GC-MS METABOLITE PROFILING, TOTAL PHENOLIC, ANTIOXIDANT ACTIVITY, AND IN SILICO APPROACH IN CHRONIC ANTI-INFLAMMATORY ETHANOL EXTRACTS OF POLYSCIAS SCUTELLARIA (BURM. F.) FOSBERG LEAVES

Authors

  • ALFIAN SYARIFUDDIN Doctorate Program of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia. Department of Pharmacy, Universitas Muhammadiyah Magelang, Central Java, Indonesia https://orcid.org/0000-0003-1117-8560
  • ARIEF NURROCHMAD Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy Universitas Gadjah Mada, Yogyakarta, Indonesia
  • NANANG FAKHRUDIN Department of Pharmacognosy, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia. Center for the Research of Medicinal Plants and Natural Products, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia https://orcid.org/0000-0001-7954-9503

DOI:

https://doi.org/10.22159/ijap.2025.v17s3.03

Keywords:

Anti-inflammatory, Cytokine, In silico, Molecular docking, Polyscias scutellaria

Abstract

Objective: Polyscias scutellaria has been recognised as a medicinal herb with therapeutic potential. Various studies have identified bioactive compounds in this plant that exhibit a range of biological activities, including anti-proliferative, anti-inflammatory, anti-parasitic, and anti-diabetic properties.

Methods: This study aimed to profile the Extract Ethanol Polyscias scutellaria (EEPS) metabolites using gass chromatography mass spectrometry (GC-MS) and predict their activities against four anti-inflammatory receptors obtained from the Protein Data Bank (RCSB PDB), cycloxygenase-2 (COX-2) (5IKT), interleukin-6 (IL-6) (1ALU), Interleukin-1 beta (IL-1β) IL-1 β (8C3U), and tumor necrosis factor alpha (TNF-α), TNF-α (7JRA) using AutoDock 1.5.6 software. Validation of the native ligands were carried out using the root mean square deviation (RMSD) value, and the total phenolic compounds were also examined using Spectrophotometry Ultra Violet-Visible (UV-Vis). Furthermore, the UV-Vis was also used to test the 2,2-azinobis-3-Ethylbenzothiazoline-6-Sulfonic Acid (ABTS) and Ferric Reducing Antioxidant Power (FRAP).

Results: The Total Phenol Content (TPC) is 131.458±8.818 ppm, and during the FRAP assay, EEPS showed the highest IC50 value, measured at 54.66±2.35 μg/ml, which was significantly higher than that of ascorbic acid (10.10±0.14 μg/ml). Similarly, in the ABTS assay, EEPS exhibited an IC50 of 55.13±1.19 μg/ml, exceeding the IC50 of ascorbic acid (10.47±0.29 μg/ml). Although GC-MS analysis identified eight compounds, molecular docking was performed only on the two most abundant and structurally similar compounds: (S, Z)-Heptadeca-1,9-dien-4,6-diyn-3-ol and phytol. Native ligands were validated with RMSD values of less than 2 Å.

Conclusion: Molecular docking showed that (S-Z)-Heptadeca-1,9-dien-4,6-diyn-3-ol binds better to the COX-2 and IL-6 receptors than Phytol. However, phytol binds better to the TNF-α and IL-1β receptors. These findings suggest potential anti-inflammatory activity, but further in vitro and in vivo studies are necessary to confirm their biological effects.

References

1. Clement JA, Clement ES. The medicinal chemistry of genus Aralia. Curr Top Med Chem. 2015;14(24):2783-801. doi: 10.2174/1568026615666141208110021, PMID 25487007.

2. Ashmawy NS, Gad HA, Ashour ML, El Ahmady SH, Singab AN. The genus polyscias (Araliaceae): a phytochemical and biological review. J Herb Med. 2020 Oct;23:100377. doi: 10.1016/j.hermed.2020.100377.

3. Nasution SL, Awanis, Elsafarindo S. Effect of mangkokan (Polyscias Scutellaria) leaf extract on blood sugar levels in alloxan-induced male white rats. MKB. 2021;53(3):132-7. doi: 10.15395/mkb.v53n3.2223.

4. Nur S, Mus S, Fadri A, Jumaetri F. Determination of total phenolic and flavonoid levels of Mangkokan leaf extract (Polyscias Scutellaria). J Pharm Med Sci. 2020;5(1):24-7.

5. Paphassarang S, Raynaud J, Lussignol M, Becchi M. Triterpenic glycosides from polyscias scutellaria. Phytochemistry. 1989;28(5):1539-41. doi: 10.1016/S0031-9422(00)97786-0.

6. Azzahra CM. UJI Analgetika dan anti inflamasi ekstrak dan fraksi daun mangkokan (Polyscias Scutellaria (Burm. f.) Fosberg.) pada tikus putih jantan skripsi. Universitas Sriwijaya; 2022.

7. Islam MA, Zilani MN, Biswas P, Khan DA, Rahman MH, Nahid R. Evaluation of in vitro and in silico anti-inflammatory potential of some selected medicinal plants of Bangladesh against cyclooxygenase-II enzyme. J Ethnopharmacol. 2022 Mar 1;285:114900. doi: 10.1016/j.jep.2021.114900, PMID 34896569.

8. Eden WT, Badahdah NK, Kimia J. Antioxidant activity of mangkokan leaves. Media Farmasi Indones. 2016;11:1126-35.

9. Komlavi E, Yaovi Gameli A, KYAE, Kokou I, Koffi K, Amegnona A. Screening phytochimique etude toxicologique evaluation des activites antiplasmodiale et antiradicalaire de la tige feuillee de senna occidentalis linn (Fabaceae). ESJ. 2019;15(6):411. doi: 10.19044/esj.2019.v15n6p411.

10. Saleem A, Saleem M, Akhtar MF. Antioxidant, anti-inflammatory and antiarthritic potential of Moringa oleifera Lam: an ethnomedicinal plant of Moringaceae family. S Afr J Bot. 2020 Jan;128:246-56. doi: 10.1016/j.sajb.2019.11.023.

11. Singh A, Yau YF, Leung KS, El Nezami H, Lee JC. Interaction of polyphenols as antioxidant and anti-inflammatory compounds in brain liver gut axis. Antioxidants (Basel). 2020;9(8):669. doi: 10.3390/antiox9080669, PMID 32722619.

12. Xu Y, Chen F. Antioxidant anti-inflammatory and anti-apoptotic activities of Nesfatin-1: a review. J Inflamm Res. 2020 Sep 28;13:607-17. doi: 10.2147/JIR.S273446, PMID 33061526.

13. Osorio JS, Trevisi E, Ji P, Drackley JK, Luchini D, Bertoni G. Biomarkers of inflammation, metabolism and oxidative stress in blood liver and milk reveal a better immunometabolic status in peripartal cows supplemented with Smartamine M or meta smart. J Dairy Sci. 2014;97(12):7437-50. doi: 10.3168/jds.2013-7679, PMID 25282419.

14. Dinarello CA. Biologic basis for interleukin-1 in disease. Blood. 1996;87(6):2095-147. doi: 10.1182/blood.V87.6.2095.bloodjournal8762095, PMID 8630372.

15. Lopes AH, Silva RL, Fonseca MD, Gomes FI, Maganin AG, Ribeiro LS. Molecular basis of carrageenan-induced cytokines production in macrophages. Cell Commun Signal. 2020;18(1):141. doi: 10.1186/s12964-020-00621-x, PMID 32894139.

16. Turner MD, Nedjai B, Hurst T, Pennington DJ. Cytokines and chemokines: at the crossroads of cell signalling and inflammatory disease. Biochim Biophys Acta Mol Cell Res. 2014;1843(11):2563-82. doi: 10.1016/j.bbamcr.2014.05.014, PMID 24892271.

17. Muhar AM, Velaro AJ, Prananda AT, Nugraha SE, Çamlik G, Wasnik S. Polyscias scutellaria: an emerging source of natural antioxidants and anti-inflammatory compounds for health. Pharmacia. 2023;70(4):1463-70. doi: 10.3897/pharmacia.70.e112502.

18. Fakhrudin N, Waltenberger B, Cabaravdic M, Atanasov AG, Malainer C, Schachner D. Identification of plumericin as a potent new inhibitor of the NF-κB pathway with anti-inflammatory activity in vitro and in vivo. Br J Pharmacol. 2014;171(7):1676-86. doi: 10.1111/bph.12558, PMID 24329519.

19. Franyoto YD, Nurrochmad A, Fakhrudin N. Murraya koenigii L. Spreng: an updated review of chemical composition pharmacological effects and toxicity studies. J Appl Pharm Sci. 2024;14(6):11-27. doi: 10.7324/JAPS.2024.169254.

20. Triastuti A, Pradana DA, Setiawan ID, Fakhrudin N, Himmi SK, Widyarini S. In vivo anti-inflammatory activities of plantago major extract and fractions and analysis of their phytochemical components using high-resolution mass spectrometry. Res Pharm Sci. 2022;17(6):665-76. doi: 10.4103/1735-5362.359433, PMID 36704431.

21. Vogl S, Picker P, Mihaly Bison J, Fakhrudin N, Atanasov AG, Heiss EH. Ethnopharmacological in vitro studies on Austria’s folk medicine an unexplored lore in vitro anti-inflammatory activities of 71 Austrian traditional herbal drugs. J Ethnopharmacol. 2013;149(3):750-71. doi: 10.1016/j.jep.2013.06.007, PMID 23770053.

22. Aisyiyah NM, Siregar KA, Kustiawan PM. Review: potential of red betel leaves (Piper crocatum) as anti-inflammatory in rheumatoid arthritis. JFSP. 2021;7(2):197-206. doi: 10.31603/pharmacy.v7i2.5283.

23. Shaikh S, Badruddeen, Irfan Khan M, Ahmed A. In vitro and in vivo screening of anti-inflammatory activity of methanolic and aqueous extracts of Anogeissus latifolia leaves. Int J Pharm Pharm Sci. 2022;14(11):65-72. doi: 10.22159/ijpps.2022v14i11.45593.

24. Saleem M. Lupeol a novel anti-inflammatory and anti-cancer dietary triterpene. Cancer Lett. 2009;285(2):109-15. doi: 10.1016/j.canlet.2009.04.033, PMID 19464787.

25. Dash S, Sidhan R. Phytochemical characterization of Urochloa distachya (L.) through gas chromatography mass spectrometry and liquid chromatography mass spectrometry analysis with in silico and in vivo anti-inflammatory assessment IN carrageenan induced paw edema. Asian J Pharm Clin Res. 2025;18(4):199-222. doi: 10.22159/ajpcr.2025v18i4.53861.

26. Santos CC, Salvadori MS, Mota VG, Costa LM, De Almeida AA, De Oliveira GA. Antinociceptive and antioxidant activities of phytol in vivo and in vitro models. Neurosci J. 2013;2013:9. doi: 10.1155/2013/949452, PMID 26317107.

27. Komiya T, Kyohkon M, Ohwaki S, Eto J, Katsuzaki H, Imai K. Phytol induces programmed cell death in human lymphoid leukemia Molt 4B cells. Int J Mol Med. 1999;4(4):377-80. doi: 10.3892/ijmm.4.4.377, PMID 10493978.

28. Takahashi M, Isoi K, Kimura Y, Yoshikura M. Studies on the components of panax ginseng C.A. meyer. II on the ethereal extract of ginseng radix alba Yakugaku Zasshi. 1964;84:752-6. doi: 10.1248/yakushi1947.84.8_752, PMID 14236242.

29. Knispel N, Ostrozhenkova E, Schramek N, Huber C, Pena Rodriguez LM, Bonfill M. Biosynthesis of panaxynol and panaxydol in panax ginseng. Molecules. 2013;18(7):7686-98. doi: 10.3390/molecules18077686, PMID 23884121.

30. De Souza NJ, Nes WR. The presence of phytol in brown and blue green algae and its relationship to evolution. Phytochemistry. 1969;8(5):819-22. doi: 10.1016/S0031-9422(00)85865-3.

31. Ischebeck T, Zbierzak AM, Kanwischer M, Dormann P. A salvage pathway for phytol metabolism in Arabidopsis. J Biol Chem. 2006;281(5):2470-7. doi: 10.1074/jbc.M509222200, PMID 16306049.

32. Proteau PJ. Biosynthesis of phytol in the cyanobacterium Synechocystis sp. UTEX 2470: utilization of the non-mevalonate pathway. J Nat Prod. 1998;61(6):841-3. doi: 10.1021/np980006q, PMID 9644082.

33. Ghaneian MT, Ehrampoush MH, Jebali A, Hekmatimoghaddam S, Mahmoudi M. Antimicrobial activity toxicity and stability of phytol as a novel surface disinfectant. Environmental Health Engineering and Management Journal. 2015;2(1):13-6.

34. Kim CW, Lee HJ, Jung JH, Kim YH, Jung DB, Sohn EJ. Activation of caspase‐9/3 and inhibition of epithelial mesenchymal transition are critically involved in antitumor effect of phytol in hepatocellular carcinoma cells. Phytother Res. 2015;29(7):1026-31. doi: 10.1002/ptr.5342, PMID 25892665.

35. Kagoura M, Matsui C, Morohashi M. Phytol is a novel tumor promoter on ICR mouse skin. Jpn J Cancer Res. 1999;90(4):377-84. doi: 10.1111/j.1349-7006.1999.tb00758.x, PMID 10363574.

36. Silva RO, Sousa FB, Damasceno SR, Carvalho NS, Silva VG, Oliveira FR. Phytol a diterpene alcohol inhibits the inflammatory response by reducing cytokine production and oxidative stress. Fundam Clin Pharmacol. 2014;28(4):455-64. doi: 10.1111/fcp.12049, PMID 24102680.

37. McDonald SJ, Bullard BM, Vander Veen BN, Cardaci TD, Huss AR, Fan D. Panaxynol alleviates colorectal cancer in a murine model via suppressing macrophages and inflammation. Am J Physiol Gastrointest Liver Physiol. 2023;325(4):G318-33. doi: 10.1152/ajpgi.00119.2023, PMID 37489869.

38. Huang ZY, Wu QY, Li CX, Yu HL, Xu JH. Facile production of (+)-aristolochene and (+)-bicyclogermacrene in Escherichia coli using newly discovered sesquiterpene synthases from penicillium expansum. J Agric Food Chem. 2022;70(19):5860-8. doi: 10.1021/acs.jafc.2c01885, PMID 35506591.

39. Elgamal AM, Ahmed RF, Abd El Gawad AM, El Gendy AE, Elshamy AI, Nassar MI. Chemical profiles anticancer and anti-aging activities of essential oils of Pluchea dioscoridis (L.) DC. and Erigeron bonariensis L. Plants (Basel). 2021;10(4):667. doi: 10.3390/plants10040667, PMID 33807147.

40. Aparna V, Dileep KV, Mandal PK, Karthe P, Sadasivan C, Haridas M. Anti-inflammatory property of n-hexadecanoic acid: structural evidence and kinetic assessment. Chem Biol Drug Des. 2012;80(3):434-9. doi: 10.1111/j.1747-0285.2012.01418.x, PMID 22642495.

41. Shaaban MT, Ghaly MF, Fahmi SM. Antibacterial activities of hexadecanoic acid methyl ester and green synthesized silver nanoparticles against multidrug-resistant bacteria. J Basic Microbiol. 2021;61(6):557-68. doi: 10.1002/jobm.202100061, PMID 33871873.

42. Krishnan KR, James F, Mohan A. Isolation and characterization of n-hexadecanoic acid from Canthium parviflorum leaves. Journal of Chemical and Pharmaceutical Research. 2016;8(8):614-7.

43. Omar S, Fahmi AE, Abdur Rahman M, Ghareeb M, Abdelaziz M. Biological and chemical evaluation of secondary metabolites from endophytic fungi isolated from egyptian ornamental plants. Egypt J Chem. 2022;66(8):267-82. doi: 10.21608/ejchem.2022.173108.7160.

44. Tyagi T, Agarwal M. Phytochemical screening and GC-MS analysis of bioactive constituents in the ethanolic extract of Pistia stratiotes L. and Eichhornia crassipes (Mart.) solms. Journal of Pharmacognosy and Phytochemistry. 2017;6(1):195-206.

45. Turkez H, Celik K, Togar B. Effects of copaene a tricyclic sesquiterpene on human lymphocytes cells in vitro. Cytotechnology. 2014;66(4):597-603. doi: 10.1007/s10616-013-9611-1, PMID 24287609.

46. Ojha S, Kurdi A, Sadek B, Kaleem M, Cai L, Kamal MA. Phytochemicals as prototypes for pharmaceutical leads towards drug development against diabetic cardiomyopathy. Curr Pharm Des. 2016;22(20):3058-70. doi: 10.2174/1381612822666160322145255, PMID 27000825.

47. Viveros Paredes JM, Gonzalez Castaneda RE, Gertsch J, Chaparro Huerta V, Lopez Roa RI, Vazquez Valls E. Neuroprotective effects of β-caryophyllene against dopaminergic neuron injury in a murine model of parkinsons disease induced by MPTP. Pharmaceuticals (Basel). 2017;10(3):60. doi: 10.3390/ph10030060, PMID 28684694.

48. Chang HJ, Kim JM, Lee JC, Kim WK, Chun HS. Protective effect of β-caryophyllene a natural bicyclic sesquiterpene against cerebral ischemic injury. J Med Food. 2013;16(6):471-80. doi: 10.1089/jmf.2012.2283, PMID 23734999.

49. Ames Sibin AP, Barizao CL, Castro Ghizoni CV, Silva FM, Sa Nakanishi AB, Bracht L. β‐caryophyllene the major constituent of copaiba oil reduces systemic inflammation and oxidative stress in arthritic rats. J Cell Biochem. 2018;119(12):10262-77. doi: 10.1002/jcb.27369, PMID 30132972.

50. Arizuka N, Murakami T, Suzuki K. The effect of β-caryophyllene on nonalcoholic steatohepatitis. J Toxicol Pathol. 2017;30(4):263-73. doi: 10.1293/tox.2017-0018, PMID 29097836.

51. Assis LC, Straliotto MR, Engel D, Hort MA, Dutra RC, De Bem AF. β-caryophyllene protects the C6 glioma cells against glutamate-induced excitotoxicity through the Nrf2 pathway. Neuroscience. 2014 Oct 24;279:220-31. doi: 10.1016/j.neuroscience.2014.08.043, PMID 25194788.

52. Alberti TB, Barbosa WL, Vieira JL, Raposo NR, Dutra RC. (-)-β-Caryophyllene a CB2 receptor selective phytocannabinoid suppresses motor paralysis and neuroinflammation in a murine model of multiple sclerosis. Int J Mol Sci. 2017;18(4):691. doi: 10.3390/ijms18040691, PMID 28368293.

53. Yoo HJ, Jwa SK. Inhibitory effects of β-caryophyllene on streptococcus mutans biofilm. Arch Oral Biol. 2018 Apr;88:42-6. doi: 10.1016/j.archoralbio.2018.01.009, PMID 29407750.

54. De Oliveira CC, De Oliveira CV, Grigoletto J, Ribeiro LR, Funck VR, Grauncke AC. Anticonvulsant activity of β-caryophyllene against pentylenetetrazol induced seizures. Epilepsy Behav. 2016 Mar;56:26-31. doi: 10.1016/j.yebeh.2015.12.040, PMID 26827298.

55. Tchekalarova J, Da Conceicao Machado K, Gomes Junior AL, De Carvalho Melo Cavalcante AA, Momchilova A, Tzoneva R. Pharmacological characterization of the cannabinoid receptor 2 agonist β-caryophyllene on seizure models in mice. Seizure. 2018 Apr;57:22-6. doi: 10.1016/j.seizure.2018.03.009, PMID 29547827.

56. Liu J, Wang C, Wang Z, Zhang C, Lu S, Liu J. The antioxidant and free radical scavenging activities of extract and fractions from corn silk (Zea mays L.) and related flavone glycosides. Food Chem. 2011;126(1):261-9. doi: 10.1016/j.foodchem.2010.11.014.

57. Molyneux P. The use of the stable free radical diphenylpicryl hydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin J Sci Technol. 2004;26(2):212-9.

58. Stankovic MS, Topuzovic MD. In vitro antioxidant activity of extracts from leaves and fruits of common dogwood (Cornus sanguinea L.). Acta Bot Gallica. 2012;159(1):79-83. doi: 10.1080/12538078.2012.671650.

59. Sohretoglu D, Barut B. Total phenolic content, cyclooxygenases, glucosidase, acetylcholinesterase, tyrosinase inhibitory and DPPH radical scavenging effects of Cornus sanguinea leaves and fruits. JRP. 2020;24(5):623-31. doi: 10.35333/jrp.2020.217.

60. Rudiana T, Indriatmoko DD, Virginia K. Antioxidant activity of the combination of ambarella leaves (Spondias dulcis Parkinson) and soursop leaves (Annona muricata Linn) extract. JFSP. 2023;9(2):83-7. doi: 10.31603/pharmacy.v9i2.5082.

61. Heldin CH, Lu B, Evans R, Gutkind JS. Signals and receptors. Cold Spring Harb Perspect Biol. 2016;8(4):a005900. doi: 10.1101/cshperspect.a005900, PMID 27037414.

62. Prakash V. Terpenoids as source of anti-inflammatory compounds. Asian J Pharm Clin Res. 2017;10(3):68. doi: 10.22159/ajpcr.2017.v10i3.16435.

63. La Basy L, Hertiani T, Murwanti R, Damayanti E. Investigation of Cox-2 inhibition of Laportea decumana (Roxb.). Wedd extract to support its analgesic potential. J Ethnopharmacol. 2024;318(A):116857. doi: 10.1016/j.jep.2023.116857, PMID 37453622.

64. Liu W, Cui X, Zhong Y, Ma R, Liu B, Xia Y. Phenolic metabolites as therapeutic in inflammation and neoplasms: molecular pathways explaining their efficacy. Pharmacol Res. 2023;193:106812. doi: 10.1016/j.phrs.2023.106812, PMID 37271425.

65. Codo Toafode NM, Marquardt P, Ahyi V, Fester K, Spiegler V, Vissiennon C. Anti-inflammatory potential of phenolic compounds isolated from entada africana guill. and perr. used in the republic of benin. Front Pharmacol. 2022 Jun 30;13:931240. doi: 10.3389/fphar.2022.931240, PMID 35847017.

66. Abdurrahman S, Ruslin R, Hasanah AN, Mustarichie R. Molecular docking studies and ADME-Tox prediction of phytocompounds from Merremia peltata as a potential anti-alopecia treatment. J Adv Pharm Technol Res. 2021;12(2):132-9. doi: 10.4103/japtr.JAPTR_222_20, PMID 34159143.

67. Meng XY, Zhang HX, Mezei M, Cui M. Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des. 2011;7(2):146-57. doi: 10.2174/157340911795677602, PMID 21534921.

68. Ahmed ME, Abdelgadir AA, Ahmed EM. Traditional use of medicinal plants in Central Sudan. Arabian Journal of Medicinal & Aromatic Plants. 2021;7(1):29-73. doi: 10.48347/IMIST.PRSM/ajmap-v7i1.22273.

69. Ferrara P, Gohlke H, Price DJ, Klebe G, Brooks CL. Assessing scoring functions for protein-ligand interactions. J Med Chem. 2004;47(12):3032-47. doi: 10.1021/jm030489h, PMID 15163185.

70. Yunta MJ. Docking and ligand binding affinity: uses and pitfalls. Am J Model Optim. 2016;4(3):74-114. doi: 10.12691/ajmo-4-3-2.

71. Helmi NA, Sudarmanto A, Ikawati Z, Fakhrudin N. Caesalpinia sappan L. Wood is a potential source of natural phosphodiesterase-1 inhibitors. PJ. 2020;12(6):1206-17. doi: 10.5530/pj.2020.12.169.

72. Madushanka A, Moura RT, Verma N, Kraka E. Quantum mechanical assessment of protein ligand hydrogen bond strength patterns: insights from semiempirical tight binding and local vibrational mode theory. Int J Mol Sci. 2023;24(7):6311. doi: 10.3390/ijms24076311, PMID 37047283.

73. Cabal Hierro L, Lazo PS. Signal transduction by tumor necrosis factor receptors. Cell Signal. 2012;24(6):1297-305. doi: 10.1016/j.cellsig.2012.02.006, PMID 22374304.

74. Bradley JR. TNF‐mediated inflammatory disease. J Pathol. 2008;214(2):149-60. doi: 10.1002/path.2287, PMID 18161752.

75. Delano MJ, Ward PA. The immune systems role in sepsis progression, resolution and long-term outcome. Immunol Rev. 2016;274(1):330-53. doi: 10.1111/imr.12499, PMID 27782333.

76. Darabi P, Khazali H, Mehrabani Natanzi M. Therapeutic potentials of the natural plant flavonoid apigenin in polycystic ovary syndrome in rat model: via modulation of pro-inflammatory cytokines and antioxidant activity. Gynecol Endocrinol. 2020;36(7):582-7. doi: 10.1080/09513590.2019.1706084, PMID 31888395.

77. Guazelli CF, Fattori V, Ferraz CR, Borghi SM, Casagrande R, Baracat MM. Antioxidant and anti-inflammatory effects of hesperidin methyl chalcone in experimental ulcerative colitis. Chem Biol Interact. 2021 Jan 5;333:109315. doi: 10.1016/j.cbi.2020.109315, PMID 33171134.

78. Stringham NT, Holmes PV, Stringham JM. Effects of macular xanthophyll supplementation on brain-derived neurotrophic factor, pro-inflammatory cytokines and cognitive performance. Physiol Behav. 2019 Nov 1;211:112650. doi: 10.1016/j.physbeh.2019.112650, PMID 31425700.

79. Taherkhani S, Suzuki K, Castell L. A short overview of changes in inflammatory cytokines and oxidative stress in response to physical activity and antioxidant supplementation. Antioxidants (Basel). 2020;9(9):886. doi: 10.3390/antiox9090886, PMID 32962110.

Published

28-08-2025

How to Cite

SYARIFUDDIN, A., NURROCHMAD, A., & FAKHRUDIN, N. (2025). GC-MS METABOLITE PROFILING, TOTAL PHENOLIC, ANTIOXIDANT ACTIVITY, AND IN SILICO APPROACH IN CHRONIC ANTI-INFLAMMATORY ETHANOL EXTRACTS OF POLYSCIAS SCUTELLARIA (BURM. F.) FOSBERG LEAVES. International Journal of Applied Pharmaceutics, 17(3), 22–29. https://doi.org/10.22159/ijap.2025.v17s3.03

Issue

Section

Original Article(s)

Similar Articles

<< < 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.