EFFECTIVENESS OF CHITOSAN NANOPARTICLES LOADED 0.7% TETRACYCLINE ON CLINICAL PARAMETERS AND INTERLEUKIN-1β LEVEL IN PERIODONTITIS PATIENT

Authors

  • R. TRI RIZKY ANANDA Periodontics Residency Program, Faculty of Dentistry, Universitas Sumatera Utara, Medan, Indonesia
  • IRMA ERVINA Department of Periodontics, Faculty of Dentistry, Universitas Sumatera Utara, Medan, Indonesia
  • HARRY AGUSNAR Department of Biology, Faculty of Mathematics and Natural Science, Universitas Sumatera Utara, Medan, Indonesia
  • AINI HARIYANI NASUTION Department of Periodontics, Faculty of Dentistry, Universitas Sumatera Utara, Medan, Indonesia
  • R. LIA KUSUMAWATI Departement of Microbiology, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia

DOI:

https://doi.org/10.22159/ijap.2025.v17s5.06

Keywords:

Chitosan nanoparticle, Interleukin-1β, Papillary bleeding index, Pocket depth, Tetracycline

Abstract

Objective: Chitosan nanoparticles are natural polymer materials that have several good characteristics, such as biodegradability, a controlled drug delivery system, non-toxicity, anti-bacterial properties, and good biocompatibility. Tetracycline as adjunctive treatment in periodontal therapy showed an improvement in clinical parameters.

Methods: The research sample was first or second molar region in periodontitis patients with pocket depth ≥ 6 mm. The research used a pretest and posttest control group design. The research sample were 32 non-contiguous first or second molar in periodontitis patients aged 18-55 years with pocket depth ≥ 6 mm were divided into three groups (14 each groups), namely: scaling-root planing [SRP] group accompanied by subgingival application of chitosan nanoparticle loaded 0.7% tetracycline; SRP group accompanied by subgingival application of chitosan nanoparticle without tetracycline; and SRP group only. Interleukin-1β levels in gingival crevicular fluid and clinical parameters used are papillary bleeding index (PBI) and pocket depth (PD) were examined before and seven days after treatment.

Results: The results showed reducing in clinical parameters PD and PBI) and IL-1β levels after treatment in all groups (p<0.05). The most reduction of clinical parameters and IL-1β level was found in SRP accompanied by subgingival application of chitosan nanoparticle-loaded 0.7% tetracycline group compared with another group (p<0.05). Pocket depth reduction has a positive correlation with IL-1β level reduction (p<0.05). However, the short seven-day follow-up limits the assessment of long-term clinical outcomes.

Conclusion: Chitosan nanoparticle-loaded 0.7% tetracycline is effective as an adjunctive therapy in periodontal treatment.

References

1. Lertpimonchai A, Rattanasiri S, Arj Ong Vallibhakara SA, Attia J, Thakkinstian A. The association between oral hygiene and periodontitis: a systematic review and meta-analysis. Int Dent J. 2017;67(6):332-43. doi: 10.1111/idj.12317, PMID 28646499.

2. Wulandari P, Masulili SL, Kusdhany LS, Puspitadewi SR, Musurlieva N, Baziad A. Cross adaptation quality of life questionnaire for periodontitis patients (Modified indonesian version) in menopausal women. TODENTJ. 2020;14(1):73-81. doi: 10.2174/1874210602014010073.

3. Khairani S, Ervina I, Wulandari P. The effect of scaling and root planing on total antioxidant status of chronic periodontitis patients. In: Proceedings of the 11th international dentistry scientific meeting (IDSM 2017). Paris, France: Atlantis Press; 2018. doi: 10.2991/idsm-17.2018.43.

4. Shetty A, Bhandary R, Thomas B. Highlights on role of antibiotics in periodontics. Int J Dentistry Res. 2016;1(1):24-7. doi: 10.31254/dentistry.2016.1105.

5. Barca E, Cifcibasi E, Cintan S. Adjunctive use of antibiotics in periodontal therapy. J Istanb Univ Fac Dent. 2015 Jan 12;49(3):55-62. doi: 10.17096/jiufd.90144, PMID 28955547.

6. Joshi D, Garg T, Goyal AK, Rath G. Advanced drug delivery approaches against periodontitis. Drug Deliv. 2016;23(2):363-77. doi: 10.3109/10717544.2014.935531, PMID 25005586.

7. Joshi D, Garg T, Goyal AK, Rath G. Advanced drug delivery approaches against periodontitis. Drug Deliv. 2014;23(2):363-77. doi: 10.3109/10717544.2014.935531, PMID 25005586.

8. Pippi R, Santoro M, Cafolla A. The Use of a chitosan-derived hemostatic agent for postextraction bleeding control in patients on antiplatelet treatment. J Oral Maxillofac Surg. 2017;75(6):1118-23. doi: 10.1016/j.joms.2017.01.005, PMID 28189659.

9. Ahmadi F, Oveisi Z, Samani SM, Amoozgar Z. Chitosan-based hydrogels: characteristics and pharmaceutical applications. Res Pharm Sci. 2015;10(1):1-16. PMID 26430453.

10. Popa L, Ghica MV, Pirvu CD. Periodontal chitosan gels designed for improved local intra-pocket drug delivery. Farmacia. 2013;61(2):240-50.

11. El Alfy EA, El Bisi MK, Taha GM, Ibrahim HM. Preparation of biocompatible chitosan nanoparticles loaded by tetracycline, gentamycin and ciprofloxacin as novel drug delivery system for improvement the antibacterial properties of cellulose-based fabrics. Int J Biol Macromol. 2020;161:1247-60. doi: 10.1016/j.ijbiomac.2020.06.118, PMID 32553963.

12. Tatakis DN, Kumar PS. The etiology and pathogenesis of periodontal disease. BAOJ Dent. 2018;4:42. doi: 10.1016/j.cden.2005.03.001.

13. Dharshini D Pro. Inflammatory mediators in periodontal disease-review article. Europan J Moecular Clin Med. 2020;7.

14. Cheng R, Wu Z, Li M, Shao M, Hu T. Interleukin-1β is a potential therapeutic target for periodontitis: a narrative review. Int J Oral Sci. 2020;12(1):2. doi: 10.1038/s41368-019-0068-8, PMID 31900383.

15. Andrew A, Ervina I, Agusnar H. In vitro chitosan hydrogel-based tetracycline cytotoxicity test on fibroblast viability. In: Proceedings of the 11th International Dentistry Scientific Meeting (IDSM 2017). Paris, France: Atlantis Press; 2018. doi: 10.2991/idsm-17.2018.36.

16. Markley JL, Wencewicz TA. Tetracycline inactivating enzymes. Front Microbiol. 2018;9:1058. doi: 10.3389/fmicb.2018.01058, PMID 29899733.

17. Sharma NK, Prasad A. Evaluation of efficacy of tetracycline as a local drug delivery system in the treatment of chronic periodontitis as an adjunct to scaling adn root planing: a clinical and microbiological study. Int J Contemp Med Res. 2017;4(5):998-1003.

18. Nadig PS, Shah MA. Tetracycline as local drug delivery in treatment of chronic periodontitis: a systematic review and meta-analysis. J Indian Soc Periodontol. 2016 Nov-Dec;20(6):576-83. doi: 10.4103/jisp.jisp_97_17, PMID 29238136.

19. Kravanja G, Primozic M, Knez Z, Leitgeb M. Chitosan-based (Nano) materials for novel biomedical applications. Molecules. 2019;24(10):1960. doi: 10.3390/molecules24101960, PMID 31117310.

20. Huang G, Liu Y, Chen L. Chitosan and its derivatives as vehicles for drug delivery. Drug Deliv. 2017;24(2):108-13. doi: 10.1080/10717544.2017.1399305, PMID 29124981.

21. Chandra S, Irma E, Harry A. In vitro evaluation of antimicrobial effectiveness chitosan based tetracycline gel on some pathogenic periodontal bacteria. Int J Appl Dent Sci. 2017;3(2):71-6.

22. Silvia. Efficacy of chitosan nanoparticle loaded with 0,7% tetracyclines on clinical parameters and fibroblast growth factor-2 in periodontitis model. Int J Appl Pharm. 2024;16(S2):43-50. doi: 10.22159/ijap.2024.v16s2.10.

23. Mohammed MA, Syeda JT, Wasan KM, Wasan EK. An overview of chitosan nanoparticles and its application in non-parenteral drug delivery. Pharmaceutics. 2017;9(4):53. doi: 10.3390/pharmaceutics9040053, PMID 29156634.

24. Chavez De Paz LE, Resin A, Howard KA, Sutherland DS, Wejse PL. Antimicrobial effect of chitosan nanoparticles on streptococcus mutans biofilms. Appl Environ Microbiol. 2011;77(11):3892-5. doi: 10.1128/AEM.02941-10, PMID 21498764.

25. Meharwade VV, Gayathri GV, Mehta DS. Effects of scaling and root planing with or without a local drug delivery system on the gingival crevicular fluid leptin level in chronic periodontitis patients: a clinico-biochemical study. J Periodontal Implant Sci. 2014;44(3):118-25. doi: 10.5051/jpis.2014.44.3.118, PMID 24921055.

26. Nazar Majeed Z, Philip K, Alabsi AM, Pushparajan S, Swaminathan D. Identification of gingival crevicular fluid sampling analytical methods and oral biomarkers for the diagnosis and monitoring of periodontal diseases: a systematic review. Dis Markers. 2016;2016:1804727. doi: 10.1155/2016/1804727, PMID 28074077.

27. Ahmed S, Ikram S. Chitosan-based scaffolds and their applications in wound healing. Achiev Life Sci. 2016;10(1):27-37. doi: 10.1016/j.als.2016.04.001.

28. Mohamed FH, El Sissi AF, Ismail SA, Ismail SA, Hashem AM. The potentiality of using chitosan and its enzymatic depolymerized derivative chito-oligosaccharides as immunomodulators. J App Pharm Sci. 2018;8(12):132-9. doi: 10.7324/JAPS.2018.81215.

29. Kanopka L, Pietrzak A, Brzezinska Blaszczyk E. Effect of scaling and root planing on interleukin-1β, interleukin-8 and MMP-8 levels in gingival crevicular fluid from chronic periodontitis patients. J Periodont Res. 2012;47(6):681‑8. doi: 10.1111/j.1600-0765.2012.01480.

Published

25-12-2025

How to Cite

ANANDA, R. T. R., ERVINA, I., AGUSNAR, H., NASUTION, A. H., & KUSUMAWATI, R. L. (2025). EFFECTIVENESS OF CHITOSAN NANOPARTICLES LOADED 0.7% TETRACYCLINE ON CLINICAL PARAMETERS AND INTERLEUKIN-1β LEVEL IN PERIODONTITIS PATIENT. International Journal of Applied Pharmaceutics, 17(5), 45–49. https://doi.org/10.22159/ijap.2025.v17s5.06

Issue

Section

Original Article(s)

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

<< < 7 8 9 10 11 > >> 

You may also start an advanced similarity search for this article.