BETULIN 3,28-DIPHOSPHATE AS AN ACTIVATOR OF ANTIOXIDANT ENZYMES IN COMBINATION WITH AMINES AND AN ENHANCER OF BACTERICIDAL AND FUNGICIDAL ACTIVITY OF BENZALKONIUM CHLORIDE

Authors

  • NINA MELNIKOVA The Faculty of Chemistry, the Lobachevsky State University, 23 the Gagarina Avenue, Nizhniy Novgorod-603950, Russia https://orcid.org/0000-0003-1335-1048
  • DARINA MALYGINA Department of Pharmaceutical Chemistry, Privolzhsky Research Medical University, 10/1 Minin Sq., Nizhniy Novgorod-603950, Russia https://orcid.org/0000-0002-6962-8547
  • IRINA KLABUKOVA The Faculty of Chemistry, the Lobachevsky State University, 23 the Gagarina Avenue, Nizhniy Novgorod-603950, Russia
  • ANNA SOLOVEVA Institute of Biology and Biomedicine, the Lobachevsky State University, 23 the Gagarina Avenue, Nizhniy Novgorod-603950, Russia https://orcid.org/0000-0001-6890-4530
  • ELENA AULOVA The Faculty of Chemistry, the Lobachevsky State University, 23 the Gagarina Avenue, Nizhniy Novgorod-603950, Russia https://orcid.org/0009-0009-9661-3912

DOI:

https://doi.org/10.22159/ijap.2026v18i1.56637

Keywords:

Betulin diphosphate, Trisamine, Meglumine, Benzalkonium chloride, polymorphism, Antioxidant activity, Bactericidal and fungicidal properties

Abstract

Objective: The work was aimed to study properties of nanosuspensions of betulin diphosphate and its sodium salt in compositions with amines – trisamine, meglumine and benzalkonium chloride, for design of antioxidant medicines and enhance bactericidal and fungicidal activity of benzalkonium chloride.

Methods: This research work included the preparation and study of nanosuspensions. Nanoparticles formation was controlled using FTIR, UV and NMR spectrometry, PXRD, zeta-potential measurement and SEM visualization. Oxidoreductase activity was studied by specific activity of superoxide dismutase, catalase, glutathione reductase, glucose-6-phosphate dehydrogenase and aldehyde dehydrogenase. Paecilomyces variotii, Aspergillus terreus, Penicillium chrysogenum, Staphylococcus aureus and Staphylococcus epidermidis were used in study.

Results: Betulin diphosphate or its sodium salt in the presence of amines are capable of self-organization and formation of high positive charged nanoparticles (zeta potential from +37 to +51 mV) with various morphologic structures that allow to obtain transparent nanosuspensions.

Concentration of aged sodium salt of betulin diphosphate with amines was at least 0.644% that was higher than one of aqueous dispersions without amines. In vitro experiments on rat blood showed an increase in the specific activity of antioxidant enzymes under the action of all studied compositions. Sodium salt of betulin diphosphate showed synergetic effect of fungicidal and bactericidal properties of a known antimicrobial agent benzalkonium chloride in composition.

Conclusion: The revealed biological activity of new compositions of betulin diphosphate with amines can be useful in the treatment of various skin diseases.

References

1. Nicolov I, Georgescu D, Eftimie ELA, Pinzaru SC, Roman R, Ambrus ILR, Cheveresan A, Avram NM. DFT study of structure, IR and Raman spectra for betulinic acid solvatomorphs. Rev Chim. 2019 Feb;70(1):107-11. https://doi.org/10.37358/RC.19.1.6861

2. Wang X, Gong N, Yang S, Du G, Lu Y. Studies on Solvatomorphism of Betulinic Acid. J Pharm Sci.2014 Sep;103(9):2696-703. doi:10.1002/jps.23853

3. Yang D, Gong N, Zhang L, Lu Y. Isostructurality among 5 solvatomorphs of betulin: X-Ray structure and characterization. J Pharm Sci. 2016 Jun;105(6):1867-73. doi: 10.1016/j.xphs.2016.03.015

4. Myz SA, Shakhtshneider TP, Mikhailenko MA, Ogienko AG, Bogdanova EG, Ogienko AA, Kuznetsova SA, Boldyreva EV, Boldyrev VV. Ultrafine betulin formulation with biocompatible carriers exhibiting improved dissolution rate. Nat Prod Commun. 2015 Aug;10(8):1333-494

5. Zhang S, Peng B, Chen Z, Yu J, Deng G, Bao Y, Ma C, Du F, Sheu WC, Kimberly WT, Simard JM, Coman D, Chen Q, Hyder F, Zhou J, Sheth KN. Brain-targeting, acid-responsive antioxidant nanoparticles for stroke treatment and drug delivery. Bioact Mater. 2022 Mar 7;16:57-65. https://doi.org/10.1016/j.bioactmat.2022.02.033

6. Zhao X, Wang W, Zu Y, Zhang Y, Li Y, Sun W, Shan C, Ge Y. Preparation and characterization of betulin nanoparticles for oral hypoglycemic drug by antisolvent precipitation. Drug Deliv. 2014 Sep;21(6):467-79. doi: 10.3109/10717544.2014.881438.

7. Pozharitskaya ON, Karlina MV, Shikov AN, Kosman VM, Makarov VG, Casals E, Rosenholm JM. Pharmacokinetics and tissue disposition of nanosystem-entrapped betulin after endotracheal administration to rats. Eur J Drug Metab Pharmacokinet. 2017 Apr;42(2):327-32. https://doi.org/10.1007/s13318-016-0340-7

8. Chen X, Lu S, Gong F, Sui X, Liu T, Wang T. Research on the synthesis of nanoparticles of betulinic acid and their targeting antitumor activity. J Biomed Mater Res B Appl Biomater. 2022 Aug;110(8):1789-95. doi: 10.1002/jbm.b.35036.

9. Li Y, Wang Y, Gao L, Tan Y, Cai J, Ye Z, Chen AT, Xu Y, Zhao L, Tong S, Sun Q, Liu B, Zhang S, Tian D, Deng G, Zhou J, Chen Q. Betulinic acid self-assembled nanoparticles for effective treatment of glioblastoma. J Nanobiotechnology. 2022 Jan 21;20(1):39. https://doi.org/10.1186/s12951-022-01238-7

10. Amiri S, Dastghaib S, Ahmadi M, Mehrbod P, Khadem F, Behrouj H, Aghanoori MR, Machaj F, Ghamsari M, Rosik J, Hudecki A, Afkhami A, Hashemi M, Los MJ, Mokarram P, Madrakian T, Ghavami S. Betulin and its derivatives as novel compounds with different pharmacological effects. Biotechnol Adv. 2020 Jan-Feb;38:107409. doi: 10.1016/j.biotechadv.2019.06.008.

11. Niewolik D, Dzido G, Jaszcz K. Studies on the preparation of nanoparticles from betulin-based polyanhydrides. Eng Proc. 2021 Oct 21;11(1):10. https://doi.org/10.3390/ASEC2021-11160

12. Gajbhiye SA, Patil MP. Breast cancer cell targeting of L-leucine-PLGA conjugated hybrid solid lipid nanoparticles of betulin via L-amino acid transport system-1. J Drug Target. 2025 May 14:1-30. doi: 10.1080/1061186X.2025.2500036.

13. Chrobak E, Bebenek E, Kadela-Tomanek M, Latocha M, Jelsch Ch, Wenger E, Boryczka S. Betulin phosphonates; Synthesis, structure, and cytotoxic activity. Molecules. 2016 Aug 26;21:1123. DOI: 10.3390/molecules21091123.

14. Bebenek E, Pecak P, Kadela-Tomanek M, Orzechowska B, Chrobak E. Derivatives of betulin and betulinic acid containing a phosphonate group – in silico studies and preliminary in vitro assessment of antiviral activity. Appl Sci. 2024 Feb 9;14:1452. https://doi.org/10.3390/app14041452

15. Chrobak E, Jastrzębska M, Bębenek E, Kadela-Tomanek M, Marciniec K, Latocha M, Wrzalik R, Kusz J, Boryczka S. Molecular structure, in vitro anticancer study and molecular docking of new phosphate derivatives of betulin. Molecules. 2021 Jan 31;26(3):737. doi: 10.3390/molecules26030737

16. Drag-Zalesinska M, Kulbacka J, Saczko J, Wysocka T, Zabel M, Surowiak P, Drag M. Esters of betulin and betulinic acid with amino acids have improved water solubility and are selectively cytotoxic toward cancer cells. Bioorg Med Chem Lett. 2009 Aug 15;19(16):4814-7. doi: 10.1016/j.bmcl.2009.06.046.

17. Tsepaeva OV, Nemtarev AV, Grigor’eva LR, Mironov VF. Synthesis of C(28)-linker derivatives of betulinic acid bearing phosphonate group. Russ Chem Bull. 2021 Feb;70(1):179-82. doi: 10.1007/s11172-021-3074-x

18. Melnikova NB, Malygina DS, Klabukova IN, Belov DV, Vasin VA, Petrov PS, Knyazev AV, Markin AV. Betulin-3,28-diphosphate. Physico-chemical properties and in vitro biological activity experiments. Molecules. 2018 May 14;23:1175. https://doi.org/10.3390/molecules23051175

19. Melnikova N, Malygina D, Panteleev D, Vorobyova O, Solovyeva A, Belyaeva K, Klabukova I. The improvement of betulin-3, 28-diphosphate water-solubility by complexation with amines – meglumine and xymedon. Int J Pharm Pharm Sci. 2019 Apr 6;11(5):48-55. DOI:10.22159/ijpps.2019v11i5.32707

20. Sirota TV. A novel approach to study the reaction of adrenaline autooxidation: A possibility for polarographic determination of superoxide dismutase activity and antioxidant properties of various preparations. Biochem Moscow Suppl Ser B. 2011 Aug 18;5:253-9. https://doi.org/10.1134/S1990750811030139

21. Aebi H. Catalase in vitro. Methods Enzymol. 1984;105:121-6. doi: 10.1016/s0076-6879(84)05016-3

22. Sibgatullina GV, Khartendinova LR, Gumerova EA, Akulov AN, Kostyukova YA, Nikonorova NA, Rumyantseva NI. Methods for determining the redox status of cultured plant. Cells. Kazan: Kazan (Privolzhsky) Federal University; 2011.

23. Kochetov GA. Practical guide to enzymology. 2nd ed. Moscow, High School; 1980.

24. Solovyоva AG, Zimin YuV. A new estimation method of blood metabolism dynamics of patients with heat injuries. Mod Technol Med. 2012;2:116-7.

25. Guru SC, Shetty KT. Methodological aspects of aldehyde dehydrogenase assay by spectrophotometric technique. Alcohol. 1990 Sep-Oct;7(5):397-401. doi: 10.1016/0741-8329(90)90022-5

26. Dawson JM, Heatlie PL. Lowry method of protein quantification: evidence for photosensitivity. Anal Biochem. 1984 Aug 1;140(2):391-3. doi: 10.1016/0003-2697(84)90183-0

27. Xu J, Gilson DFR, Butler IS. FT-Raman and high-pressure FT-infrared spectroscopic investigation of monocalcium phosphate monohydrate, Ca(H2PO4)2•H2O. Spectrochim Acta A Mol Biomol Spectrosc. 1998 Oct;54(12):1869-78. https://doi.org/10.1016/S1386-1425(98)00152-8

28. Lien-Vien D, Colthup NB, Fateley WG, Graselli JG, editors. The handbook of infrared and raman characteristics frequencies of organic molecules. California: Academic Press, Inc.; 1991.

29. Quiñone D, Veiga N, Torres J, Bazzicalupi C, Bianchi A, Kremer C. Self-Assembly of Manganese(II)-Phytate Coordination Polymers: Synthesis, Crystal Structure, and Physicochemical Properties. Chempluschem. 2017 May;82(5):721-31. doi: 10.1002/cplu.201700027.

30. Barlt F, Urjasz H, Brzezinski B. FT-IR study of pyridoxal phosphate. J Mol Struct. 1998 Jan 12;441(1):77-81. https://doi.org/10.1016/S0022-2860(97)00282-2

31. Youngme S, Phuengphai P, Chaichit N, Pakawatchai C, van Alvada GA, Roubeau O, Reedijk J. The coordination chemistry of mono(di-2-pyridylamine) copper(II) complexes with monovalent and divalent oxoanions: crystal structure, spectroscopic and magnetic properties of dinuclear [Cu(L)(μ-H2PO4)(H2PO4)]2 and polynuclear [Cu(L)(μ3-HPO4)]n. Inorganica Chim Acta. 2004 Sep 10;357(12):3603-12. https://doi.org/10.1016/j.ica.2004.04.027

32. Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds, Part B, Applications in Coordination, Organometallic, and Bioinorganic Chemistry. 6th ed. New York: John Wiley & Sons, Inc.; 2009.

33. Rodrigues-Filho UP, Vaz J, Felicissimo MP, Scarpellini M, Cardoso DR, Vinhas RCJ, Landers R, Schneider JF, McGarvey BR, Andersen ML, Skibsted LH. Heterometallic manganese/zinc-phytate complex as a model compound for metal storage in wheat grains. J Inorg Biochem. 2005 Oct;99:1973-82. doi: 10.1016/j.jinorgbio.2005.06.014

34. Son LB. (1999). Synthesis of betulinic acid and development of its liposomal form. Thesis [In Russian], Moscow.

35. McDonnell G. Antiseptics, Disinfection and Sterilization: Types, Action, and Resistance. Washington DC: ASM Press; 2007.DOI:10.1128/9781555819682

36. Gerba CP. Quaternary ammonium biocides: efficacy in application. Appl Environ Microbiol. 2015 Jan;81:464-9. doi: 10.1128/AEM.02633-14

37. Barros AC, Melo LF, Pereira A. A multi-purpose approach to the mechanisms of action of two biocides (benzalkonium chloride and dibromonitrilopropionamide): Discussion of Pseudomonas fluorescens. Front Microbiol. 2022 Feb 18;13:842414. doi: 10.3389/fmicb.2022.842414

38. Li Z, Ma J, Ruan J, Zhuang X. Using positively charged magnetic nanoparticles to capture bacteria at ultralow concentration. Nanoscale Res Lett. 2019 Jun 4;14(1):195. doi: 10.1186/s11671-019-3005-z

39. Draviana HT, Fitriannisa I, Jazidie A, Krisnawati DI, Khafid M, Kuo T-R. Antibacterial mechanisms of negatively and positively charged ligands on gold nanoclusters. ACS Appl Nano Mater. 2025, 8(13):6380-90. https://doi.org/10.1021/acsanm.4c07269

Published

27-10-2025

How to Cite

MELNIKOVA, N., MALYGINA, D., KLABUKOVA, I., SOLOVEVA, A., & AULOVA, E. (2025). BETULIN 3,28-DIPHOSPHATE AS AN ACTIVATOR OF ANTIOXIDANT ENZYMES IN COMBINATION WITH AMINES AND AN ENHANCER OF BACTERICIDAL AND FUNGICIDAL ACTIVITY OF BENZALKONIUM CHLORIDE. International Journal of Applied Pharmaceutics, 18(1). https://doi.org/10.22159/ijap.2026v18i1.56637

Issue

Section

Original Article(s)

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.