EVALUATION OF TOTAL PHENOLIC CONTENT, ANTIOXIDANT, AND ANTI-INFLAMMATORY POTENTIAL OF MURRAYA KOENIGII

Authors

  • YUVIANTI DWI FRANYOTO Doctoral Program in Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta-55281, Indonesia. Faculty of Pharmacy, Semarang College of Pharmaceutical Sciences (Stifar Yayasan Pharmasi Semarang), Letnan Jendral Sarwo Edie Wibowo, Semarang-50192, Indonesia https://orcid.org/0000-0002-5400-3739
  • ARIEF NURROCHMAD Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta-55281, Indonesia https://orcid.org/0000-0001-7597-2574
  • NANANG FAKHRUDIN Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta-55281, Indonesia. Medicinal Plants and Natural Products Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta, Indonesia https://orcid.org/0000-0001-7954-9503

DOI:

https://doi.org/10.22159/ijap.2025.v17s3.11

Keywords:

Anti-inflammatory, Antioxidant, Curry leaf, Ethanolic extract, Phenolic acids

Abstract

Objective: This study aims to determine the total phenolic and flavonoid content and evaluate the in vitro antioxidant and anti-inflammatory activity of Murraya koenigii leaf extract.

Methods: Ethanolic extract of M. koenigii leaves was prepared using the remaceration extraction process. Antioxidant activity was assessed using DPPH free radical scavenging, ABTS, and FRAP tests. Anti-inflammatory activity was evaluated in vitro using the protein denaturation method.

Results: M. koenigii leaf extract contained a total phenolic content of 211.7329 GAE and a total flavonoid content of 157.2957 QA. The extract exhibited strong antioxidant activity based on DPPH, ABTS, and FRAP tests, with IC₅₀ values of 28.82 mg/l, 19.02 mg/l, and 30.68 mg/l, respectively. Additionally, the extract significantly inhibited protein denaturation, demonstrating anti-denaturation activity with an IC₅₀ of 19.65 µg/ml, compared to diclofenac sodium, which had an IC₅₀ of 11.34 µg/ml.

Conclusion: These findings suggest that M. koenigii leaf extract possesses strong antioxidant and anti-inflammatory properties, making it a potential adjunctive treatment for inflammation-related pain. Future studies elucidating the underlying mechanisms of these effects could have significant implications for clinical science.

References

1. Woranam K, Senawong G, Utaiwat S, Yunchalard S, Sattayasai J, Senawong T. Anti-inflammatory activity of the dietary supplement Houttuynia cordata fermentation product in RAW264.7 cells and Wistar rats. PLOS One. 2020;15(3):e0230645. doi: 10.1371/journal.pone.0230645, PMID 32210452.

2. Kotas ME, Medzhitov R. Homeostasis, inflammation and disease susceptibility. Cell. 2015 Feb 26;160(5):816-27. doi: 10.1016/j.cell.2015.02.010, PMID 25723161.

3. Gunathilake KD, Ranaweera KK, Rupasinghe HP. In vitro anti-inflammatory properties of selected green leafy vegetables. Biomedicines. 2018 Nov;6(4):107. doi: 10.3390/biomedicines6040107, PMID 30463216.

4. Medzhitov R. Inflammation 2010: new adventures of an old flame. Cell. 2010;140(6):771-6. doi: 10.1016/j.cell.2010.03.006, PMID 20303867.

5. Iddir M, Brito A, Dingeo G, Fernandez Del Campo SS, Samouda H, La Frano MR. Strengthening the immune system and reducing inflammation and oxidative stress through diet and nutrition: considerations during the COVID-19 crisis. Nutrients. 2020;12(6):1562. doi: 10.3390/nu12061562, PMID 32471251.

6. Closa D, Folch Puy E. Oxygen free radicals and the systemic inflammatory response. IUBMB Life. 2004;56(4):185-91. doi: 10.1080/15216540410001701642, PMID 15230345.

7. Zeb A. Concept mechanism and applications of phenolic antioxidants in foods. J Food Biochem. 2020 Sep;44(9):e13394. doi: 10.1111/jfbc.13394, PMID 32691460.

8. Xie J, Xiong S, Li Y, Xia B, Li M, Zhang Z. Phenolic acids from medicinal and edible homologous plants: a potential anti-inflammatory agent for inflammatory diseases. Front Immunol. 2024 Jun 21;15:1345002. doi: 10.3389/fimmu.2024.1345002, PMID 38975345.

9. Nunes CD, Barreto Arantes M, Menezes De Faria Pereira S, Leandro Da Cruz L, De Souza Passos M, Pereira de Moraes L. Plants as sources of anti-inflammatory agents. Molecules. 2020;25(16):3726. doi: 10.3390/molecules25163726, PMID 32824133.

10. Bindu S, Mazumder S, Bandyopadhyay U. Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: a current perspective. Biochem Pharmacol. 2020 Oct;180:114147. doi: 10.1016/j.bcp.2020.114147, PMID 32653589.

11. Tatiya AU, Saluja AK, Kalaskar MG, Surana SJ, Patil PH. Evaluation of analgesic and anti-inflammatory activity of Bridelia retusa (Spreng.) bark. J Tradit Complement Med. 2017 Oct;7(4):441-51. doi: 10.1016/j.jtcme.2016.12.009, PMID 29034192.

12. Zin M. Antioxidants properties of Murraya koenigii: a comparative study of three extraction methods. Food Res. 2021 Feb;5(1):43-9. doi: 10.26656/fr.2017.5(1).307.

13. Moni SS, Tripathi P, Sultan MH, Alshahrani S, Alqahtani SS, Madkhali OA. Wound healing and cytokine modulating potential of medicinal oil formulation comprising leaf extract of Murraya koenigii and olive oil. Braz J Biol. 2022 Apr 1;82:e256158. doi: 10.1590/1519-6984.256158, PMID 35384962.

14. Franyoto YD, Nurrochmad A, Fakhrudin N. Murraya koenigii L. spreng: an updated review of chemical composition pharmacological effects and toxicity studies. J Appl Pharm Sci. 2024;14(6):11-27. doi: 10.7324/JAPS.2024.169254.

15. Kartik Salwe J, Mirunalini R, Mano J, Manimekalai K. Evaluation of analgesic activity of Murraya koenigii and Coriandrum sativum leaves extract in animal model. Asian J Pharm Clin Res. 2018;11(1):328-31. doi: 10.22159/ajpcr.2018.v11i1.22718.

16. Sultana SS. In vitro antileishmanial activities of three medicinal plants: argemone mexicana Murraya koenigii and Cinnamomum tamala against miltefosine-resistant promastigotes of Leishmania donovani parasites. Int J Pharm Pharm Sci. 2021;13(9):27-33. doi: 10.22159/ijpps.2021v13i9.42349.

17. Yu L, Haley S, Perret J, Harris M, Wilson J, Qian M. Free radical scavenging properties of wheat extracts. J Agric Food Chem. 2002 Mar 1;50(6):1619-24. doi: 10.1021/jf010964p, PMID 11879046.

18. Chang C, Yang M, Wen H, Chern J. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J Food Drug Anal. 2002;10(3):82-178. doi: 10.38212/2224-6614.2748.

19. Wu Y, Yang Q, Wang D, Deng R, Yu M, Wang X. A comparative study of echinacoside oleuropein content and antioxidant properties of different solvent extracts from Syringa pubescens Turcz. Pak J Pharm Sci. 2022 Jan;35(1):35-40. PMID 35221270.

20. Arnao MB. Some methodological problems in the determination of antioxidant activity using chromogen radicals: a practical case. Trends Food Sci Technol. 2000;11(11):419-21. doi: 10.1016/S0924-2244(01)00027-9.

21. Yang Q, Wang X, Zhang Y, Li M, Wang P, Zhang J. Simultaneous determination of phenylethanoid glycosides and antioxidant activity of Syringa pubescens turcz. from different geographical origin in china. J Chromatogr Sci. 2023 Sep 1;61(8):766-72. doi: 10.1093/chromsci/bmac099, PMID 36477207.

22. Qamar M, Akhtar S, Ismail T, Yuan Y, Ahmad N, Tawab A. Syzygium cumini(L.) skeels fruit extracts: in vitro and in vivo anti-inflammatory properties. J Ethnopharmacol. 2021 May 10;271:113805. doi: 10.1016/j.jep.2021.113805, PMID 33465442.

23. Fawwaz M, Pratama M, Latu S, Rahayu R, Nurkamilah A. The potential of bitter leaf [Vernonia amygdalina] in herbal medicine as anti-inflammatory agent. Ind J Teknol Manaj Agroindustri. 2023;12(1):36-44. doi: 10.21776/ub.industria.2023.012.01.4.

24. Arsyad AS, Nurrochmad A, Fakhrudin N. Phytochemistry traditional uses and pharmacological activities of Ficus elastica Roxb. ex hornem: a review. J Herb Med Pharmacol. 2023;12(1):41-53. doi: 10.34172/jhp.2023.04.

25. Helmi H, Fakhrudin N, Nurrochmad A, Ikawati Z. Plant natural products for cognitive impairment: a review of the preclinical evidence. J Appl Pharm Sci. 2021;11(6):1-14. doi: 10.7324/JAPS.2021.110601.

26. Weremczuk Jeżyna I, Gonciarz W, Grzegorczyk Karolak I. Antioxidant and anti-inflammatory activities of phenolic acid-rich extract from hairy roots of dracocephalum moldavica. Molecules. 2023;28(19):6759. doi: 10.3390/molecules28196759, PMID 37836602.

27. Alam MN, Bristi NJ, Rafiquzzaman M. Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharm J. 2013 Apr;21(2):143-52. doi: 10.1016/j.jsps.2012.05.002, PMID 24936134.

28. Rohmah J, Saidi I, Rini C, Purwanto Z, Tiana K, Putri T. Antioxidant activity assay of white Turi (Sesbania grandiflora (L.) Pers.) extracts using DPPH radical scavenging method. Pharmaciana. 2020;10(3):257. doi: 10.12928/pharmaciana.v10i3.16643.

29. Rosalina V, Hasibuan PA, Satria D, Meiyanto E, Putra DP, Chatri M. Antioxidant activity of flavonoid-rich fraction of (Vernonia amygdalina Delile.) leaves. Int J Appl Pharm. 2024;16(4):6-10. doi: 10.22159/ijap.2024v16s4.52249.

30. Baliyan S, Mukherjee R, Priyadarshini A, Vibhuti A, Gupta A, Pandey RP. Determination of antioxidants by DPPH radical scavenging activity and quantitative phytochemical analysis of Ficus religiosa. Molecules. 2022;27(4):1326. doi: 10.3390/molecules27041326, PMID 35209118.

31. Ari W, Jufri M, Surini S, Ellya B. Antioxidant activity of the active fraction of mangosteen rind extract (Garcinia mangostana). Int J Appl Pharm. 2024;16(1):145-8. doi: 10.22159/ijap.2024.v16s1.31.

32. Flieger J, Flieger W, Baj J, Maciejewski R. Antioxidants: classification, natural sources, activity/capacity measurements and usefulness for the synthesis of nanoparticles. Materials (Basel). 2021 Jul 25;14(15):4135. doi: 10.3390/ma14154135, PMID 34361329.

33. Prior RL, Wu X, Schaich K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem. 2005 May;53(10):4290-302. doi: 10.1021/jf0502698, PMID 15884874.

34. Marecek V, Mikyska A, Hampel D, Cejka P, Neuwirthova J, Malachova A. ABTS and DPPH methods as a tool for studying antioxidant capacity of spring barley and malt. J Cereal Sci. 2016 Nov 9;73. doi: 10.1016/j.jcs.2016.11.004.

35. Ilyasov IR, Beloborodov VL, Selivanova IA, Terekhov RP. ABTS/PP decolorization assay of antioxidant capacity reaction pathways. Int J Mol Sci. 2020 Feb;21(3):1131. doi: 10.3390/ijms21031131, PMID 32046308.

36. Nurrochmad A, Wirasti DA, Lukitaningsih E, Rahmawati A, Fakhrudin N. Effects of antioxidant anti-collagenase anti-elastase anti-tyrosinase of the extract and fraction from Turbinaria decurrens bory. Indones J Pharm. 2018 Dec 17;29(4):188-99. doi: 10.14499/indonesianjpharm29iss4pp188.

37. Alam B, Akter F, Parvin N, Sharmin Pia R, Akter S, Chowdhury J. Antioxidant analgesic and anti-inflammatory activities of the methanolic extract of Piper betle leaves. Avicenna J Phytomed. 2013;3(2):112-25. PMID 25050265.

38. Alamgeer UAM, Uttra AM, Hasan UH. Anti-arthritic activity of aqueous-methanolic extract and various fractions of Berberis orthobotrys bien ex aitch. BMC Complement Altern Med. 2017;17(1):371. doi: 10.1186/s12906-017-1879-9, PMID 28720131.

39. Mans DR, Friperson P, Djotaroeno M, Misser VS, Pawirodihardjo J. In vitro anti-inflammatory and antioxidant activities as well as phytochemical content of the fresh stem juice from Montrichardia arborescens Schott (Araceae). Pharmacogn J. 2022 Aug;14(4):296-304. doi: 10.5530/pj.2022.14.99.

40. Rahman MM, Rahaman MS, Islam MR, Rahman F, Mithi FM, Alqahtani T. Role of phenolic compounds in human disease: current knowledge and future prospects. Molecules. 2021 Dec;27(1):233. doi: 10.3390/molecules27010233, PMID 35011465.

41. Ferraz CR, Carvalho TT, Manchope MF, Artero NA, Rasquel Oliveira FS, Fattori V. Therapeutic potential of flavonoids in pain and inflammation: mechanisms of action pre-clinical and clinical data and pharmaceutical development. Molecules. 2020;25(3):762. doi: 10.3390/molecules25030762, PMID 32050623.

Published

28-08-2025

How to Cite

FRANYOTO, Y. D., NURROCHMAD, A., & FAKHRUDIN, N. (2025). EVALUATION OF TOTAL PHENOLIC CONTENT, ANTIOXIDANT, AND ANTI-INFLAMMATORY POTENTIAL OF MURRAYA KOENIGII. International Journal of Applied Pharmaceutics, 17(3), 73–80. https://doi.org/10.22159/ijap.2025.v17s3.11

Issue

Section

Original Article(s)

Similar Articles

<< < 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.