BIOCOMPATIBILITY OF NANO-HYDROXYAPATITE GRAFT FROM UNAM SNAIL (VOLEGALEA COCHLIDIUM) SHELL ON NIH 3T3 FIBROBLAST

Authors

  • DESY MARLIN PARSAULIAN SITUMORANG Periodontic Residency Program, Faculty of Dentistry, Universitas Sumatera Utara, Medan, Indonesia.
  • AINI HARIYANI NASUTION Department of Periodontics, Faculty of Dentistry, Universitas Sumatera Utara, Medan, Indonesia
  • IRMA ERVINA Department of Periodontics, Faculty of Dentistry, Universitas Sumatera Utara, Medan, Indonesia
  • PITU WULANDARI Department of Periodontics, Faculty of Dentistry, Universitas Sumatera Utara, Medan, Indonesia
  • SYAFRUDDIN ILYAS Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan, Indonesia
  • SYAFRUDDIN ILYAS Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan, Indonesia

DOI:

https://doi.org/10.22159/ijap.2025.v17s5.01

Keywords:

Biocompatibility, Hydroxyapatite, Nanoparticles, NIH 3T3

Abstract

Objective: Periodontitis may cause progressive damage to the periodontal tissue; thus, treatment such as bone grafts is often needed to restore tissue function. One of the synthetic bone graft materials used is hydroxyapatite. Hydroxyapatite can be found in nature, such as egg shells, coral, and shells of mussels and snails. Unam snail (Volegalea cochlidium) is a shelled animal with a high calcium carbonate level as a calcium source in hydroxyapatite. Despite the fact that numerous studies have demonstrated the benefits of using materials sourced from natural resources, discussions continue about their biocompatibility concerning cytotoxic reactions.

Methods: Nanoparticles of hydroxyapatite (nHAP) are produced by the sol-gel process. The 3T3 fibroblast cells were cultured on Dulbecco's Modified Eagle Medium (DMEM), and its viability was measured using the 2,5-diphenyl-2H-tetrazolium bromide (MTT) test method and repeated four times.

Results: The mean viability of NIH 3T3 fibroblast cells in different nHAP concentrations, respectively, 95.9±1.69% (1.6875 mg/ml), 92.9±0.82% (0.8437 mg/ml), 78.3±0.98% (3.375 mg/ml) and 38.3±0.9% (6.75 mg/ml). ANOVA test showed a significant difference between concentrations with p<0.001. The IC50 value of nHAP to the proportion of viability of NIH 3T3 fibroblast cells was 5.81 mg/ml. Discussion: With an IC₅₀ of 5.81 mg/ml, indicating moderate cytotoxicity, cell viability was over 90% at lower concentrations. The results validate Volegalea cochlidium as a new and feasible biogenic source of nano-hydroxyapatite.

Conclusion: Derived from Volegalea cochlidium, nano-hydroxyapatite (nHAP) exhibits concentration-dependent biocompatibility, with safe viability levels found below the IC₅₀ threshold of 3.49 mg/ml. The increasing concentration of nano-hydroxyapatite (nHAP) tends to decrease the viability of 3T3 fibroblast cells.

References

1. Sohn HS, Oh JK. Review of bone graft and bone substitutes with an emphasis on fracture surgeries. Biomater Res. 2019 Mar;23:9. doi: 10.1186/s40824-019-0157-y, PMID 30915231.

2. Fernandez De Grado G, Keller L, Idoux Gillet Y, Wagner Q, Musset AM, Benkirane Jessel N. Bone substitutes: a review of their characteristics, clinical use and perspectives for large bone defects management. J Tissue Eng. 2018;9:2041731418776819. doi: 10.1177/2041731418776819, PMID 29899969.

3. Sheikh Z, Hamdan N, Ikeda Y, Grynpas M, Ganss B, Glogauer M. Natural graft tissues and synthetic biomaterials for periodontal and alveolar bone reconstructive applications: a review. Biomater Res. 2017 Jun;21:9. doi: 10.1186/s40824-017-0095-5, PMID 28593053.

4. Ardhiyanto HB. The role of hydroxyapatite as bone graft material in stimulating type l collagen density in bone healing process. Stomatognatic Journal of Dentistry 2015;9:16-8. doi: 10.20473/cdj.v11i1.2021.24-27.

5. Rajesh R, Senthilkumar N, Hariharasubramanian A, Dominic Y, Ravichandran. Review on hydroxyapatite carbon nanotube composites and some of their applications. Int J Pharm Pharm Sci. 2012;4(5):23-7. PMID 235940680.

6. Hou Y, Shavandi A, Carne A, Bekhit AA, Ng TB, Cheung RC. Marine shells: potential opportunities for extraction of functional and health-promoting materials. Crit Rev Environ Sci Technol. 2016;46(11-12):1047-116. doi: 10.1080/10643389.2016.1202669.

7. Alhussary BN, Taqa A, Taqa A. Preparation and characterization of natural nanohydroxyapatite from eggshell and seashell and its effect on bone healing. J Appl Vet Sci. 2020;5(2):25-32. doi: 10.21608/javs.2020.85567.

8. Muhara I, Fadli A, Akbar F. Synthesis of hydroxyapatite from blood clamshell by low temperature hydrothermal method; 2015.

9. Affandi A, Amri A, Zultiniar Z. Hydroxyapatite synthesis from blood clam shells (Anadara granosa) by hydrothermal process variation of Ca/P mole ratio and synthesis temperature; 2015.

10. Zaki TM, Hidayat N. Analisis sumberdaya dan strategi pengembangan sektor kelautan dan perikanan Kabupaten Deli Serdang. J Ilm Adm Publik. 2017;5(2):25–33.

11. Morris JP, Backeljau T, Chapelle G. Shells from aquaculture: a valuable biomaterial not a nuisance waste product. Rev Aquacult. 2019;11(1):42-57. doi: 10.1111/raq.12225.

12. White MM, Chejlava M, Fried B, Sherma J. The concentration of calcium carbonate in shells of freshwater snails. Am Malacol Bull. 2007;22(1):139-42. doi: 10.4003/0740-2783-22.1.139.

13. Agrawal K, Singh G, Puri D, Prakash S. Synthesis and characterization of hydroxyapatite powder by sol-gel method for biomedical application. J Miner Mater Charact Eng. 2011;10(8):727-34. doi: 10.4236/jmmce.2011.108057.

14. Azis Y, Adrian M, Alfarisi CD, Khairat S, Sri RM. Synthesis of hydroxyapatite nanoparticles from egg shells by sol-gel method. IOP Conf S Mater Sci Eng. 2018;345:012040. doi: 10.1088/1757-899X/345/1/012040.

15. Kamiloglu S, Sari G, Ozdal T, Capanoglu E. Guidelines for cell viability assays. Food Front. 2020;1(3):332-49. doi: 10.1002/fft2.44.

16. Riss TL, Moravec RA, Niles AL, Duellman S, Benink HA, Worzella TJ. Cell viability assays. In: Markossian S, Grossman A, Brimacombe K, Arkin M, Auld D, Austin CP, editors. Assay Guidance Manual. Bethesda (MD): National Center for Advancing Translational Sciences; 2004. Available from: https://www.ncbi.nlm.nih.gov/books/NBK144065/. [Last accessed on 18 Jan 2022].

17. Benov L. Improved formazan dissolution for bacterial MTT assay. Microbiol Spectr. 2021;9(3):e0163721. doi: 10.1128/spectrum.01637-21, PMID 34937171.

18. Kartono GS, Widyastuti W, Setiawan HW. Biokompatibilitas graft hidroksiapatit dari cangkang kerang darah (Anadara granosa) terhadap kultur sel fibroblas. Denta Journal Kedokteran Gigi. 2014;8(1):1–8. doi: 10.30649/DENTA.V9I2.8.

19. Nastiti AD, Widyastuti W, Laihad FM. Bioviability of hydroxyapatite from blood clam shell extract (Anadara granosa) against mesenchymal stem cells as alveolar bone graft material. DENTA Jurnal Kedokteran Gigi. 2015;9(2):122. doi: 10.30649/denta.v9i2.8.

20. Anjaneyulu U, Pattanayak DK, Vijayalakshmi U. Snail shell derived natural hydroxyapatite: effects on NIH-3T3 cells for orthopedic applications. Mater Manuf Processes. 2016;31(2):206-16. doi: 10.1080/10426914.2015.1070415.

21. Shokrzadeh M, Modanloo M. An overview of the most common methods for assessing cell viability. J Res Med Den Sci. 2017;5(2):33-41. doi: 10.5455/jrmds.2017526.

22. Venkatesan J, Kim SK. Nano-hydroxyapatite composite biomaterials for bone tissue engineering: a review. J Biomed Nanotechnol. 2014;10(10):3124-40. doi: 10.1166/jbn.2014.1893, PMID 25992432.

23. Maulidah M, Irnamanda DH, Panjaitan FU. Biocompatibility test of haruan fish (Channa striata) bone hydroxyapatite to fibroblast cell as periodontal pocket therapy (in vitro study on BHK-21 fibroblast cell with hydroxyapatite of haruan fish bone as bone graft material). Dentino: Jurnal Kedokteran Gigi. 2018;3(2):150–5. doi: 10.20527/dentino.v3i2.5370.

24. Julizan N. Validasi penentuan aktivitas antioksidan dengan metode DPPH. Kandaga Media Publikasi Ilmiah Jabatan Fungsional Tenaga Kependidikan. 2019;1(1):1-8. doi: 10.24198/kandaga.v1i1.21473.

25. Anand TP, Chellaram C, Kumaran S, Shanthini CF. Biochemical composition and antioxidant activity of Pleuroploca trapezium meat. J Chem Pharm Res. 2010;2(4):526-35.

Published

25-12-2025

How to Cite

SITUMORANG, D. M. P., NASUTION, A. H., ERVINA, I., WULANDARI, P., ILYAS, S., & ILYAS, S. (2025). BIOCOMPATIBILITY OF NANO-HYDROXYAPATITE GRAFT FROM UNAM SNAIL (VOLEGALEA COCHLIDIUM) SHELL ON NIH 3T3 FIBROBLAST. International Journal of Applied Pharmaceutics, 17(5), 14–18. https://doi.org/10.22159/ijap.2025.v17s5.01

Issue

Section

Original Article(s)

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

<< < 7 8 9 10 11 > >> 

You may also start an advanced similarity search for this article.