THERAPEUTIC APPLICATIONS OF NANO-SILVER IN ONCOLOGY: INSIGHTS INTO MECHANISMS
DOI:
https://doi.org/10.22159/ijms.2025v13i6.56452Keywords:
Silver nanoparticles, Anticancer therapy, Preparation, Green synthesis, Reactive oxygen species(ROS)Abstract
Cancer remains a major global health challenge, necessitating the continuous development of innovative and effective treatment strategies. Silver nanoparticles (AgNPs) have emerged as promising agents in anticancer drug therapy due to their unique physicochemical properties, including high surface area, biocompatibility, and ability to induce cytotoxic effects selectively in cancer cells. This review explores the synthesis methods, mechanisms of action, and therapeutic applications of AgNPs in cancer treatment. AgNPs exhibit potent anticancer effects through mechanisms such as reactive oxygen species (ROS) generation, mitochondrial dysfunction, DNA damage, and apoptosis induction. Moreover, their ability to enhance drug delivery, improve bioavailability, and overcome multidrug resistance has garnered significant attention in oncological research. The combination of AgNPs with conventional chemotherapeutic agents, such as Camptothecin, Methotrexate, Gemcitabine, and Cisplatin, has demonstrated synergistic effects, leading to enhanced cytotoxicity and reduced side effects. In addition, the green synthesis of AgNPs using plant extracts has opened new avenues for eco-friendly and sustainable nanomedicine approaches. Despite these promising findings, challenges related to toxicity, stability, and clinical translation remain areas of active investigation. Further studies are required to optimize nanoparticle formulations, evaluate long-term biocompatibility, and establish their efficacy through clinical trials. This review highlights the potential of AgNPs as a versatile and efficient tool in anticancer drug therapy, paving the way for future advancements in nanomedicine-based oncology treatments.
References
1. Medici S, Peana M, Nurchi VM, Zoroddu MA. Medical uses of silver: History, myths, and scientific evidence. J Med Chem 2019;62:5923-43.
2. Medici S, Peana M, Crisponi G, Nurchi VM, Lachowicz JI, Remelli M, et al. Silver coordination compounds: A new horizon in medicine. Coord Chem Rev 2016;327:349-59.
3. White RJ. An historical overview of the use of silver in wound management. Br J Commun Nurs. 2001;6:3-8.
4. Vijayaram S, Razafindralambo H, Sun YZ, Vasantharaj S, Ghafarifarsani H, Hoseinifar SH, et al. Applications of green synthesized metal nanoparticles-a review. Biol Trace Elem Res 2024;202:360-86.
5. Abid N, Khan AM, Shujait S, Chaudhary K, Ikram M, Imran M, et al. Synthesis of nanomaterials using various top-down and bottom-up approaches, influencing factors, advantages, and disadvantages: A review. Adv Colloid Interface Sci 2022;300:102597.
6. Zhang XF, Liu ZG, Shen W, Gurunathan S. Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci 2016;17:1534.
7. Hasan S. A review on nanoparticles: Their synthesis and types. Res J Recent Sci 2015;2277:2502.
8. Ealia SA, Saravanakumar MP. A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conf Series Mater Sci Eng 2017;263:032019.
9. Ur Rashid H, Xu Y, Muhammad Y, Wang L, Jiang J. Research advances on anticancer activities of matrine and its derivatives: An updated overview. Eur J Med Chem 2019;161:205-38.
10. Nagai H, Kim YH. Cancer prevention from the perspective of global cancer burden patterns. J Thorac Dis 2017;9:448.
11. Shewach DS, Kuchta RD. Introduction to cancer chemotherapeutics. Chem Rev 2009;109:2859-61.
12. Patrick K, Intille SS, Zabinski MF. An ecological framework for cancer communication: Implications for research. J Med Int Res 2005;7:e363.
13. He Y, Li X, Wang J, Yang Q, Yao B, Zhao Y, et al. Synthesis, characterization and evaluation cytotoxic activity of silver nanoparticles synthesized by Chinese herbal Cornusofficinalis via environment friendly approach. Environ Toxicol Pharmacol 2017;56:56-60.
14. Zhu B, Li Y, Lin Z, Zhao M, Xu T, Wang C, et al. Silver nanoparticles induce HePG-2 cells apoptosis through ROS-mediated signaling pathways. Nanoscale Res Lett 2016;11:198.
15. Yuan YG, Zhang S, Hwang JY, Kong IK. Silver nanoparticles potentiates cytotoxicity and apoptotic potential of camptothecin in human cervical cancer cells. Oxid Med Cell Longev 2018;2018:6121328.
16. Odeniran PO, Madlala P, Mkhwanazi NP, Soliman ME. Camptothecin and its derivatives from traditional Chinese medicine in combination with anticancer therapy regimens: A systematic review and meta-analysis. Cancers (Basel) 2024;16:3802.
17. Rasoulian B, Kaeidi A, Rezaei M, Hajializadeh Z. Cellular preoxygenation partially attenuates the antitumoral effect of cisplatin despite highly protective effects on renal epithelial cells. Oxid Med Cell Longev 2017;2017:7203758.
18. Chrencik JE, Staker BL, Burgin AB, Pourquier P, Pommier Y, Stewart L, et al. Mechanisms of camptothecin resistance by human topoisomerase I mutations. J Mol Biol 2004;339:773-84.
19. Chan ES, Cronstein BN. Methotrexate--how does it really work? Nat Rev Rheumatol 2010;6:175-8.
20. Kim A, Lee JE, Jang WS, Lee SJ, Park S, Kang HJ, et al. A combination of methotrexate and irradiation promotes cell death in NK/T-cell lymphoma cells via down-regulation of NF-κB signalling. Leuk Res 2012;36:350-7.
21. Thapa RK, Kim JH, Jeong JH, Shin BS, Choi HG, Yong CS, et al. Silver nanoparticle-embedded graphene oxide-methotrexate for targeted cancer treatment. Colloids Surf B Biointerfaces 2017;153: 9-103.
22. Toschi L, Finocchiaro G, Bartolini S, Gioia V, Cappuzzo F. Role of gemcitabine in cancer therapy. Future Oncol 2005;1:7-17.
23. Yuan YG, Peng QL, Gurunathan S. Silver nanoparticles enhance the apoptotic potential of gemcitabine in human ovarian cancer cells: Combination therapy for effective cancer treatment. Int J Nanomedicine 2017;12:6487-502.
24. Kawaguchi H, Terai Y, Tanabe A, Sasaki H, Takai M, Fujiwara S, et al. Gemcitabine as a molecular targeting agent that blocks the Akt cascade in platinum-resistant ovarian cancer. J Ovarian Res 2014;7:38.
25. McGuire WP, Hoskins WJ, Brady MF, Kucera PR, Partridge EE, Look KY, et al. Cyclophosphamide and cisplatin compared with paclitaxel and cisplatin in patients with stage III and stage IV ovarian cancer. N Engl J Med 1996;33:1-6.
26. Wang H, Zhang H, Zhu Y, Wu Z, Cui C, Cai F. Anticancer mechanisms of salinomycin in breast cancer and its clinical applications. Front Oncol 2021;11:654428.
27. Qi D, Liu Y, Li J, Huang JH, Hu X, Wu E. Salinomycin as a potent anticancer stem cell agent: State of the art and future directions. Med Res Rev 2022;42:1037-63.
28. Zhang XF, Gurunathan S. Combination of salinomycin and silver nanoparticles enhances apoptosis and autophagy in human ovarian cancer cells: An effective anticancer therapy. Int J Nanomedicine 2016;2:3655-75.
29. Hermann PC, Sainz B Jr. Pancreatic cancer stem cells: A state or an entity? Semin Cancer Biol 2018;53:223‐31.
30. Michalak M, Lach MS, Antoszczak M, Huczynski A, Suchorska WM. Overcoming resistance to platinum‐based drugs in ovarian cancer by salinomycin and its derivatives‐an in vitro study. Molecules 2020;25:537.
31. Erbaş E, Gelen V, Kara H, Gedikli S, Yeşildağ A, Özkanlar S, et al. Silver nanoparticles loaded with oleuropein reduce doxorubicin-induced testicular damage by regulating endoplasmic reticulum stress, and apoptosis. Biol Trace Elem Res 2024;202:4687-98.
32. Kciuk M, Gielecińska A, Mujwar S, Kołat D, Kałuzińska-Kołat Ż, Celik I, et al. Doxorubicin-an agent with multiple mechanisms of anticancer activity. Cell 2023;12:659.
33. Shafei A, El-Bakly W, Sobhy A, Wagdy O, Reda A, Aboelenin O, et al. A review on the efficacy and toxicity of different doxorubicin nanoparticles for targeted therapy in metastatic breast cancer. Biomed Pharmacother 2017;95:1209-18.
34. Wang T, Tang J, Yang H, Yin R, Zhang J, Zhou Q, et al. Effect of apatinib plus pegylated liposomal doxorubicin vs pegylated liposomal doxorubicin alone on platinum-resistant recurrent ovarian cancer: The approve randomized clinical trial. JAMA Oncol 2022;8:1169-76.
35. Rishmawi S, Haddad F, Dokmak G, Karaman R. A comprehensive review on the anti-cancer effects of oleuropein. Life (Basel) 2022;12:1140.
36. Othman M, Obeidat S, Al-Bagawi A, Fareid M, El-Borady O, Kassab R, et al. Evaluation of the potential role of silver nanoparticles loaded with berberine in improving anti-tumor efficiency. Pharm Sci 2021;28:86-93.
37. Rauf A, Abu-Izneid T, Khalil AA, Imran M, Shah ZA, Emran TB, et al. Berberine as a potential anticancer agent: A comprehensive review. Molecules 2021;26:7368.
38. Hu HY, Li KP, Wang XJ, Liu Y, Lu ZG, Don RH, et al. Set9, NF-κB, and microRNA-21 mediate berberine-induced apoptosis of human multiple myeloma cells. Acta Pharmacol Sin 2013;34:157-66.
39. Takimoto CH, Awada A. Safety and anti-tumor activity of sorafenib (Nexavar®) in combination with other anti-cancer agents: A review of clinical trials. Cancer Chemother Pharmacol 2008;61:535-48.
40. Khafaga DS, Eid MM, Mohamed MH, Abdelmaksoud MD, Afify M, El- Khawaga AM, et al. Enhanced anticancer activity of silver doped zinc oxide magnetic nanocarrier loaded with sorafenib for hepatocellular carcinoma treatment. Sci Rep 2024;14:15538.
41. Sheng X, Huang T, Qin J, Li Q, Wang W, Deng L, et al. Preparation, pharmacokinetics, tissue distribution and antitumor effect of sorafenib-incorporating nanoparticles in vivo. Oncol Lett 2017;14:6163-9.
42. Granja A, Pinheiro M, Reis S. Epigallocatechin gallate nanodelivery systems for cancer therapy. Nutrients 2016;8:307.
43. Karahaliloğlu Z, Kilicay E, Alpaslan P, Hazer B, BakiDenkbas E. Enhanced antitumor activity of epigallocatechingallate-conjugated dual-drug-loaded polystyrene-polysoyaoil-diethanol amine nanoparticles for breast cancer therapy. J Bioact Compatible Polym 2018;33:38-62.
44. Masuda M, Suzui M, Lim JT, Weinstein IB. Epigallocatechin-3-gallate inhibits activation of HER-2/neu and downstream signaling pathways in human head and neck and breast carcinoma cells. Clin Cancer Res45. Cerezo-Guisado MI, Zur R, Lorenzo MJ, Risco A, Martín-Serrano MA, Alvarez-Barrientos A, et al. Implication of Akt, ERK1/2 and alternative p38MAPK signalling pathways in human colon cancer cell apoptosis induced by green tea EGCG. Food Chem Toxicol 2015;84:125-32.
46. Kajani AA, Bordbar AK, Esfahani SH, Khosropour AR, Razmjou A. Green synthesis of anisotropic silver nanoparticles with potent anticancer activity using Taxus baccata extract. Rsc Adv 2014;4:61394-403.
47. Modarresi-Darreh B, Kamali K, Kalantar SM, Dehghanizadeh H, Aflatoonian B. Comparison of synthetic and natural taxol extracted from Taxus plant (Taxus baccata) on growth of ovarian cancer cells under in vitro condition. Eur Asian J Bio Sci 2018;12:413-8.
48. Yousaf A, Waseem M, Javed A, Baig S, Ismail B, Baig A, et al. Augmented anticancer effect and antibacterial activity of silver nanoparticles synthesized by using Taxus wallichiana leaf extract. PeerJ 2022;10:e14391.
49. Ostad SN, Dehnad S, Nazari ZE, Fini ST, Mokhtari N, Shakibaie M, et al. Cytotoxic activities of silver nanoparticles and silver ions in parent and tamoxifen-resistant T47D human breast cancer cells and their combination effects with tamoxifen against resistant cells. Avicenna J Med Biotechnol 2010;2:187-96.
50. Ring A, Dowsett M. Mechanisms of tamoxifen resistance. Endocr Relat Cancer 2004;11:643-58.
51. Habashy HO, Powe DG, Staka CM, Rakha EA, Ball G, Green AR, et al. Transferrin receptor (CD71) is a marker of poor prognosis in breast cancer and can predict response to tamoxifen. Breast Cancer Res Treat 2010;119:283-93.
52. Longley DB, Harkin DP, Johnston PG. 5-fluorouracil: Mechanisms of action and clinical strategies. Nat Rev Cancer 2003;3:330-8.
53. Danışman-Kalındemirtaş F, Kariper İA, Üstündağ H, Özsoy C, Erdem- Kuruca S. Antiproliferative effects of 5FU-AgNPs on different breast cancer cells. J Taibah Univ Sci 2024;18:2354573.
54. Botticelli A, Scagnoli S, Roberto M, Lionetto L, Cerbelli B, Simmaco M, et al. 5-Fluorouracil degradation rate as a predictive biomarker of toxicity in breast cancer patients treated with capecitabine. J Oncol Pharm Pract 2020;26:1836-42.
55. Entezar-Almahdi E, Mohammadi-Samani S, Tayebi L, Farjadian F. Recent advances in designing 5-fluorouracil delivery systems: A stepping stone in the safe treatment of colorectal cancer. Int J Nanomed 2020;15:5445-58.
56. Ghosh S. Cisplatin: The first metal based anticancer drug. Bioorg Chem 2019;88:102925.
57. Gounden S, Daniels A, Singh M. Chitosan-modified silver nanoparticles enhance cisplatin activity in breast cancer cells. Biointerface Res Appl Chem 2021;11:10572-84.
58. Hepokur C, Kariper IA, Misir S, Ay E, Tonoğlu S, Ersez MS, et al. Silver nanoparticle/capecitabine for breast cancer cell treatment. Toxicol In Vitro 2019;61:104600.
59. Taher ZM, Agouillal F, Marof AQ, Dailin DJ, Nurjayadi M, Razif EN, et al. Anticancer molecules from Catharanthus roseus. Indones J Pharm 2019;30:147.
60. Hussein HS, Ngugi C, Tolo FM, Maina EN. Anticancer potential of silver nanoparticles biosynthesized using Catharanthus roseus leaves extract on cervical (HeLa229) cancer cell line. Sci Afr 2024;25:e02268.
61. Jamil K, Khattak SH, Farrukh A, Begum S, Riaz MN, Muhammad A, et al. Biogenic synthesis of silver nanoparticles using Catharanthus roseus and its cytotoxicity effect on vero cell lines. Molecules 2022;27:6191.
62. Ghozali SZ, Vuanghao L, Ahmad NH. Biosynthesis and characterization of silver nanoparticles using Catharanthus roseus leaf extract and its proliferative effects on cancer cell lines. J Nanomed Nanotechnol 2015;6:4.
63. Rauf A, Ahmad Z, Zhang H, Muhammad N, Akram Z, Ud Din I. Green synthesis, characterization, and in vitro and in vivo biological screening of iron oxide nanoparticles (Fe3O4) generated with hydroalcoholic extract of aerial parts of Euphorbia milii. Green Process Synth 2024;13:20240155.
64. Chohan TA, Sarfraz M, Rehman K, Muhammad T, Ghori MU, Khan KM, et al. Phytochemical profiling, antioxidant and antiproliferation potential of Euphorbia milii var.: Experimental analysis and in-silico validation. Saudi J Biol Sci 2020;27:3025-34.
65. Mahfouz AY, Daigham GE, Radwan AM, Mohamed AA. Eco-friendly and superficial approach for synthesis of silver nanoparticles using aqueous extract of and L seeds for evaluation of their antibacterial, antiviral, and anticancer activities a focus study on its impact on seed germination and seedling growth of and. Egypt Pharm J 2020;19:401-13.
66. Deng Y, Sriwiriyajan S, Tedasen A, Hiransai P, Graidist P. Anti-cancer effects of Piper nigrum via inducing multiple molecular signaling in vivo and in vitro. J Ethnopharmacol 2016;188:87-95.
67. Majdalawieh AF, Fayyad MW. Recent advances on the anti-cancer properties of Nigella sativa, a widely used food additive. J Ayurveda Integr Med 2016;7:173-80.
68. Liang P, Shi H, Zhu W, Gui Q, Xu Y, Meng J, et al. Silver nanoparticles enhance the sensitivity of temozolomide on human glioma cells. Oncotarget 2016;8:7533-9.
69. Tentori L, Graziani G. Recent approaches to improve the antitumor efficacy of temozolomide. Curre Med Chem 2009;16:245-57.
70. Basile V, Ferrari E, Lazzari S, Belluti S, Pignedoli F, Imbriano C. Curcumin derivatives: Molecular basis of their anti-cancer activity. Biochem Pharmacol 2009;78:1305-15.
71. Adahoun MA, Al-Akhras MA, Jaafar MS, Bououdina M. Enhanced anti-cancer and antimicrobial activities of curcumin nanoparticles. Artif Cells Nanomed Biotechnol 2017;45:98-107.
72. Hasandoost L, Akbarzadeh A, Attar H, Heydarinasab A. In vitro effect of imatinib mesylate loaded on polybutylcyanoacrylate nanoparticles on leukemia cell line K562. Artif Cells Nanomed Biotechnol 2017;45:665-9.
73. Marslin G, Revina AM, Khandelwal VK, Balakumar K, Prakash J, Franklin G, et al. Delivery as nanoparticles reduces imatinib mesylate-induced cardiotoxicity and improves anticancer activity. Int J Nanomedicine 2015;10:3163-70.
74. Jabbari H, Khosravi S, Azimi S. Synthesis and evaluation of new derivatives of busulfan as an anti-carcinogenic drug against k562 cancer cells using the AO/PI method. Open Med Chem J 2022;16.
75. Hayho FG, Kok D. Medullary aplasia in chronic myeloid leukaemia during busulphan therapy. Br Med J 1957;2:1468-71.
76. Ha W, Yang JL, Shi YP. Tannic acid-modified silver nanoparticles for antibacterial and anticancer applications. ACS Appl Nano Mater 2023;6:9617-27.
77. Pushpanathan S, Gunasekaran A, Natarajan SR, Kannan K, Krishnan K. Caffeic acid functionalized silver nanoparticles: A bionanoformulation and its assessment of cell cycle and in vitro cytotoxicity. Next Nanotechnol 2025;7:100105.
78. Magnani C, Isaac VL, Correa MA, Salgado HR. Caffeic acid: A review of its potential use in medications and cosmetics. Anal Methods 2014;6:3203-10.
79. Guo D, Dou D, Ge L, Huang Z, Wang L, Gu N. A caffeic acid mediated facile synthesis of silver nanoparticles with powerful anti-cancer activity. Colloids Surf B Biointerfaces 2015;134:229-34.
80. Tunç T. Synthesis and characterization of silver nanoparticles loaded with carboplatin as a potential antimicrobial and cancer therapy. Cancer Nanotechnol 2024;15:2.
81. Available from: https://patents.google.com/patent/cn112972429a/ en?q=(camptothecin+silver+nanoparticles+in+cancer+therapy )&oq=camptothecin+with+silver+na noparticl es+in+cancer+thera py+ [Last accessed on 2025 Jun 02].
82. Available from: https://patents.google.com/patent/us10500164b2/ en?q=(methotrexate+silver+nanoparticles+anticancer+drug )&oq=methotrexate+with+ silver+nanoparticles+ anticancer+drug [Last accessed on 2025 Jun 02].
83. Available from: https://patents.google.com/patent/jp6181265b2/ en?q=(gemcitabine+silver+nanoparticles+in+cancer+therap y)&oq=gemcitabine+w ith+silver+na noparticles+in+cancer +therapy+ [Last accessed on 2025 Jun 02].
84. Available from: https://patents.google.com/patent/ cn108377643b/en?q=(salinomycin+silver+nanoparticles + i n + c a n c e r + t h e r a p y ) & o q = s a l i n o m y c i n + w i t h + silver+nanoparticles+in+cancer +therapy+ [Last accessed on 2025 Jun 02].
85. Available from: https://patents.g oogle.com/patent/kr101757273b1/ en?q=(doxorubicin+silver+nanoparticles+in+cancer+therapy) &oq=doxorubicin+wit h+silver+nanoparticles +in+cancer +therapy+ [Last accessed on 2025 Jun 02].
86. Available from: https://patents.google.com/patent/ c n 1 0 5 6 6 4 1 6 8 a / e n ? q = ( e p i g a l l o c a t e c h i n + s i l v e r + n a n o p a r t i c l e s + i n + c a n c e r + t h e r a p y ) & o q = e p i g a l l o catechin+with+silver+nanoparticles+in+cancer+therapy [Last accessed on 2025 Jun 05].
87. Available from: https://patents.google.com/ patent/jp6181265b2/ en?q=(tamoxifen+silver+nanoparticles+in+cancer+therapy) &oq=tamoxifen +with+silver+nanoparticles +in+cancer +therapy+ [Last accessed on 2025 Jun 05].
88. Available from: https://patents.google.com/patent/ cn111840549b/en?q=(cisplatin+silver+nanoparticles+ in+cancer+therapy)&oq=cisplatin+with+silver+nanoparticles+in +cancer+therapy+ [Last accessed on 2025 Jun 05].
Published
How to Cite
Issue
Section
Copyright (c) 2025 RUCHI S. PEDNEKAR, DNYANESHWARI C. PHALKE, RAKSHA LAXMAN MHETRE, NILESH S. KULKARNI, SHASHIKANT N. DHOLE

This work is licensed under a Creative Commons Attribution 4.0 International License.