DESIGN AND EVALUATION OF MULTIFUNCTIONAL 3D-PRINTED SCAFFOLDS FOR BONE TISSUE REGENERATION AND LOCALIZED INFECTION MANAGEMENT

Authors

  • SWATI SWAGATIKA SWAIN Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Nilgiris, Tamil Nadu, India
  • VEERA VENKATA SATYANARAYANA REDDY KARRI Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Nilgiris, Tamil Nadu, India https://orcid.org/0009-0000-3378-9835

DOI:

https://doi.org/10.22159/ijap.2025v17i6.55686

Keywords:

Tissue engineering, Bone implantation, Scaffold, 3D printing, Tobramycin

Abstract

Objective: The research objective was to create tobramycin-loaded Poly(lactic acid) (PLA) scaffolds produced by 3D printing and coat them with either chitosan or Eudragit RS100 for maximizing bone tissue development alongside localized antibacterial treatments.

Methods: PLA scaffolds with pore size 300μm was manufactured through Fused deposition modeling (FDM) based on CAD designs. The scaffolds integrated tobramycin through dipping into solutions containing chitosan and Eudragit RS100 at concentrations of 1%, 2%, and 3%. Scaffold morphology test by SEM analysis followed by chemical compatibility evaluation using FTIR and XRD techniques. Drug release behavior, along with degradation study, is carried out in phosphate-buffered saline (PBS) and simulated body fluid (SBF). The antibacterial effect against E. coli was determined by zone of inhibition assay.

Results: SEM proved definite porous scaffolds with homogenous coating of drug-polymer. The results of FTIR and XRD indicated that there was no chemical interaction and this was an indication of stable physical incorporation. Biphasic in vitro release of tobramycin was observed and long-term release was found in the 3% polymer-coated scaffolds (TBMC3, TBME3). The Fickian diffusion release was given in drug release (R 2>0.97). Antibacterial tests revealed increased inhibition of E. coli with an increase in the quantity of the polymers. Bioactivity in SBF chronic-degradation indicated gradual weight-decrease (up to 1.48 g) and the development of mineral deposition in the scaffold over 60 d.

Conclusion: The 3D-printed PLA scaffolds containing tobramycin and having chitosan or Eudragit RS100 coatings showed beneficial aspects in terms of morphological structure combined with acceptable physicochemical and biological properties. Sustained drug release, anti-bacterial with biodegradable nature, makes these scaffolds suitable candidates for bone tissue engineering applications and infection control implants.

References

1. Weiss MB, Syed SA, Whiteson HZ, Hirani R, Etienne M, Tiwari RK. Navigating post-traumatic osteoporosis: a comprehensive review of epidemiology pathophysiology, diagnosis treatment and future directions. Life (Basel). 2024 May;14(5):561. doi: 10.3390/life14050561, PMID 38792583.

2. Ferraz MP. Bone grafts in dental medicine: an overview of autografts allografts and synthetic materials. Materials (Basel). 2023 May 31;16(11):4117. doi: 10.3390/ma16114117, PMID 37297251.

3. Rahman A, Tanvir KF, Jui HK, Ahmed MdT, Nipu SM, Hussain SB. Design and analysis of 3D-printed PLA scaffolds: enhancing mechanical properties. Results Eng. 2025 Jul 7;27:106156. doi: 10.1016/j.rineng.2025.106156.

4. Sousa HC, Ruben RB, Viana JC. On the fused deposition modelling of personalised bio-scaffolds: materials design and manufacturing aspects. Bioengineering (Basel). 2024 Jul 31;11(8):769. doi: 10.3390/bioengineering11080769, PMID 39199727.

5. Dorati R, De Trizio A, Modena T, Conti B, Benazzo F, Gastaldi G. Biodegradable scaffolds for bone regeneration combined with drug delivery systems in osteomyelitis therapy. Pharmaceuticals (Basel). 2017 Dec 12;10(4):96. doi: 10.3390/ph10040096, PMID 29231857.

6. Ergul NM, Unal S, Kartal I, Kalkandelen C, Ekren N, Kilic O. 3D printing of chitosan/ poly(vinyl alcohol) hydrogel containing synthesized hydroxyapatite scaffolds for hard tissue engineering. Polym Test. 2019 Oct 1;79:106006. doi: 10.1016/j.polymertesting.2019.106006.

7. Bulut B, Duman S. Evaluation of mechanical behavior bioactivity and cytotoxicity of chitosan/akermanite-TiO2 3D-printed scaffolds for bone tissue applications. Ceram Int. 2022 Aug 1;48(15):21378-88. doi: 10.1016/j.ceramint.2022.04.104.

8. Karaca I, Aldemir Dikici B. Quantitative evaluation of the pore and window sizes of tissue engineering scaffolds on scanning electron microscope images using deep learning. ACS Omega. 2024 Jun 11;9(23):24695-706. doi: 10.1021/acsomega.4c01234, PMID 38882138.

9. Selim M, Mousa HM, Abdel Jaber GT, Barhoum A. Abdal hay A. Innovative designs of 3D scaffolds for bone tissue regeneration: understanding principles and addressing challenges. Eur Polym J. 2024 Jul 17;215:113251. doi: 10.1016/j.eurpolymj.2024.113251.

10. Mattavelli D, Verzeletti V, Deganello A, Fiorentino A, Gualtieri T, Ferrari M. Computer aided designed 3D-printed polymeric scaffolds for personalized reconstruction of maxillary and mandibular defects: a proof-of-concept study. Eur Arch Otorhinolaryngol. 2024;281(3):1493-503. doi: 10.1007/s00405-023-08392-0, PMID 38170208.

11. Gnanavel S, Kaavya P. Design and development of novel 3D bone scaffold for implant application. Mater Today Proc. 2022 Jan 1;59:775-80. doi: 10.1016/j.matpr.2021.12.580.

12. Winarso R, Anggoro PW, Ismail R, Jamari J, Bayuseno AP. Application of fused deposition modeling (FDM) on bone scaffold manufacturing process: a review. Heliyon. 2022 Nov 22;8(11):e11701. doi: 10.1016/j.heliyon.2022.e11701, PMID 36444266.

13. Tamarit Martinez C, Bernat Just L, Bueno Lopez C, Alambiaga Caravaca AM, Merino V, Lopez Castellano A. An antibacterial-loaded PLA 3D-printed model for temporary prosthesis in arthroplasty infections: evaluation of the impact of layer thickness on the mechanical strength of a construct and drug release. Pharmaceutics. 2024 Aug 30;16(9):1151. doi: 10.3390/pharmaceutics16091151, PMID 39339188.

14. Mills DK, Jammalamadaka U, Tappa K, Weisman J. Studies on the cytocompatibility mechanical and antimicrobial properties of 3D printed poly(methyl methacrylate) beads. Bioact Mater. 2018 Jun 1;3(2):157-66. doi: 10.1016/j.bioactmat.2018.01.006, PMID 29744453.

15. Gurpreet Singh, Abdul Faruk, Preet Mohinder Singh Bedi. Spectral analysis of drug-loaded nanoparticles for drug polymer interactions. Journal of Drug Delivery and Therapeutics. 2018;8(6):111-8. doi: 10.22270/jddt.v8i6.2030.

16. Aryal S, Hu CM, Zhang L. Polymeric nanoparticles with precise ratiometric control over drug loading for combination therapy. Mol Pharm. 2011 Aug 1;8(4):1401-7. doi: 10.1021/mp200243k, PMID 21696189.

17. Dong Z, Gong J, Zhang H, Ni Y, Cheng L, Song Q. Preparation and characterization of 3D printed porous 45S5 bioglass bioceramic for bone tissue engineering application. Int J Bioprint. 2022 Sep 1;8(4):613. doi: 10.18063/ijb.v8i4.613, PMID 36404785.

18. Hill M, Cunningham RN, Hathout RM, Johnston C, Hardy JG, Migaud ME. Formulation of antimicrobial tobramycin-loaded PLGA nanoparticles via complexation with AOT. J Funct Biomater. 2019 Jun 13;10(2):26. doi: 10.3390/jfb10020026, PMID 31200522.

19. Admane P, Gupta J, IJA, Kumar R, Panda AK. Design and evaluation of antibiotic-releasing self-assembled scaffolds at room temperature using biodegradable polymer particles. Int J Pharm. 2017 Mar 30;520(1-2):284-96. doi: 10.1016/j.ijpharm.2017.01.071, PMID 28185962.

20. Bhardwaj K, Sridhar U. A novel biodegradable polymer scaffold for in vitro growth of corneal epithelial cells. Indian J Ophthalmol. 2022 Oct;70(10):3693-7. doi: 10.4103/ijo.IJO_210_22, PMID 36190075.

21. Shapovalova KS, Zatonsky GV, Razumova EA, Ipatova DA, Lukianov DA, Sergiev PV. Synthesis and antibacterial activity of new 6″-modified tobramycin derivatives. Antibiotics (Basel). 2024 Dec 6;13(12):1191. doi: 10.3390/antibiotics13121191, PMID 39766581.

22. Doganay MT, Chelliah CJ, Tozluyurt A, Hujer AM, Obaro SK, Gurkan U. 3D printed materials for combating antimicrobial resistance. Mater Today (Kidlington). 2023;67:371-98. doi: 10.1016/j.mattod.2023.05.030, PMID 37790286.

23. Klicova M, Mullerova S, Rosendorf J, Klapstova A, Jirkovec R, Erben J. Large scale development of antibacterial scaffolds: gentamicin sulphate-loaded biodegradable nanofibers for gastrointestinal applications. ACS Omega. 2023 Oct 17;8(43):40823-35. doi: 10.1021/acsomega.3c05924, PMID 37929155.

24. Baino F, Yamaguchi S. The use of simulated body fluid (SBF) for assessing materials bioactivity in the context of tissue engineering: review and challenges. Biomimetics (Basel). 2020 Dec;5(4):57. doi: 10.3390/biomimetics5040057, PMID 33138246.

25. Xu Z, Hodgson MA, Cao P. Effect of immersion in simulated body fluid on the mechanical properties and biocompatibility of sintered Fe–Mn-based alloys. Metals. 2016 Dec;6(12):309. doi: 10.3390/met6120309.

26. Kim SJ, Kim TH, Choi JW, Kwon IK. Current perspectives of biodegradable drug-eluting stents for improved safety. Biotechnol Bioproc E. 2012 Oct 1;17(5):912-24. doi: 10.1007/s12257-011-0571-z.

27. Gao X, Xu Z, Li S, Cheng L, Xu D, Li L. Chitosan vancomycin hydrogel incorporated bone repair scaffold based on staggered orthogonal structure: a viable dually controlled drug delivery system. RSC Adv. 2023 Jan 24;13(6):3759-65. doi: 10.1039/d2ra07828g, PMID 36756570.

28. Hwang MR, Kim JO, Lee JH, Kim YI, Kim JH, Chang SW. Gentamicin-loaded wound dressing with polyvinyl alcohol/dextran hydrogel: gel characterization and in vivo healing evaluation. AAPS PharmSciTech. 2010 Jul 7;11(3):1092-103. doi: 10.1208/s12249-010-9474-0, PMID 20607628.

29. Channasanon S, Udomkusonsri P, Chantaweroad S, Tesavibul P, Tanodekaew S. Gentamicin released from porous scaffolds fabricated by stereolithography. J Healthc Eng. 2017;2017:9547896. doi: 10.1155/2017/9547896, PMID 29065670.

30. Salehi M, Naseri Nosar M, Azami M, Nodooshan SJ, Arish J. Comparative study of poly(L-lactic acid) scaffolds coated with chitosan nanoparticles prepared via ultrasonication and ionic gelation techniques. Tissue Eng Regen Med. 2016 Oct 20;13(5):498-506. doi: 10.1007/s13770-016-9083-4, PMID 30603431.

31. Li J, Cai C, Li J, Li J, Li J, Sun T. Chitosan-based nanomaterials for drug delivery. Molecules. 2018 Oct 16;23(10):2661. doi: 10.3390/molecules23102661, PMID 30332830.

32. Garavand F, Rouhi M, Jafarzadeh S, Khodaei D, Cacciotti I, Zargar M. Tuning the physicochemical structural and antimicrobial attributes of whey-based poly (L-lactic acid) (PLLA) films by chitosan nanoparticles. Front Nutr. 2022 Apr 28;9:880520. doi: 10.3389/fnut.2022.880520, PMID 35571878.

33. Shanmugavadivu A, Selvamurugan N. Surface engineering of 3D-printed polylactic acid scaffolds with polydopamine and 4-methoxycinnamic acid–chitosan nanoparticles for bone regeneration. Nanoscale Adv. 2025 Mar 11;7(6):1636-49. doi: 10.1039/d4na00768a, PMID 39886612.

34. Dukle A, Sankar MR. 3D-printed polylactic acid scaffolds for bone tissue engineering: bioactivity-enhancing strategies based on composite filaments and coatings. Mater Today Commun. 2024 Aug 1;40:109776. doi: 10.1016/j.mtcomm.2024.109776.

35. Amini Moghaddam M, Di Martino A, Sopik T, Fei H, Cisas J, Pummerova M. Polylactide/polyvinylalcohol-based porous bioscaffold loaded with gentamicin for wound dressing applications. Polymers. 2021 Jan;13(6):921. doi: 10.3390/polym13060921, PMID 33802770.

36. Glinka M, Filatova K, Kucinska Lipka J, Sopik T, Domincova Bergerova E, Mikulcova V. Antibacterial porous systems based on polylactide loaded with amikacin. Molecules. 2022 Oct 19;27(20):7045. doi: 10.3390/molecules27207045, PMID 36296639.

37. Greene AH, Bumgardner JD, Yang Y, Moseley J, Haggard WO. Chitosan-coated stainless steel screws for fixation in contaminated fractures. Clin Orthop Relat Res. 2008 Apr 29;466(7):1699-704. doi: 10.1007/s11999-008-0269-5, PMID 18443893.

38. Liu Z, Li S, Xu Z, Li L, Liu Y, Gao X. Preparation and characterization of carboxymethyl chitosan/sodium alginate composite hydrogel scaffolds carrying chlorhexidine and strontium-doped hydroxyapatite. ACS Omega. 2024 May 21;9(20):22230-9. doi: 10.1021/acsomega.4c01237, PMID 38799338.

Published

07-11-2025

How to Cite

SWAIN, S. S., & REDDY KARRI, V. V. S. (2025). DESIGN AND EVALUATION OF MULTIFUNCTIONAL 3D-PRINTED SCAFFOLDS FOR BONE TISSUE REGENERATION AND LOCALIZED INFECTION MANAGEMENT. International Journal of Applied Pharmaceutics, 17(6), 335–343. https://doi.org/10.22159/ijap.2025v17i6.55686

Issue

Section

Original Article(s)

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.