ORGANIC ORIGIN GLUCIDES ALDITOLS AS CARRIERS FOR OPTIMIZING SOLUBILIZATION AND DRUG RELEASE

Authors

  • MOHAMMED A. AMIN Department of Pharmaceutics, College of Pharmacy, Qassim University, Qassim-51452, Saudi Arabia https://orcid.org/0000-0002-1129-1021
  • MOSTAFA A. MOHAMED Clinical Pharmacy Program, College of Health Sciences and Nursing, Al-Rayan National College, Madina, Saudi Arabia. Department of Pharmaceutics, College of Pharmacy, Al-Ahram Canadian University, Egypt
  • DALIA A. GABER Clinical Pharmacy Program, College of Health Sciences and Nursing, Al-Rayan National College, Madina, Saudi Arabia. Department of Pharmaceutics, College of Pharmacy, Al-Ahram Canadian University, Egypt
  • HEBA ALI SOLIMAN Department of Pharmaceutics, College of Pharmacy, Al-Ahram Canadian University, Egypt

DOI:

https://doi.org/10.22159/ijap.2025v17i6.55445

Keywords:

Drug release, Bioavailability, Solid dispersions, Poorly water-soluble drugs, Solubility enhancement, Glucides, Alditols, Natural carriers, Low-molecular-weight excipients, Dissolution improvement

Abstract

Organic-origin glucides and alditols-such as glucose, fructose, lactose, xylitol, erythritol, and maltitol-have demonstrated notable potential in enhancing the dissolution rate and solubility of sparingly water-soluble drugs when incorporated as carriers in solid dispersions (SDs). Although synthetic polymers are widely used in the design of SD formulations, they have major disadvantages including the tendency to recrystallize during storage, higher viscosity, and redundant bulk in the final dosage forms. On the other hand, naturally derived carriers with low molecular weight offer certain advantages, such as high-water affinity, good thermal behavior, and better molecular interaction, and do not suffer from the disadvantage of increasing the bulk of the dosage form. Here, we focus on the characteristics of glucides and alditols that make them favorable substitutes for those based on polymers as core carriers, as outlined in this review. We also discuss organic historical studies, new solutions, and prospects for using these compounds to improve the solubility and release of highly hydrophobic pharmaceutical ingredients.

References

1. Hebbink GA, Dickhoff BH. Application of lactose in the pharmaceutical industry. In: Watson RR, Preedy VR, Zibadi S, editors. Lactose. Amsterdam: Elsevier; 2019. p. 175-229. doi: 10.1016/B978-0-12-811720-0.00005-2.

2. Franca MT, Martins Marcos T, Costa PF, Bazzo GC, Nicolay Pereira RN, Gerola AP. Eutectic mixture and amorphous solid dispersion: two different supersaturating drug delivery system strategies to improve griseofulvin release using saccharin. Int J Pharm. 2022;615:121498. doi: 10.1016/j.ijpharm.2022.121498, PMID 35065207.

3. Narula A, Sabra R, Li N. Mechanisms and extent of enhanced passive permeation by colloidal drug particles. Mol Pharm. 2022;19(9):3085-99. doi: 10.1021/acs.molpharmaceut.2c00124, PMID 35998304.

4. Andrews GP, Qian K, Jacobs E, Jones DS, Tian Y. High drug loading nanosized amorphous solid dispersion (NASD) with enhanced in vitro solubility and permeability: benchmarking conventional ASD. Int J Pharm. 2023;632:122551. doi: 10.1016/j.ijpharm.2022.122551, PMID 36581107.

5. Lenhart A, Chey WD. A systematic review of the effects of polyols on gastrointestinal health and irritable bowel syndrome. Adv Nutr. 2017;8(4):587-96. doi: 10.3945/an.117.015560, PMID 28710145.

6. Grembecka M. Sugar alcohols. In: Reference module in food science. Amsterdam: Elsevier; 2018. p. 265-75.

7. De Stefani C, Lodovichi J, Albonetti L, Salvatici MC, Quintela JC, Bilia AR. Solubility and permeability enhancement of oleanolic acid by solid dispersion in poloxamers and β-cyclodextrin. Molecules. 2022;27(10):3042. doi: 10.3390/molecules27103042.

8. Malkawi R, Malkawi WI, Al Mahmoud Y, Tawalbeh J. Current trends on solid dispersions: past present and future. Adv Pharmacol Pharm Sci. 2022;2022:5916013. doi: 10.1155/2022/5916013, PMID 36317015.

9. Tambe S, Jain D, Meruva SK, Rongala G, Juluri A, Nihalani G. Recent advances in amorphous solid dispersions: preformulation formulation strategies technological advancements and characterization. Pharmaceutics. 2022;14(10):2203. doi: 10.3390/pharmaceutics14102203, PMID 36297638.

10. Zhang J, Guo M, Luo M, Cai T. Advances in the development of amorphous solid dispersions: the role of polymeric carriers. Asian J Pharm Sci. 2023;18(4):100834. doi: 10.1016/j.ajps.2023.100834, PMID 37635801.

11. Maher EM, Ali AM, Salem HF, Abdelrahman AA. In vitro / in vivo evaluation of an optimized fast dissolving oral film containing olanzapine co-amorphous dispersion with selected carboxylic acids. Drug Deliv. 2016;23(8):3088-100. doi: 10.3109/10717544.2016.1153746.

12. An JH, Lim C, Kiyonga AN, Chung IH, Lee IK, Mo K. Co-amorphous screening for the solubility enhancement of poorly water soluble mirabegron and investigation of their intermolecular interactions and dissolution behaviors. Pharmaceutics. 2018;10(3):149. doi: 10.3390/pharmaceutics10030149, PMID 30189645.

13. Zhang M, Suo Z, Peng X, Gan N, Zhao L, Tang P. Microcrystalline cellulose as an effective crystal growth inhibitor for the ternary ibrutinib formulation. Carbohydr Polym. 2020;229:115476. doi: 10.1016/j.carbpol.2019.115476, PMID 31826488.

14. Maincent J, Williams RO 3rd. Sustained release amorphous solid dispersions. Drug Deliv Transl Res. 2018;8(6):1714-25. doi: 10.1007/s13346-018-0494-8, PMID 29498004.

15. Knopp MM, Wendelboe J, Holm R, Rades T. Effect of amorphous phase separation and crystallization on the in vitro and in vivo performance of an amorphous solid dispersion. Eur J Pharm Biopharm. 2018;130:290-5. doi: 10.1016/j.ejpb.2018.07.005, PMID 30064702.

16. Motallae S, Taheri A, Homayouni A. Preparation and characterization of solid dispersions of celecoxib obtained by spray-drying ethanolic suspensions containing PVP-K30 or isomalt. J Drug Deliv Sci Technol. 2018;46:188-96. doi: 10.1016/j.jddst.2018.05.020.

17. Apiwongngam J, Limwikrant W, Jintapattanakit A, Jaturanpinyo M. Enhanced supersaturation of chlortetracycline hydrochloride by amorphous solid dispersion. J Drug Deliv Sci Technol. 2018;47:417-26. doi: 10.1016/j.jddst.2018.08.007.

18. Mizoguchi R, Waraya H, Hirakura Y. Application of co-amorphous technology for improving the physicochemical properties of amorphous formulations. Mol Pharm. 2019;16(5):2142-52. doi: 10.1021/acs.molpharmaceut.9b00105, PMID 30946778.

19. Meng Lund H, Kasten G, Jensen KT, Poso A, Pantsar T, Rades T. The use of molecular descriptors in the development of co-amorphous formulations. Eur J Pharm Sci. 2018;119:31-8. doi: 10.1016/j.ejps.2018.04.014, PMID 29649569.

20. Pajula K, Hyyrylainen J, Koistinen A, Leskinen JT, Korhonen O. Detection of amorphous amorphous phase separation in small molecular co-amorphous mixtures with SEM-EDS. Eur J Pharm Biopharm. 2020;150:43-9. doi: 10.1016/j.ejpb.2020.03.002, PMID 32151730.

21. Wostry M, Plappert H, Grohganz H. Preparation of co-amorphous systems by freeze-drying. Pharmaceutics. 2020;12(10):941. doi: 10.3390/pharmaceutics12100941, PMID 33008124.

22. Bhalani DV, Nutan B, Kumar A, Singh Chandel AK. Bioavailability enhancement techniques for poorly aqueous soluble drugs and therapeutics. Biomedicines. 2022;10(9):2055. doi: 10.3390/biomedicines10092055, PMID 36140156.

23. Aimurofiq A, Putro DS, Ramadhani DA, Putra GM, Espirito Santo LDC. A review on solubility enhancement methods for poorly water-soluble drugs. J Rep Pharm Sci. 2021;10(3):137-47. doi: 10.4103/jrptps.JRPTPS_134_19.

24. Rahman Z, Wengel J, Rades T, Lobmann K. Molecular structure and impact of amorphization strategies on intrinsic dissolution of spray dried indomethacin. Int J Pharm. 2019;569:118636. doi: 10.1016/j.ijpharm.2019.118636.

25. Tekade AR, Yadav JN. A review on solid dispersion and carriers used therein for solubility enhancement of poorly water soluble drugs. Adv Pharm Bull. 2020;10(3):359-69. doi: 10.34172/apb.2020.044, PMID 32665894.

26. Vanda H, Verpoorte R, Klinkhamer PG, Choi YH. Natural deep eutectic solvents: from their discovery to their applications. In: Ramon DJ, Guillena G, editors. Deep eutectic solvents: synthesis properties and applications. Weinheim: Wiley-VCH Press; 2019. p. 61-81. doi: 10.1002/9783527818488.ch4.

27. Jelinski T, Przybyłek M, Cysewski P. Solubility advantage of sulfanilamide and sulfacetamide in natural deep eutectic systems: experimental and theoretical investigations. Drug Dev Ind Pharm. 2019;45(7):1120-9. doi: 10.1080/03639045.2019.1597104, PMID 30883240.

28. Jelinski T, Przybylek M, Cysewski P. Natural deep eutectic solvents as agents for improving solubility stability and delivery of curcumin. Pharm Res. 2019;36(8):116. doi: 10.1007/s11095-019-2643-2, PMID 31161340.

29. Dai Y, Van Spronsen J, Witkamp GJ, Verpoorte R, Choi YH. Natural deep eutectic solvents as new potential media for green technology. Anal Chim Acta. 2013;766:61-8. doi: 10.1016/j.aca.2012.12.019, PMID 23427801.

30. Liu Y, Friesen JB, McAlpine JB, Lankin DC, Chen SN, Pauli GF. Natural deep eutectic solvents: properties applications and perspectives. J Nat Prod. 2018;81(3):679-90. doi: 10.1021/acs.jnatprod.7b00945, PMID 29513526.

31. Weerapol Y, Tubtimsri S, Jansakul C, Sriamornsak P. Improved dissolution of Kaempferia parviflora extract for oral administration by preparing solid dispersion via solvent evaporation. Asian J Pharm Sci. 2017;12(2):124-33. doi: 10.1016/j.ajps.2016.09.005, PMID 32104321.

32. Kauppinen A, Broekhuis J, Grasmeijer N, Tonnis W, Ketolainen J, Frijlink HW. Efficient production of solid dispersions by spray drying solutions of high solid content using a 3-fluid nozzle. Eur J Pharm Biopharm. 2018;123:50-8. doi: 10.1016/j.ejpb.2017.11.009, PMID 29162509.

33. Wong WS, Lee CS, Er HM, Lim WH, Wong SF. Biocompatible palm stearin-based polyesteramide as polymer carrier for solid dispersion. J Appl Polym Sci. 2018;135(8):45892. doi: 10.1002/app.45892.

34. Gaikwad D, Shewale R, Patil V, Mali D, Gaikwad U, Jadhav N. Enhancement in in vitro anti-angiogenesis activity and cytotoxicity in lung cancer cell by pectin-PVP based curcumin particulates. Int J Biol Macromol. 2017;104(A):656-64. doi: 10.1016/j.ijbiomac.2017.05.170, PMID 28602990.

35. Lenz E, Lobmann K, Rades T, Knop K, Kleinebudde P. Hot melt extrusion and spray drying of co-amorphous indomethacin arginine with polymers. J Pharm Sci. 2017;106(1):302-12. doi: 10.1016/j.xphs.2016.09.027, PMID 27817830.

36. Petry I, Lobmann K, Grohganz H, Rades T, Leopold CS. Solid state properties and drug release behavior of co-amorphous indomethacin arginine tablets coated with Kollicoat® protect. Eur J Pharm Biopharm. 2017;119:150-60. doi: 10.1016/j.ejpb.2017.06.007, PMID 28602869.

37. Petry I, Lobmann K, Grohganz H, Rades T, Leopold CS. Undesired co-amorphisation of indomethacin and arginine during combined storage at high humidity conditions. Int J Pharm. 2018;544(1):172-80. doi: 10.1016/j.ijpharm.2018.04.026, PMID 29669257.

38. Petry I, Lobmann K, Grohganz H, Rades T, Leopold CS. In situ co-amorphisation in coated tablets the combination of carvedilol with aspartic acid during immersion in an acidic medium. International Journal of Pharmaceutics. 2019;558:357-66. doi: 10.1016/j.ijpharm.2018.12.091.

39. Lim AW, Lobmann K, Grohganz H, Rades T, Chieng N. Investigation of physical properties and stability of indomethacin cimetidine and naproxen cimetidine co-amorphous systems prepared by quench cooling coprecipitation and ball milling. J Pharm Pharmacol. 2016;68(1):36-45. doi: 10.1111/jphp.12494, PMID 26663364.

40. Russo MG, Sancho MI, Silva LM, Baldoni HA, Venancio T, Ellena J. Looking for the interactions between omeprazole and amoxicillin in a disordered phase. An experimental and theoretical study. Spectrochim Acta A Mol Biomol Spectrosc. 2016;156:70-7. doi: 10.1016/j.saa.2015.11.021, PMID 26654963.

41. Mishra J, Lobmann K, Grohganz H, Rades T. Influence of preparation technique on co-amorphization of carvedilol with acidic amino acids. Int J Pharm. 2018;552(1-2):407-13. doi: 10.1016/j.ijpharm.2018.09.070, PMID 30278256.

42. Liu J, Grohganz H, Rades T. Influence of polymer addition on the amorphization dissolution and physical stability of co-amorphous systems. Int J Pharm. 2020;588:119768. doi: 10.1016/j.ijpharm.2020.119768, PMID 32798592.

43. Mishra J, Rades T, Lobmann K, Grohganz H. Influence of solvent composition on the performance of spray-dried co-amorphous formulations. Pharmaceutics. 2018;10(2):47. doi: 10.3390/pharmaceutics10020047, PMID 29649124.

44. Jensen KT, Blaabjerg LI, Lenz E, Bohr A, Grohganz H, Kleinebudde P. Preparation and characterization of spray-dried co-amorphous drug amino acid salts. J Pharm Pharmacol. 2016;68(5):615-24. doi: 10.1111/jphp.12458, PMID 26245703.

45. Kasten G, Duarte I, Paisana M, Lobmann K, Rades T, Grohganz H. Process optimization and upscaling of spray-dried drug amino acid co-amorphous formulations. Pharmaceutics. 2019;11(1):24. doi: 10.3390/pharmaceutics11010024, PMID 30634423.

46. Daravath B, Naveen C, Vemula SK, Tadikonda RR. Solubility and dissolution enhancement of flurbiprofen by solid dispersion using hydrophilic carriers. Braz J Pharm Sci. 2017;53(4):e00010. doi: 10.1590/S2175-97902017000400010.

47. Hattali WS, Samuel BA, Philip AK. Enhancing fluconazole solubility and bioavailability through solid dispersion techniques: evaluation of polyethylene glycol 6000 and sodium carboxymethylcellulose systems. Int J Pharm Pharm Sci. 2024;16(12):51-9. doi: 10.22159/ijpps.2024v16i12.52739.

48. Puppala RK, A VL. Optimization and solubilization study of nanoemulsion budesonide and constructing pseudoternary phase diagram. Asian J Pharm Clin Res. 2019;12(1):551-3. doi: 10.22159/ajpcr.2019.v12i1.28686.

49. Wood CC, Patel KG, Weber VL, Osakwe AR, Manovacia Moreno NPM, Broich ML. Development of impact resistant immediate release amorphous solid dispersion via hot-melt extrusion and injection molding. Int J Pharm. 2025;680:125746. doi: 10.1016/j.ijpharm.2025.125746, PMID 40449639.

50. Wu J, Den Mooter GV. Statistical analysis of long-term physical stability testing of amorphous solid dispersions. Int J Pharm. 2025;681:125844. doi: 10.1016/j.ijpharm.2025.125844, PMID 40517971.

51. Mishra J, Rades T, Lobmann K, Grohganz H. Influence of solvent composition on the performance of spray-dried co-amorphous formulations. Pharmaceutics. 2018;10(2):47. doi: 10.3390/pharmaceutics10020047, PMID 29649124.

52. Hattali WS, Samuel BA, Philip AK. Enhancing fluconazole solubility and bioavailability through solid dispersion techniques: evaluation of polyethylene glycol 6000 and sodium carboxymethylcellulose systems. Int J Pharm Pharm Sci. 2024;16(12):51-9. doi: 10.22159/ijpps.2024v16i12.52739.

53. Kasten G, Duarte I, Paisana M, Lobmann K, Rades T, Grohganz H. Process optimization and upscaling of spray-dried drug amino acid co-amorphous formulations. Pharmaceutics. 2019;11(1):24. doi: 10.3390/pharmaceutics11010024, PMID 30634423.

Published

07-11-2025

How to Cite

AMIN, M. A., MOHAMED, M. A., GABER, D. A., & SOLIMAN, H. A. (2025). ORGANIC ORIGIN GLUCIDES ALDITOLS AS CARRIERS FOR OPTIMIZING SOLUBILIZATION AND DRUG RELEASE. International Journal of Applied Pharmaceutics, 17(6), 57–66. https://doi.org/10.22159/ijap.2025v17i6.55445

Issue

Section

Review Article(s)

Similar Articles

<< < 162 163 164 

You may also start an advanced similarity search for this article.