EFFECTIVENESS OF SCYLLA SERRATA CHITOSAN FOR INCISION WOUND HEALING IN ORAL MUCOSA OF RATTUS NORVEGICUS

Authors

  • HENDRY RUSDY Doctoral Program, Faculty of Dentistry, Universitas Sumatera Utara, Jalan Alumni No. 2 Kampus USU, Padang Bulan, Medan-20155, Indonesia
  • HARRY AGUSNAR Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Sumatera Utara, Jalan Bioteknologi No. 1 Kampus USU, Padang Bulan, Medan-20155, Indonesia
  • OLIVIA AVRIYANTI HANAFIAH Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Universitas Sumatera Utara, Jalan Alumni No. 2 Kampus USU, Padang Bulan, Medan-20155, Indonesia
  • INDRA BASAR SIREGAR Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Universitas Sumatera Utara, Jalan Alumni No. 2 Kampus USU, Padang Bulan, Medan-20155, Indonesia
  • NASYWA TIARA SYADANA Faculty of Dentistry, Universitas Sumatera Utara, Jalan Alumni No. 2 Kampus USU, Padang Bulan, Medan-20155, Indonesia

DOI:

https://doi.org/10.22159/ijap.2025.v17s5.14

Keywords:

Scylla serrata chitosan gel, Oral mucosa incision wound, Wound healing, Erythema, Wound length

Abstract

Objective: To evaluate the effectiveness of Scylla serrata–derived chitosan gel in promoting healing of oral mucosal incision wounds in Rattus norvegicus.

Methods: Twenty-five male Rattus norvegicus were randomly divided into five groups: a positive control group (Gengigel), a negative control group (CMC-Na gel), and three treatment groups receiving 1%, 3%, or 5% chitosan gel. Chitosan concentrations were selected based on prior evidence of therapeutic potential. Incisions were made on the buccal mucosa, and erythema and wound length were assessed on days 1, 3, and 7 post-incision. Erythema data were analyzed using the Pearson chi-square test, while wound length data were evaluated using the Kruskal–Wallis test.

Results: All chitosan gel groups (1%, 3%, and 5%) demonstrated significantly greater reductions in erythema and wound length compared with the negative control group (p < 0.05). Among the treatment concentrations, 3% chitosan gel produced the most effective wound-healing response.

Conclusion: Scylla serrata chitosan gel effectively reduces erythema and accelerates wound closure in oral mucosal incision wounds of Rattus norvegicus, with 3% identified as the optimal concentration for promoting healing.

References

1. Hupp JR, Ellis E, Tucker MR. Contemporary oral and maxillofacial surgery. 6th ed St. Louis: Elsevier Mosby; 2014. p. 44-5.

2. Luo C, Chen M. Do different incision techniques for implant surgery affect gingival papilla height around dental implants? A retrospective study of 115 cases. BMC Oral Health. 2023;23(1):128. doi: 10.1186/s12903-023-02828-z, PMID 36890532.

3. Froum SJ, Wang WC, Hafez T, Suzuki T, Yu YC, Cho S. Incision design and soft tissue management to maintain or establish an interproximal papilla around integrated implants: a case series. Int J Periodontics Restorative Dent. 2018;38(1):62. doi: 10.11607/prd.2978.

4. Boanthaya K, Panne E, Manuel S, Kumar VV, Ra A. Oral and maxillofacial surgery for the clinician. Springer; 2021. p. 361.

5. Pan Z, Zhang X, Xie W, Cui J, Wang Y, Zhang B. Revisited and innovative perspectives of oral ulcer: from biological specificity to local treatment. Front Bioeng Biotechnol. 2024;12:1335377. doi: 10.3389/fbioe.2024.1335377, PMID 38456005.

6. Toma AI, Fuller JM, Willett NJ, Goudy SL. Oral wound healing models and emerging regenerative therapies. Transl Res. 2021;236(9):17-34. doi: 10.1016/j.trsl.2021.06.003, PMID 34161876.

7. Rosyid FN. Wounds: physiological mechanisms and factors affecting healing. Int J Res Med Sci. 2022;10(4):1001-6. doi: 10.18203/2320-6012.ijrms20221000.

8. Hanafiah OA, Hanafiah DS, Syaflida R. The effect of 3% binahong leaf extract gel on the wound healing process of post-tooth extraction. Dent J. 2021;54(2):57-62. doi: 10.20473/j.djmkg.v54.i2.p57-62.

9. Luthfiyana N, Ratrinia PW, Rukisah, Asniar HT. Optimization of demineralization stage in chitosan extraction from mangrove crab shell (Scylla sp.). JPHPI. 2022;25(2):352–63. doi: 10.17844/jphpi.v25i2.41853.

10. Safitri NR, Dali S, Fawwaz M. Isolation of chitosan from mangrove crab shell (Scylla serrata) waste and its application to triglyceride absorption. As-Syifaa J Pharm. 2016;8(2):20–7. doi: 10.33096/ja.v8i2.200.

11. Kmiec M, Pighinelli L, Tedesco MF, Silva MM, Reis V. Chitosan-properties and applications in dentistry. Adv Tissue Eng Regen Med. 2017;2(4):1-5. doi: 10.15406/atroa.2017.02.00035.

12. Periayah MH, Halim AS, Saad AZ. Chitosan: a promising marine polysaccharide for biomedical research. Pharmacogn Rev. 2016;10(19):39-42. doi: 10.4103/0973-7847.176545, PMID 27041872.

13. Sugihartini N, Jannah S, Yuwono T. Formulation of Moringa oleifera leaf extract as an anti-inflammatory gel dosage form. Pharm Sci Res (PSR). 2020;7(1):10. doi: 10.7454/psr.v7i1.1065.

14. De Jesus G, Marques L, Vale N, Mendes RA. The effects of chitosan on the healing process of oral mucosa: an observational cohort feasibility split-mouth study. Nanomaterials. 2023;13(4):706. doi: 10.3390/nano13040706, PMID 36839074.

15. Syafruddin PDAM, Panjaitan B, DKK. The effect of chitsan gel in white rat total leukocytes on incision wound healings. Bul Vet Udayana. 2022;14(2):127. doi: 10.24843/bulvet.2022.v14.i02.p09.

16. Lungu R, Paun MA, Peptanariu D, Ailincai D, Marin L, Nichita MV. Biocompatible chitosan-based hydrogels for bioabsorbable wound dressings. Gels. 2022;8(2):107. doi: 10.3390/gels8020107, PMID 35200488.

17. Kuncari ES, Iskandarsyah P. The irritation and hair growth activity test of male s-d mice: effect of gel containing apigenin and celery (Apium graveolens l.) juice. Media Litbangkes. 2015;25(1):18.

18. Amer MA, Attia EM. Survey and documentation of anthelmintic plants used in the traditional medicine system of tribal communities of Udalguri district of Assam, India. J App Pharm Sci. 2020;10(1):46-54. doi: 10.7324/JAPS.2020.101006.

19. Putri DK, Fitriyana A, Raudah S, Sarifah N, Budipramana M, Wardhana AS. Chitosan from haruan (Channa striata) fish scale accelerate wound healing by promoting angiogenesis and fibroblast proliferation. Odonto Dent J. 2024;11(1):18. doi: 10.30659/odj.11.1.7-20.

20. Anggayanti NA, Sudirman PL, Sari NN, Suryani I. Mixed tea leaves extract gel with chitosan application increase the fibroblasts in wound healing after tooth extraction of wistar rats. Padjadjaran J Dent. 2023;35(1):11-5. doi: 10.24198/pjd.vol35no1.36563.

21. Puspita BS, Sularsih DDW. The difference effect of high and low molecular weight chitosan to the amount of blood vessel in wound healing process of dental extraction. DENTA. 2015;9(2):209-14.

22. Palei NN, Yadav S. Chitosan as biomaterial for wound healing: mechanisms and various applications. Res J Pharm Technol. 2024;17(10):5102-8. doi: 10.52711/0974‑360X.2024.00784.

23. Miloro M, Ghali GE, Larsen PE, Waite P. Peterson’s principles of oral and maxillofacial surgery. 4th ed; 2022. p. 3-16.

24. Aya KL, Stern R. Hyaluronan in wound healing: rediscovering a major player. Wound Repair Regen. 2014;22(5):579-93. doi: 10.1111/wrr.12214, PMID 25039417.

25. Salim S, Rostiny K. Effect spirulina chitosan combinations as a socket preservation osteoblast, osteoclast and collagen density. Dentika Journal. 2015;18(3):225‑31.

26. Feng P, Luo Y, Ke C, Qiu H, Wang W, Zhu Y. Chitosan-based functional materials for skin wound repair: mechanisms and applications. Front Bioeng Biotechnol. 2021 Feb 18;9:2-6. doi: 10.3389/fbioe.2021.650598.

27. Hartono FA, Prabowo PB, Revianti S. Application of chitosan gel high molecular weight and low molecular weight on the epithelial mucosal thickness in wound healing after tooth extraction. Denta J Ked Gigi. 2015;9(1):1‑10.

28. Abedian Z, Jenabian N, Moghadamnia AA, Zabihi E, Tashakorian H, Rajabnia M. Antibacterial activity of high-molecular-weight and low-molecular-weight chitosan upon oral pathogens. J Conserv Dent. 2019;22(2):169-74. doi: 10.4103/JCD.JCD_300_18, PMID 31142988.

29. Liu H, Wang C, Li C, Qin Y, Wang Z, Yang F. A functional chitosan-based hydrogel as a wound dressing and drug delivery system in the treatment of wound healing. RSC Adv. 2018;8(14):7533-49. doi: 10.1039/C7RA13510F, PMID 35539132.

30. Matica MA, Aachmann FL, Tondervik A, Sletta H, Ostafe V. Chitosan as a wound dressing starting material: antimicrobial properties and mode of action. Int J Mol Sci. 2019;20(23):5889. doi: 10.3390/ijms20235889, PMID 31771245.

31. Fadiana UL, Haryanto. Effect of chitosan on characterization of pva hydrogel film for wound dressing application. Techno. 2021;22(2):123-30.

32. Bhagawan WS, Kusumawati D, Annisa R, Zatalini DF. Formulation and activity of HPMC-chitosan gel on the healing process of iia degree burns in white rats (Rattus norvegicus) wistar. Prosiding SENFIKS. 2020;1(1):77. doi: 10.30595/techno.v22i2.11593.

Published

25-12-2025

How to Cite

RUSDY, H., AGUSNAR, H., HANAFIAH, O. A., SIREGAR, I. B., & SYADANA, N. T. (2025). EFFECTIVENESS OF SCYLLA SERRATA CHITOSAN FOR INCISION WOUND HEALING IN ORAL MUCOSA OF RATTUS NORVEGICUS. International Journal of Applied Pharmaceutics, 17(5), 75–80. https://doi.org/10.22159/ijap.2025.v17s5.14

Issue

Section

Original Article(s)

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

<< < 10 11 12 13 14 > >> 

You may also start an advanced similarity search for this article.