li T, Zhang H. Genetic variants are identified to increase risk of COVID-19 related mortality from UK Biobank data. Hum Genomics. 2021;15(1):10. doi: 10.1186/s40246-021-00306-7, PMID 33536081.

92. Li C, Chen H. Unlike common pneumonia, COVID-19 is a risk factor for multiple cardiovascular diseases: a two-sample Mendelian randomization study. Medicine. 2024;103(52):e41015. doi: 10.1097/MD.0000000000041015, PMID 39969327.

93. Iniguez M, Perez Matute P, Villoslada Blanco P, Recio Fernandez E, Ezquerro Perez D, Alba J. ACE gene variants rise the risk of severe COVID-19 in patients with hypertension dyslipidemia or diabetes. A pilot study. medRxiv. 2021. doi: 10.1101/2021.03.24.21253576.

94. Choudhary S, Sreenivasulu K, Mitra P, Misra S, Sharma P. Role of genetic variants and gene expression in the susceptibility and severity of COVID-19. Ann Lab Med. 2021;41(2):129-38. doi: 10.3343/alm.2021.41.2.129, PMID 33063674.

95. Guo H, Li T, Wen HF. Identifying shared genetic loci between coronavirus disease 2019 and cardiovascular diseases based on cross-trait meta-analysis. Front Microbiol. 2022;13:993933. doi: 10.3389/fmicb.2022.993933, PMID 36187959.

96. Chen Y, Fan C, Liu J. Investigating the shared genetic architecture between COVID-19 and obesity: a large scale genome wide cross-trait analysis. Front Endocrinol. 2024;15:1325939. doi: 10.3389/fendo.2024.1325939, PMID 38352709.

97. Baranova A, Cao H, Zhang F. Causal associations and shared genetics between hypertension and COVID-19. J Med Virol. 2023;95(4):e28698. doi: 10.1002/jmv.28698, PMID 36951353.

98. Xiang Y, Chau CK, Qiu J, Rao S, So HC. Exploring causal relationships between COVID-19 and cardiometabolic disorders: a bi-directional mendelian randomization study. medRxiv. 2021. doi: 10.1101/2021.03.20.21254008.

99. Chang X, Li Y, Nguyen K, Qu H, Liu Y, Glessner J. Genetic correlations between COVID-19 and a variety of traits and diseases. medRxiv. 2020. doi: 10.1101/2020.12.18.20248319.

100. Singh H, Nair A, Mahajan SD. Impact of genetic variations of gene involved in regulation of metabolism inflammation and coagulation on pathogenesis of cardiac injuries associated with COVID-19. Pathol Res Pract. 2024;263:155608. doi: 10.1016/j.prp.2024.155608, PMID 39447244.

101. Xie J, Feng Y, Newby D, Zheng B, Feng Q, Prats Uribe A. Contribution of genetics and lifestyle to the risk of major cardiovascular and thromboembolic complications following COVID-19. medRxiv. 2022. doi: 10.1101/2022.10.26.22281547.

102. Sheikh M, Saiyyad A, Jirvankar P. Injectable hydrogels for cartilage and bone regeneration: material properties delivery strategies and clinical applications. Asian J Pharm Clin Res. 2025;18(4):70-81. doi: 10.22159/ajpcr.2025v18i4.54016.

103. Veizades S, Solomonidis EG, Li Z, Passi R, Berkeley B, Stewart KR. Abstract 628: molecular mechanisms of COVID-19 in the lungs and heart: insights from spatial transcriptomics. Arterioscler Thromb Vasc Biol. 2023;43Suppl 1:628. doi: 10.1161/atvb.43.suppl_1.628.

104. Chakraborty S, Chatterjee S, Mardi S, Mahata J, Kateriya S, Punnakkal P. COVID-19 ORF3a viroporin influenced common and unique cellular signaling cascades in lung heart and the brain choroid plexus organoids with additional enriched microRNA network analyses for lung and the brain tissues. ACS Omega. 2023;8(48):45817-33. doi: 10.1021/acsomega.3c06485, PMID 38075756.

105. Pham N, Hu F, Evelo CT, Kutmon M. Tissue specific pathway activities: a retrospective analysis in COVID-19 patients. Front Immunol. 2022;13:963357. doi: 10.3389/fimmu.2022.963357, PMID 36189295.

106. King MC, Marks JH, Mandell JB, New York Breast Cancer Study Group. Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. Science. 2003;302(5645):643-6. doi: 10.1126/science.1088759, PMID 14576434.

107. Levine AJ. The cellular gatekeeper for growth and division. Cell. 1997;88(3):323-31. doi: 10.1016/S0092-8674(00)81871-1, PMID 9039259.

108. De Boeck KD, Amaral MD. Progress in therapies for cystic fibrosis. Lancet Respir Med. 2016;4(8):662-74. doi: 10.1016/S2213-2600(16)00023-0, PMID 27053340.

109. Sigismund S, Avanzato D, Lanzetti L. Emerging functions of the EGFR in cancer. Mol Oncol. 2018;12(1):3-20. doi: 10.1002/1878-0261.12155, PMID 29124875.

110. Yamazaki Y, Zhao N, Caulfield TR, Liu CC, Bu G. Apolipoprotein E and Alzheimer disease: pathobiology and targeting strategies. Nat Rev Neurol. 2019;15(9):501-18. doi: 10.1038/s41582-019-0228-7, PMID 31367008.

111. Ramachandran K, Maity S, Muthukumar AR, Kandala S, Tomar D, Abd El Aziz TM. SARS-CoV-2 infection enhances mitochondrial PTP complex activity to perturb cardiac energetics. iScience. 2022;25(1):103722. doi: 10.1016/j.isci.2021.103722, PMID 35005527.

112. Shen Y, Chen M, Gu W, Wan J, Cheng Z, Shen K. The molecular mechanism of cardiac injury in SARS-CoV-2 infection: focus on mitochondrial dysfunction. J Infect Public Health. 2023;16(5):746-53. doi: 10.1016/j.jiph.2023.03.015, PMID 36958170.

113. Mori J, Oudit GY, Lopaschuk GD. SARS-CoV-2 perturbs the rennin angiotensin system and energy metabolism. Am J Physiol Endocrinol Metab. 2020;319(1):E43-7. doi: 10.1152/ajpendo.00219.2020, PMID 32469255.

114. Wang Y, Qu Y, Xu Y, Li D, Lu Z, Li J. Modulation of remote epitaxial heterointerface by grapheme assisted attenuative charge transfer. ACS Nano. 2023;17(4):4023-33. doi: 10.1021/acsnano.3c00026, PMID 36744849.

115. Rodriguez E, Bhattacharjee A. Connection between quasisymmetric magnetic fields and anisotropic pressure equilibria in fusion plasmas. Phys Rev E. 2021;104(1-2):015213. doi: 10.1103/PhysRevE.104.015213, PMID 34412365.

116. Zhang Y, Wu G, Ji Z, Zhou S, Xue H, Li Z. Significant reorientation transition of magnetic damping anisotropy in Co2FeAl Heusler alloy films at low temperatures. ACS Appl Mater Interfaces. 2022;14(20):24039-45. doi: 10.1021/acsami.2c04292, PMID 35578900.

117. Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in china: summary of a report of 72 314 cases from the Chinese center for disease control and prevention. JAMA. 2020;323(13):1239-42. doi: 10.1001/jama.2020.2648, PMID 32091533.

118. COVID-19 Host Genetics Initiative. Mapping the human genetic architecture of COVID-19. Nature. 2021;600(7889):472-7. doi: 10.1038/s41586-021-03767-x, PMID 34237774.

119. GWAS of severe COVID-19 with respiratory failure. American College of Cardiology. Available from: https://www.acc.org/latest-in-cardiology/journal-scans/2020/06/22/11/53/http%3a%2f%2fwww.acc.org%2flatest-in-cardiology%2fjournalscans%2f2020%2f06%2f22%2f11%2f53%2fgenomewideassociation-study-of-severe-covid%3futm_source%3dchatgpt.com.

120. Qu HQ, Delfiner MS, Gangireddy C, Vaidya A, Nguyen K, Whitman IR. Rare variants in cardiomyopathy genes predispose to cardiac injury in severe COVID-19 patients of African or Hispanic ancestry. J Mol Med (Berl). 2025;103(2):175-85. doi: 10.1007/s00109-024-02510-z, PMID 39730912.

121. Driggin E, Madhavan MV, Bikdeli B, Chuich T, Laracy J, Biondi Zoccai G. Cardiovascular considerations for patients health care workers and health systems during the COVID-19 pandemic. J Am Coll Cardiol. 2020;75(18):2352-71. doi: 10.1016/j.jacc.2020.03.031, PMID 32201335.

122. Mehta P, Mc Auley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033-4. doi: 10.1016/S0140-6736(20)30628-0, PMID 32192578.

123. Ramesh PS, Devegowda D, Singh A, Thimmulappa RK. NRF2, p53, and p16: predictive biomarkers to stratify human papillomavirus associated head and neck cancer patients for de-escalation of cancer therapy. Crit Rev Oncol Hematol. 2020;148:102885. doi: 10.1016/j.critrevonc.2020.102885, PMID 32062315.

124. Da Silva SJ, Do Nascimento JC, Germano Mendes RP, Guarines KM, Targino Alves Da Silva C, Da Silva PG. Two years into the COVID-19 pandemic: lessons learned. ACS Infect Dis. 2022;8(9):1758-814. doi: 10.1021/acsinfecdis.2c00204, PMID 35940589.

125. Hunt CL, Andradi Brown DA, Hudson CJ, Bennett Williams J, Noades F, Curtis Quick J. Shelter use interactions of invasive lionfish with commercially and ecologically important native invertebrates on Caribbean coral reefs. PLOS One. 2020;15(8):e0236200. doi: 10.1371/journal.pone.0236200, PMID 32846430.

126. Grasselli G, Zangrillo A, Zanella A, Antonelli M, Cabrini L, Castelli A. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy region, Italy. JAMA. 2020;323(16):1574-81. doi: 10.1001/jama.2020.5394, PMID 32250385.

127. Ikeda J. When and how did the air come in? Eur J Intern Med. 2021;87:96-7. doi: 10.1016/j.ejim.2021.03.005, PMID 33757687.

128. Kianmehr A, Faraoni I, Kucuk O, Mahrooz A. Epigenetic alterations and genetic variations of angiotensin converting enzyme 2 (ACE2) as a functional receptor for SARS-CoV-2: potential clinical implications. Eur J Clin Microbiol Infect Dis. 2021;40(8):1587-98. doi: 10.1007/s10096-021-04264-9, PMID 33939044.

129. Shirvaliloo M. Epigenomics in COVID-19; the link between DNA methylation histone modifications and SARS-CoV-2 infection. Epigenomics. 2021;13(10):745-50. doi: 10.2217/epi-2021-0057, PMID 33876664.

130. Ma A. The role of central ACE2 and Nrf2 sympatho-excitation: responses to central angiotensin ii. Theses Diss. 2020 May 9;447:1-144.

131. Wolowiec A, Wolowiec L, Grzesk G, Jasniak A, Osiak J, Husejko J. The role of selected epigenetic pathways in cardiovascular diseases as a potential therapeutic target. Int J Mol Sci. 2023;24(18):13723. doi: 10.3390/ijms241813723, PMID 37762023.

132. Beacon TH, Su RC, Lakowski TM, Delcuve GP, Davie JR. SARS-CoV-2 multifaceted interaction with the human host. Part II: Innate immunity response immunopathology and epigenetics. IUBMB Life. 2020;72(11):2331-54. doi: 10.1002/iub.2379, PMID 32936531.

133. Ni L, Lin B, Zhang Y, Hu L, Lin J, Fu F. Histone modification landscape and the key significance of H3K27me3 in myocardial ischaemia/reperfusion injury. Sci China Life Sci. 2023;66(6):1264-79. doi: 10.1007/s11427-022-2257-9, PMID 36808292.

134. Mortazavi Jahromi SS, Aslani M. Dysregulated miRNAs network in the critical COVID-19: an important clue for uncontrolled immunothrombosis/thromboinflammation. Int Immunopharmacol. 2022;110:109040. doi: 10.1016/j.intimp.2022.109040, PMID 35839566.

135. Du Y, Du S, Liu L, Gan F, Jiang X, Wangrao K. Radiation induced bystander effect can be transmitted through exosomes using miRNAs as effector molecules. Radiat Res. 2020;194(1):89-100. doi: 10.1667/RADE-20-00019.1, PMID 32343639.

136. Wang T, Cao Y, Zhang H, Wang Z, Man CH, Yang Y. COVID-19 metabolism: mechanisms and therapeutic targets. Med. 2022;3(3):e157. doi: 10.1002/mco2.157, PMID 35958432.

137. Guarnieri JW, Dybas JM, Fazelinia H, Kim MS, Frere J, Zhang Y. Core mitochondrial genes are down regulated during SARS-CoV-2 infection of rodent and human hosts. Sci Transl Med. 2023;15(708):eabq1533. doi: 10.1126/scitranslmed.abq1533, PMID 37556555.

138. Pober JS, Sessa WC. Evolving functions of endothelial cells in inflammation. Nat Rev Immunol. 2007;7(10):803-15. doi: 10.1038/nri2171, PMID 17893694.

139. Calzari L, Zanotti L, Inglese E, Scaglione F, Cavagnola R, Ranucci F. Role of epigenetics in the clinical evolution of COVID-19 disease. Epigenome wide association study identifies markers of severe outcome. Eur J Med Res. 2023;28(1):81. doi: 10.1186/s40001-023-01032-7, PMID 36800980.

140. Chen L, Liao H, Huang G, Ding S, Guo W, Huang T. Identification of DNA methylation signature and rules for SARS-CoV-2 associated with age. Front Biosci (Landmark Ed). 2022;27(7):204. doi: 10.31083/j.fbl2707204, PMID 35866388.

141. Pairo Castineira E, Clohisey S, Klaric L, Bretherick AD, Rawlik K, Pasko D. Genetic mechanisms of critical illness in COVID-19. Nature. 2021;591(7848):92-8. doi: 10.1038/s41586-020-03065-y, PMID 33307546.

142. Atlante S, Mongelli A, Barbi V, Martelli F, Farsetti A, Gaetano C. The epigenetic implication in coronavirus infection and therapy. Clin Epigenetics. 2020;12(1):156. doi: 10.1186/s13148-020-00946-x, PMID 33087172.

143. Portela A, Esteller M. Epigenetic modifications and human disease. Nat Biotechnol. 2010;28(10):1057-68. doi: 10.1038/nbt.1685, PMID 20944598.

144. Tollefsbol, Trygve. Epigenomics in health and disease. Amsterdam: Elsevier; 2016. doi: 10.1016/C2013-0-13474-5.

145. Hlady RA, Sathyanarayan A, Thompson JJ, Zhou D, Wu Q, Pham K. Integrating the epigenome to identify drivers of hepatocellular carcinoma. Hepatology. 2019;69(2):639-52. doi: 10.1002/hep.30211, PMID 30136421.

146. Haluskova J. Epigenetic studies in human diseases. Folia Biol. 2010;56(3):83-96. PMID 20653993.

147. Jiang YH, Bressler J, Beaudet AL. Epigenetics and human disease. Annu Rev Genomics Hum Genet. 2004;5:479-510. doi: 10.1146/annurev.genom.5.061903.180014, PMID 15485357.

148. Zoghbi HY, Beaudet AL. Epigenetics and human disease. Cold Spring Harb Perspect Biol. 2016;8(2):a019497. doi: 10.1101/cshperspect.a019497, PMID 26834142.

149. Suzuki H. Encyclopedia of life sciences. Chichester UK: John Wiley & Sons, Limited; 2001. p. 2012. doi: 10.1002/9780470015902.

150. Oh ES, Petronis A. Origins of human disease: the chrono-epigenetic perspective. Nat Rev Genet. 2021;22(8):533-46. doi: 10.1038/s41576-021-00348-6, PMID 33903745.

151. Magklara A, Lomvardas S. Epigenetics and human disease. In: Ahituv N, editor. Gene regulatory sequences and human disease. New York: Springer New York; 2012. p. 253-79. doi: 10.1007/978-1-4614-1683-8_12.

152. Tollefsbol TO. Epigenetics of human disease. In: Epigenetics in human disease. Amsterdam: Elsevier; 2012. p. 1-6. doi: 10.1016/B978-0-12-388415-2.00001-9.

153. Dopazo J, Maya Miles D, Garcia F, Lorusso N, Calleja MA, Pareja MJ. Implementing personalized medicine in COVID-19 in Andalusia: an opportunity to transform the healthcare system. J Pers Med. 2021;11(6):475. doi: 10.3390/jpm11060475, PMID 34073493.

154. Wang LY, Cui JJ, Ouyang QY, Zhan Y, Wang YM, Xu XY. Complex analysis of the personalized pharmacotherapy in the management of COVID-19 patients and suggestions for applications of predictive preventive and personalized medicine attitude. EPMA J. 2021;12(3):307-24. doi: 10.1007/s13167-021-00247-0, PMID 34306260.

155. Wu G, Wan T. Leveraging genomic data for infectious disease surveillance and personalized medicine: advances in public health genomics and COVID-19 pathway analysis. TNS. 2025;68(1):9-15. doi: 10.54254/2753-8818/2025.18030.

156. Bashkirtsev O, Gaevska V, Bilous Z, Lysa L, Zimba O. Remote monitoring for. Proc Shevchenko Sci Soc Med Sci. 2023;71(1)51-8. doi: 10.25040/ntsh2023.01.14.

157. Cai Z, Bai H, Ren D, Xue B, Liu Y, Gong T. Integrin αvβ1 facilitates ACE2-mediated entry of SARS-CoV-2. Virus Res. 2024;339:199251. doi: 10.1016/j.virusres.2023.199251, PMID 37884208.

158. McGill AR, Kahlil R, Dutta R, Green R, Howell M, Mohapatra S. SARS–CoV-2 immuno-pathogenesis and potential for diverse vaccines and therapies: opportunities and challenges. Infect Dis Rep. 2021;13(1):102-25. doi: 10.3390/idr13010013, PMID 33557330.

159. Alipoor SD, Mirsaeidi M. SARS-CoV-2 cell entry beyond the ACE2 receptor. Mol Biol Rep. 2022;49(11):10715-27. doi: 10.1007/s11033-022-07700-x, PMID 35754059.

160. Yeung ML, Teng JL, Jia L, Zhang C, Huang C, Cai JP. Soluble ACE2-mediated cell entry of SARS-CoV-2 via interaction with proteins related to the renin-angiotensin system. Cell. 2021;184(8):2212-2228.e12. doi: 10.1016/j.cell.2021.02.053, PMID 33713620.

161. Cannavo A, Liccardo D, Gelzo M, Amato F, Gentile I, Pinchera B. Serum galectin-3 and aldosterone: potential biomarkers of cardiac complications in patients with COVID-19. Minerva Endocrinol (Torino). 2022;47(3):270-8. doi: 10.23736/S2724-6507.22.03789-7, PMID 35266671.

162. Nikitopoulou I, Vassiliou AG, Athanasiou N, Jahaj E, Akinosoglou K, Dimopoulou I. Increased levels of galectin-3 in critical COVID-19. Int J Mol Sci. 2023;24(21):15833. doi: 10.3390/ijms242115833, PMID 37958814.

163. Portacci A, Diaferia F, Santomasi C, Dragonieri S, Boniello E, Di Serio FD. Galectin-3 as prognostic biomarker in patients with COVID-19 acute respiratory failure. Respir Med. 2021;187:106556. doi: 10.1016/j.rmed.2021.106556, PMID 34375925.

164. Odabası MS. Contribution of kynurenine/tryptophan ratio to early prediction of COVID-19 severity in the emergency department. Int J Med Biochem. 2024;7(3):129-35. doi: 10.14744/ijmb.2024.44712.

165. Mangge H, Herrmann M, Meinitzer A, Pailer S, Curcic P, Sloup Z. Increased kynurenine indicates a fatal course of COVID-19. Antioxidants (Basel). 2021;10(12):1960. doi: 10.3390/antiox10121960, PMID 34943063.

166. Li X, Eden A, Malwade S, Cunningham JL, Bergquist J, Weidenfors JA. Central and peripheral kynurenine pathway metabolites in COVID-19: implications for neurological and immunological responses. Brain Behav Immun. 2025;124:163-76. doi: 10.1016/j.bbi.2024.11.031, PMID 39615604.

167. Dewulf JP, Martin M, Marie S, Oguz F, Belkhir L, De Greef J. Urine metabolomics links dysregulation of the tryptophan kynurenine pathway to inflammation and severity of COVID-19. Sci Rep. 2022;12(1):9959. doi: 10.1038/s41598-022-14292-w, PMID 35705608.

168. Puccini M, Jakobs K, Reinshagen L, Friebel J, Schencke PA, Ghanbari E. Galectin-3 as a marker for increased thrombogenicity in COVID-19. Int J Mol Sci. 2023;24(9):7683. doi: 10.3390/ijms24097683, PMID 37175392.

169. Burrell LM, Harrap SB, Velkoska E, Patel SK. The ACE2 gene: its potential as a functional candidate for cardiovascular disease. Clin Sci (Lond). 2013;124(2):65-76. doi: 10.1042/CS20120269, PMID 23013041.

170. Hsue PY, Waters DD. HIV infection and coronary heart disease: mechanisms and management. Nat Rev Cardiol. 2019;16(12):745-59. doi: 10.1038/s41569-019-0219-9, PMID 31182833.

171. Kwaifa IK, Bahari H, Yong YK, Noor SM. Endothelial dysfunction in obesity-induced inflammation: molecular mechanisms and clinical implications. Biomolecules. 2020;10(2):291. doi: 10.3390/biom10020291, PMID 32069832.

172. So Armah K, Benjamin LA, Bloomfield GS, Feinstein MJ, Hsue P, Njuguna B. HIV and cardiovascular disease. Lancet HIV. 2020;7(4):e279-93. doi: 10.1016/S2352-3018(20)30036-9, PMID 32243826.

173. Bennett JM, Reeves G, Billman GE, Sturmberg JP. Inflammation–nature’s way to efficiently respond to all types of challenges: implications for understanding and managing “the epidemic” of chronic diseases. Front Med (Lausanne). 2018;5:316. doi: 10.3389/fmed.2018.00316, PMID 30538987.

174. Ruytinx P, Proost P, Van Damme J, Struyf S. Chemokine induced macrophage polarization in inflammatory conditions. Front Immunol. 2018;9:1930. doi: 10.3389/fimmu.2018.01930, PMID 30245686.

175. Chang R, Mamun A, Dominic A, Le NT. SARS-CoV-2 mediated endothelial dysfunction: the potential role of chronic oxidative stress. Front Physiol. 2020;11:605908. doi: 10.3389/fphys.2020.605908, PMID 33519510.

176. Grifoni A, Alonzi T, Alter G, Noonan DM, Landay AL, Albini A. Impact of aging on immunity in the context of COVID-19, HIV, and tuberculosis. Front Immunol. 2023;14:1146704. doi: 10.3389/fimmu.2023.1146704, PMID 37292210.

177. Vaduganathan M, Mensah GA, Turco JV, Fuster V, Roth GA. The global burden of cardiovascular diseases and risk: a compass for future health. J Am Coll Cardiol. 2022;80(25):2361-71. doi: 10.1016/j.jacc.2022.11.005, PMID 36368511.

178. Solanki ND, Pandya TR, Rathod J, Rathod V, Panchal K, Rana DA. Comparison of American College of Cardiology/American Heart Association cardiovascular risk score, Framingham risk scores, European Society of Cardiology cardiovascular disease risk calculator, QRISK3-2018 risk calculator in patients presenting with first time with myocardial infarction: a step toward the development of Indian cardiac risk score. Apollo Med. 2024;21(3):218-23. doi: 10.1177/09760016241245243.

179. Gallucci G, Turazza FM, Inno A, Canale ML, Silvestris N, Fari R. Atherosclerosis and the bidirectional relationship between cancer and cardiovascular disease: from bench to bedside-part 1. Int J Mol Sci. 2024;25(8):4232. doi: 10.3390/ijms25084232, PMID 38673815.

180. Batta I, Patial R, Sobti RC, Agrawal DK. Computational biology in the discovery of biomarkers in the diagnosis treatment and management of cardiovascular diseases. Cardiol Cardio Vasc Med. 2024;8(5):405-14. doi: 10.26502/fccm.92920400, PMID 39328401.

181. Bao J, Lee BN, Wen J, Kim M, Mu S, Yang S. Employing informatics strategies in Alzheimer’s disease research: a review from genetics multiomics and biomarkers to clinical outcomes. Annu Rev Biomed Data Sci. 2024;7(1):391-418. doi: 10.1146/annurev-biodatasci-102423-121021, PMID 38848574.

182. Blankenberg S, Barbaux S, Tiret L. Adhesion molecules and atherosclerosis. Atherosclerosis. 2003;170(2):191-203. doi: 10.1016/S0021-9150(03)00097-2, PMID 14612198.

183. Cauwe B, Opdenakker G. Intracellular substrate cleavage: a novel dimension in the biochemistry biology and pathology of matrix metalloproteinases. Crit Rev Biochem Mol Biol. 2010;45(5):351-423. doi: 10.3109/10409238.2010.501783, PMID 20812779.

184. Tahir UA, Gerszten RE. Molecular biomarkers for cardiometabolic disease: risk assessment in young individuals. Circ Res. 2023;132(12):1663-73. doi: 10.1161/CIRCRESAHA.123.322000, PMID 37289904.

185. Westerlund AM, Hawe JS, Heinig M, Schunkert H. Risk prediction of cardiovascular events by exploration of molecular data with explainable artificial intelligence. Int J Mol Sci. 2021;22(19):10291. doi: 10.3390/ijms221910291, PMID 34638627.

186. Martins C, Dreij K, Costa PM. The state-of-the art of environmental toxicogenomics: challenges and perspectives of omics approaches directed to toxicant mixtures. Int J Environ Res Public Health. 2019;16(23):4718. doi: 10.3390/ijerph16234718, PMID 31779274.

187. Khan SU, Saeed S, Alsuhaibani AM, Fatima S, Ur Rehman K, Zaman U. Advances and challenges for GWAS analysis in cardiac diseases: a focus on coronary artery disease (CAD). Curr Probl Cardiol. 2023;48(9):101821. doi: 10.1016/j.cpcardiol.2023.101821, PMID 37211304.

188. O Sullivan JW, Raghavan S, Marquez Luna C, Luzum JA, Damrauer SM, Ashley EA. Polygenic risk scores for cardiovascular disease: a scientific statement from the American Heart Association. Circulation. 2022;146(8):e93-e118. doi: 10.1161/CIR.0000000000001077, PMID 35862132.

189. Rroji M, Spasovski G. Omics studies in CKD: diagnostic opportunities and therapeutic potential. Proteomics. 2025;25(11-12):e202400151. doi: 10.1002/pmic.202400151, PMID 39523931.

190. Maturo MG, Soligo M, Gibson G, Manni L, Nardini C. The greater inflammatory pathway high clinical potential by innovative predictive preventive and personalized medical approach. EPMA J. 2020;11(1):1-16. doi: 10.1007/s13167-019-00195-w, PMID 32140182.

191. Sheikh M, Jirvankar PS. Harnessing artificial intelligence for enhanced nanoparticle design in precision oncology. AIMSBOA. 2024;11(4):574-97. doi: 10.3934/bioeng.2024026.

192. Shah S. Revolutionizing biology through neural networks: a deep dive into microscopy image processing and drawings. Bioengineering. 2023;1:1-7. doi: 10.20944/preprints202308.1220.v1.

193. Roseiro M, Henriques J, Paredes S, Rocha T, Sousa J. An interpretable machine learning approach to estimate the influence of inflammation biomarkers on cardiovascular risk assessment. Comput Methods Programs Biomed. 2023;230:107347. doi: 10.1016/j.cmpb.2023.107347, PMID 36645940.

194. Jain N, Nagaich U, Pandey M, Chellappan DK, Dua K. Predictive genomic tools in disease stratification and targeted prevention: a recent update in personalized therapy advancements. EPMA J. 2022;13(4):561-80. doi: 10.1007/s13167-022-00304-2, PMID 36505888.

195. Hassija V, Chamola V, Mahapatra A, Singal A, Goel D, Huang K. Interpreting black-box models: a review on explainable artificial intelligence. Cognit Comput. 2024;16(1):45-74. doi: 10.1007/s12559-023-10179-8.

196. Rane N, Choudhary S, Rane J. Explainable artificial intelligence (xai) in healthcare: interpretable models for clinical decision support. SSRN Journal. 2023. doi: 10.2139/ssrn.4637897.

197. Pallanti S, Bernardi S, Quercioli L. The shorter PROMIS questionnaire and the internet addiction scale in the assessment of multiple addictions in a high school population: prevalence and related disability. CNS Spectr. 2006;11(12):966-74. doi: 10.1017/S1092852900015157, PMID 17146410.

198. Kim SJ, Mesquita FC, Hochman Mendez C. New biomarkers for cardiovascular disease. Tex Heart Inst J. 2023;50(5):e238178. doi: 10.14503/THIJ-23-8178, PMID 37846107.

199. Filipovic MG, Luedi MM. Cardiovascular biomarkers: current status and future directions. Cells. 2023;12(22):2647. doi: 10.3390/cells12222647, PMID 37998382.

200. Welsh P, Kimenai DM, Shah AS, Gadd DA, Marioni RE, Woodward M. Multiple cardiac biomarkers to improve prediction of cardiovascular events: findings from the generation Scotland Scottish Family Health study. Clin Chem. 2024;70(2):403-13. doi: 10.1093/clinchem/hvad205, PMID 38069915.

201. Rai V. Current and future role of biomarkers in the monitoring and prognosis of coronary artery disease. Future Cardiol. 2025;21(6):331-3. doi: 10.1080/14796678.2025.2477947, PMID 40062458.

202. Khera R, Oikonomou EK, Nadkarni GN, Morley JR, Wiens J, Butte AJ. Transforming cardiovascular care with artificial intelligence: from discovery to practice: JACC state-of-the-art review. J Am Coll Cardiol. 2024;84(1):97-114. doi: 10.1016/j.jacc.2024.05.003, PMID 38925729.

203. Topol EJ. High performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25(1):44-56. doi: 10.1038/s41591-018-0300-7, PMID 30617339.

204. Byrne P, Cullinan J, Smith SM. Statins for primary prevention of cardiovascular disease. BMJ. 2019;367:l5674. doi: 10.1136/bmj.l5674, PMID 31619406.

205. Mosby CA, Bhar S, Phillips MB, Edelmann MJ, Jones MK. Interaction with mammalian enteric viruses alters outer membrane vesicle production and content by commensal bacteria. J Extracell Vesicles. 2022;11(1):e12172. doi: 10.1002/jev2.12172, PMID 34981901.

206. Alvarez Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol. 2011;29(4):341-5. doi: 10.1038/nbt.1807, PMID 21423189.

207. Popejoy AB, Fullerton SM. Genomics is failing on diversity. Nature. 2016;538(7624):161-4. doi: 10.1038/538161a, PMID 27734877.

208. H3Africa Consortium, Rotimi C, Abayomi A, Abimiku A, Adabayeri VM, Adebamowo C. Research capacity. Enabling the genomic revolution in Africa. Science. 2014;344(6190):1346-8. doi: 10.1126/science.1251546, PMID 24948725.

Published

07-11-2025

How to Cite

DAWALE, K., JAMBHOLKAR, P., & WAGH, V. (2025). MOLECULAR AND EPIGENETIC MECHANISMS OF COVID-19-RELATED CARDIOVASCULAR COMPLICATIONS: MULTIOMICS BIOMARKERS AND PRECISION MEDICINE APPROACHES. International Journal of Applied Pharmaceutics, 17(6), 130–151. https://doi.org/10.22159/ijap.2025v17i6.55425

Issue

Section

Review Article(s)

Similar Articles

<< < 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.